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Abstract: Coastal video monitoring has proven to be a valuable ground-based technique to investigate
ocean processes. Presently, there is a growing need for automatic, technically efficient, and inexpensive
solutions for image processing. Moreover, beach and coastal water quality problems are becoming
significant and need attention. This study employs a methodological approach to exploit low-cost
smartphone-based images for coastal image classification. The objective of this paper is to present
a methodology useful for supervised classification for image semantic segmentation and its application
for the development of an automatic warning system for Sargassum algae detection and monitoring.
A pixel-wise convolutional neural network (CNN) has demonstrated optimal performance in
the classification of natural images by using abstracted deep features. Conventional CNNs demand
a great deal of resources in terms of processing time and disk space. Therefore, CNN classification
with superpixels has recently become a field of interest. In this work, a CNN-based deep learning
framework is proposed that combines sticky-edge adhesive superpixels. The results indicate that
a cheap camera-based video monitoring system is a suitable data source for coastal image classification,
with optimal accuracy in the range between 75% and 96%. Furthermore, an application of the method for
an ongoing case study related to Sargassum monitoring in the French Antilles proved to be very effective
for developing a warning system, aiming at evaluating floating algae and algae that had washed ashore,
supporting municipalities in beach management.

Keywords: coastal video monitoring; deep learning; convolutional neural network; superpixel
over-segmentation; Sargassum warning system

1. Introduction

1.1. Image Classification—Coastal Area

Due to the rapid progress of ground-based and remote-sensing technology, the spatial resolution of
color images and the size of image archives are being increased yearly. This has led to the development
of more sophisticated and efficient algorithms and methodologies for image processing, based on
up-to-date computer vision research. Aiming to investigate coastal processes, the growing need for
coastal high-resolution data is being pursued. Particularly, land cover classification is presently a hot
topic field.

Among the coastal video monitoring techniques, ground-sensing approaches by means of
camera systems are widely used, allowing the investigation of coastal processes with high temporal
and spatial resolution, with optimal accuracy. Numerous alternative or complementary uses are also
pursued, with applications related to coastal hydrodynamics [1–4], morphodynamics [5–7], or quality
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monitoring (e.g., seagrass) [8,9]. Moreover, the use of low-cost devices and public resources has
recently become a focus of attention and is being further explored [10–12]. When dealing with coastal
ground-based camera systems, with respect to satellite observations, the availability of images with
smaller but optimal field-of-view and proper spatial resolution increases the opportunity of removing
the barriers related to, for example, cloud cover and temporal lags, facilitating the study of large
time series. As a result, this requires focus be placed on two characteristics in particular: automation
and pixel-based distinctiveness.

In the literature, the algorithms employed for coastal image classification need to distinguish
between classes of pixels based on a limited number of intrinsic pixel features, normally the color
channels RGB/HSV/Lab, and especially focused on seeds or regions of interest [13–15], or by means of
a classifier which use features (e.g., geometrical, textural) that are typically discernible with the human
eye (e.g., support vector machine, SVM [16]). In contrast to these shallow features, deep features
which cannot be effectively extracted by traditional methodology have not yet played a role in coastal
image classification.

Recently, deep learning has made a great deal of progress in natural image processing, as well
as in remote-sensing image classification. Moreover, the performance of convolutional neural networks
(CNNs) in scene classification or object detection [17,18] has been practically established. A CNN is
a multi-layer artificial neural network with convolutional kernels, where each layer is a non-linear
feature detector performing local processing of contiguous features within each layer, and it is
developed by eliciting the function of the human brain [19]. Presently, CNN-based land cover
classification methods fall into three main categories: semantic segmentation using fully convolutional
networks (FCNs) [20], pixel-based CNN classification, and superpixel-based CNN classification,
with many different configurations. The FCN is a CNN where the last fully connected layer is
substituted by another convolution layer with a large “receptive field”. The result is a semantically
labelled image that has the same resolution as the input image. By inspecting the classification
results of the FCN, it is evident that the boundaries of small-scale regions are not adequately detailed.
Pixel-based CNNs are used to classify single pixels, by using their features. Applied in a pixel-based
approach, a square image patch containing adjacent pixels of the pixel to be classified feeds the CNN for
features extraction [19]. During the training phase, training images are disaggregated into overlapping
patches, and each patch is typically centered on a pixel which provides the class for the whole patch.
From the literature, it is well-known that the window-sliding approach is a highly time-consuming
process, especially for high-resolution images, and needs a large number of spatial processing units
and hard disk space and time. Taking a high-resolution image as an example, over 2 million image
patches must be fed into a CNN for pixel-level classification results [21]. Traditional pixel-based CNN
classification models which reach higher accuracy in classification tasks are not sufficiently resilient to
image degradations, particularly against salt and pepper noise and blurring [22].

Some strategies have recently been proposed to reduce the time spent in classifying an image
through the use of superpixel segmentation, which is still challenging. Superpixels represent
a form of image segmentation, but the focus lies on a controlled over-segmentation, more than
in object-oriented partitioning. Segmented superpixel regions are highly homogeneous and hence are
easier to be correctly classified, avoiding fragmented classification results. In fact, by adjusting their size
and compactness, an image can be divided into several, almost homogeneous, regions with a certain
number of pixels. Hence, it is possible to create superpixels that can be almost completely contained
by a patch of determined size. Currently, many superpixel algorithms have been developed [23].
However, some are able to provide good compactness but have a bad boundary recall, such as simple
linear iterative clustering (SLIC) [24], and some have good boundary recall performance but have a bad
compactness, such as the mean shift algorithm [25]. It is evident that not all superpixel algorithms
are suited for CNN classification since the data fed into the input layer of the CNN should consist
of images with fixed sizes. Therefore, only superpixel segmentation methods with a good balance
between compactness and boundary recall are suitable for CNNs.
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Additionally, in order to alleviate the drawbacks related to the loss in spatial accuracy of
convolutional networks, some solutions have been explored to date, e.g. by using a domain transform to
simultaneously learn edge detection and semantic segmentation [26], by including boundary detection
in FCN-type models [27], or a fully connected conditional random field (CRF) algorithm [28] which takes
into account the low-level information captured by the local interactions of pixels and edges [29].

In this work, we investigated and evaluated the possibility of using low-cost devices for
the semantic segmentation of morphological/natural regions from coastal images with natural scenes.
This was achieved by means of a procedure that relies on a supervised deep learning framework,
which is shown to be very effective in application to pattern recognition and the semantic segmentation
of not-structured, complex regions.

1.2. Sargassum Monitoring by Imagery

In the domain of coastal and water quality monitoring, the use of imagery—when visible
signatures can be exploited—represents a valid alternative for collecting time series of data,
which accordingly demands some efficient and easy-to-use methods for allowing automatic analysis.
At present, the information retrieved from remote sensing satellite systems is very useful to
the qualitative and quantitative estimation of offshore macroalgae presence and motion [30]. This type
of investigation is significant when related to phenomena like algae washing ashore. In fact,
waters off the Caribbean islands in recent years have seen large amounts of Sargassum seaweed [31].
These record-breaking Sargassum blooms and mass stranding started at large in 2011, then 2015
saw the next large-scale event and in January 2018, unusually large aggregations of Sargassum were
spotted on satellite imagery. Normally, when floating, offshore Sargassum provides an important
habitat and refuge to a large diversity of animals. However, when weeds approach nearshore in
massive quantities due to the actions of currents and winds, they start to become deathtraps for
many animals and contribute to the degradation of important coastal habitats, threatening coastal
activities and ecosystems. The decomposing mass, which can be several meters high, provoking
olfactory, mechanical, and health problems, damages tourism activities mostly due to hydrogen
sulphide, since the sight and smell make the beaches highly unappealing. Both satellite and modeled
surface current data point to the North Equatorial Recirculation Region as the origin of recent
mass blooms north of the mouth of the Amazon, between Brazil and West Africa, in an area not
previously associated with Sargassum growth [32]. A number of factors, including nutrients, rising sea
temperatures, and Sahara dust storms, have been put forward as potential causes [33]. Specific models
developed to analyze satellite imagery and detect floating algae—the Floating Algae Index (FAI) [34]
or the Alternate Floating Algae Index (AFAI) [35]—reveal that only in recent years was the area subject
to mass proliferation of Sargassum: satellite imagery prior 2011 shows the area to be “largely free
from seaweed”.

Unfortunately, operational warning devices able to anticipate algae washing ashore still have
disadvantages related to the inadequate sampling and temporal frequency (MODIS observations,
e.g., [36]) and the interposing obstacles such as cloud shadows and sun glint constitute very
important issues. Actually, there is little space for improvement, as these are natural phenomena.
Aside from the need for anticipation, there is a practical need for local governments to deal with
this severe issue and increase the abilities to quantify Sargassum onshore on a seasonal basis.
In addition, there is a special need for management planning in order to pursue increased resilience
and benefit from Sargassum influxes [37]. Location and amounts of Sargassum ashore should thus
be accurately evaluated to properly plan their comprehensive management and anticipate beach
maintenance requirements/funding.

Compared with satellite, ground-sensed imagery could provide finer geometric details and richer
textural features of land covers, even if confined to coastal waters. Herein, a case study focused on
the monitoring of beached and floating Sargassum aiming at the development of a warning system by
exploiting automatic image segmentation is introduced and discussed.
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1.3. Outline and Scope

This work explores an alternative approach for coastal image classification, aiming at addressing
the aforementioned issues, which appeared to be highly effective. In this work, a strategy to reduce
the time for image classification through the use of superpixel over-segmentation and CNN classification
is proposed. Then, this work proposes a method for boosting the model’s ability to capture fine details,
by employing a fully-connected CRF. Aiming at the monitoring of floating and beached Sargassum
at Martinique Island, a discussion on the implementation of the automatic segmentation of images in
a warning system framework is highlighted. Finally, a discussion on the employment of a region-based
majority voting strategy for further refining the segmentation map is presented.

The remainder of this paper is organized as follows: Section 2 presents the area investigated
and the materials employed. Section 3 details the general framework and methods used in
the experiments. Section 4 presents the details of experiments and results. The effectiveness of
the proposed methodology and key issues of the superpixel-based CNN+CRF method are analyzed.
Discussions about the implementation of the methodology for Sargassum warning system are presented
in Section 5. Finally, Section 6 draws conclusions and summarizes future work.

2. Study Site and Materials

The study area (Figure 1) is situated on Martinique Island, France, which is located in the Lesser
Antilles arc of the Caribbean Sea. The island is characterized by a humid tropical climate and is
influenced by the trade winds throughout the year, with episodic cyclones. With respect to the coastal
morphology, two-thirds of the island is constituted of sandy and vegetated (mangrove) beaches,
and 75% of them are pocket beaches. A well-defined trend in shoreline retreat has been evaluated
in the last 50 years [38]. Moreover, the above-mentioned concerns over Sargassum encroachments
(Section 1.2) demand that the issue be addressed. This has led to the definition of a program for
morphodynamics and algae monitoring, with the intent of implementing cost-effective, non-invasive
instruments and straightforward methodologies in order to deal with the largest number of coastal sites.
Therefore, a system composed of low-cost, smartphone-based cameras—SOLARCAM c© (Marseille,
France, https://www.solarcam.fr)—has been installed in Martinique, aiming at monitoring both
coastal morphodynamics and beach/water quality. More generally, a station of this monitoring system
is equipped with a camera, powered by a modified Sony Android smartphone, which produces
time lapse in real time, a small solar panel (for charging), and a battery that supports the system’s
operation even during poor weather conditions. Up to one image every minute is transmitted over
3G, and the interval is tunable, depending on the solar panel power and especially on the scopes.
A plastic case hosts the phone and a laminate band is used to affix it to a support, which could be a pole,
house pylon, or even a tree. Images with a resolution of 8 megapixels are promptly stored on an FTP
server. The price of the described representative station (excluding the monthly 3G communication
expenses) is on the order of 400AC. The configuration guarantees good portability, cheapness, simplicity
in communication and installation, and optimal resolution. Drawbacks are especially linked to
network signal fluctuations, low acquisition frequency, and contingent displacements due to strong
winds or temperature-related material deformations of the case or support. At the time of writing,
14 coastal sites have been equipped, starting from October 2018, at both Atlantic and Caribbean
Sea sides. These include harbours and sandy/vegetated beaches. Among these, six sites were
chosen for validation of the classification methodology and nine sites for presenting the calibration of
the beached/floating Sargassum warning system, described in Section 5. Figure 1 shows the overall
Martinique territory, with the superposed equipped coastal sites, distributed along the coastal area.

The six-camera dataset is divided into two main categories, beach and harbour. The images used
for this work, (totaling 160), are divided into training and testing sets, in the respective proportions
of 55% and 45%. Specifically, with respect to the beach-type category, seven classes were used, related
to natural morphologies and land covers, including algae, anthropic structure, sea foam and swash, sand,

https://www.solarcam.fr
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sky, vegetation, and sea water. The harbour-type category does not include the sandy area, which has
been found to be useless and to generate issues during the CNN retraining phase.

Figure 1. Martinique Island, Lesser Antilles: Distribution of the coastal sites where the Solarcam system
has been deployed.

3. Methods for Data Processing

3.1. Sticky-Edge Adhesive Superpixels

In this work, over-segmentation processing is adopted by using sticky-edge adhesive
superpixels [39]. Data fed into the input layer of CNN classification must be images with a fixed
size, whereas the segmented regions generated from traditional superpixel partitioning methods vary
greatly in size and shape. The selection of the superpixel algorithm and the choice of parameters
greatly affect the final results of image classification. Theoretically, the selected over-segmentation
algorithm favors boundary adherence and generates superpixels with high compactness. This chosen
method is built on an iterative approach motivated by SLIC [24], but with superpixels snapped to
the edges of the image, resulting in higher-quality boundaries. SLIC generates superpixels by clustering
pixels based on the color similarity and proximity in the image plane. This algorithm performs
k-means clustering in the 5D space of color information and pixel location, based on gradient-ascent
methodology. SLIC uses the Lab color space, as it is perceptually uniform for small color distances.
First, it samples k regularly spaced cluster centers. Then, each pixel in the image is attributed to
the nearest cluster centre whose search area overlaps it. After assigning all pixels to cluster centers,
they are updated by computing an average over the 5D vector of all pixels assigned to the cluster.
This process of attributing pixels and updating centers is iteratively repeated until no new attribution
occurs. Then, since the method makes use of the main image edges to snap the superpixels’ region
contours, structured forests is used [39] to implement edge detection in the image. Structured forests is
a very fast edge detector that achieves excellent accuracy, based on a structured learning approach [39].
The employment of this very fast edge detector increases the boundary recall of SLIC superpixels.
After the first step of superpixel partitioning, the generated superpixel-level segmented regions can be
classified by using high-level features extracted by CNN.

3.2. MobileNet CNN and Mechanisms of Deep Transfer Learning

Generally speaking, a CNN is a multi-layer perceptron network with many hidden convolutional
layers and pooling layers [40]. It is very similar to a biological neural network. The extraction of
engineered features and data recognition, necessary in the traditional artificial neural network algorithm,
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is avoided in CNN-type structures. This is very valuable when dealing with image processing since it is
qualified in features detection including color, texture, shape, and image topology [41].

MobileNet [42], a recent CNN framework proposed by Google, is built on blocks called depthwise
separable convolutions. Depthwise convolution applies a single filter to each input channel, followed
by a pointwise convolution, which applies a 1× 1 convolution to combine the outputs. Unlike a regular
convolution which filters and combines in one step, this is called separable since it splits this step into
two separate steps—one for filtering and one for combining. Particularly, in the v2 architecture
(MobileNet V2 [43]) the residual connections and the expand/projection layers are introduced.
The pointwise convolution became a projection layer, which projects data with higher channels
into a tensor with lower dimensions. This kind of layer is called a bottleneck layer since it normally
decrements the amount of data that flows through the network. In the main block, an expansion
layer is introduced, which expands the number of channels in the data which feed the depthwise
convolution. Each layer has a batch normalization and the activation function is ReLU6 (except for
the projection one). The novelty is also in the residual connections, which connect the beginning
and end of convolutional blocks with skip connections. The network can access earlier activations
which could be not modified in the convolutional block. This seems essential in order to build
networks of great depth [44]. The full MobileNet V2 architecture consists of 17 of these building blocks
in a row, followed by a regular 1× 1 convolution, a global average pooling layer, and a classification
layer. This strategy in the convolutional blocks significantly reduces the number of parameters when
compared to normal convolutions and makes the network architecture lightweight. Using these
convolutions marginally sacrifices accuracy to obtain a low-complexity deep neural network, making it
very suitable for mobile and embedded vision applications.

In this work, a transfer learning methodology is employed using the pre-trained CNN
MobileNet-V2 architecture [43] implemented within TensorFlow-Hub [45] in order to classify coastal
oblique images. As an alternative to building a model from scratch, here we explored the possibility
to improve a previously trained model which had already been trained to solve a similar (larger)
classification problem, specifically, on the Imagenet database [46]. It is surprisingly effective to
take advantage of features learned by a bigger database [46]. So, a new final classifier is added to
a pre-trained “frozen” model, and only the weights of this layer on top of the network are updated
during training—a fully-connected layer that determines the image class given the set of features
extracted from the convolutional base network. Contrary to training large models, less regularization
and data augmentation techniques are used since small models have less trouble with overfitting [42].
CNNs require input data to be small square image regions (patches) due to the shape limitation of
the network. Since the shape of superpixels is irregular, superpixels cannot be directly used as input
data to feed CNNs. Therefore, the center pixel of each superpixel is selected and a square centered on
the superpixel center is used as the input data. After the classification of squares, the resolving class
label is assigned to the associated superpixel. The patch images based on the superpixel centers are
the data used by the MobileNet classifier, and the superpixels mine the specific pixels that are labelled
in the resolving classification. Hence, the center pixel plays the role of a connection between CNN
and the superpixels.

3.3. Refining via Conditional Random Field

Fully connected CRF is a probabilistic graphical model [28], employed in this work to smooth raw
segmentation maps (the output of CNN-based superpixel classification). Each node of the graph is
assumed to be linked to every other pixel in the image. Using the Gaussian CRF potentials, the method
is able to consider not only neighboring information but also long-range dependencies between pixels,
and contextually the model is responsive to fast mean-field inference [29]. The model couples nodes,
favoring same-label assignments to spatially proximal pixels. Qualitatively, the primary function
of these long-range CRFs is to clean up the spurious predictions of weak classifiers built on top of
the CNN. The combination of CNN and CRF is of course not new [47]. The approach applied here
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treats every pixel as a CRF node receiving unary potentials from the CNN. The model involves the use
of an energy function to minimize:

E(x) = ∑
i

θi(xi) + ∑
ij

θij(xi, xj), (1)

where x is the label assignment for pixels from the CNN. The unary potentials explain the data
cost. They are described by θi(xi) = − log P(xi), where P(xi) is the label probability at pixel i
(i.e., as assigned by the CNN). The pairwise potentials, the second term of Equation (1), motivate
the smoothness cost. They have a form that allows for efficient inference while using a fully connected
graph, that is, when connecting all pairs of image pixels, i,j [29]. According to the original work in [28],
the pairwise potential is defined as:

θij(xi, xj) = µ(xi, xj)[ω1 exp(−
|pi − pj|2

2σ2
α
−
|Ii − Ij|2

2σ2
β

) + ω2 exp(−
|pi − pj|2

2σ2
γ

)], (2)

where µ(xi, xj), referred to as the label compatibility function, is assigned equal to 1 if xi 6= xj
and 0 otherwise, which means that only nodes with different labels can be penalized. The expression
describes two Gaussian kernels in different feature spaces, referred to as pixel compatibility function.
The first, “bilateral” kernel depends on both pixel positions (identified as p) and colors (Lab space,
denoted as I), and the second kernel only depends on pixel positions. The hyperparameters σα, σβ,
σγ mainly control the scale of Gaussian kernels. The first kernel constrains pixels having similar
color and position to gain similar labels, while the second kernel merely considers proximity in space
when enforcing smoothness [29]. The kernel parameters ω(n) are equally weighted, and both set
to 1. In particular, high-dimensional filtering algorithms [28] significantly speed up the computation,
resulting in an algorithm that is quick in practice.

3.4. Workflow of STICKY-CNN-CRF Classification

The workflow of the superpixel-based CNN classification is shown in Figure 2, which includes
two main phases—training and testing, including the application of the semantic segmentation. Firstly,
by sticky-edge adhesive superpixels partitioning, the original SolarCam images from the training
data are over-segmented into several regions, which are used as the spatial processing units for
CNN classification. The image is manually labelled by following a modified methodology from [18].
Next, transfer learning enables the retraining of the experimental network, based on MobileNet V2
convolutional neural network, described in Section 3.4. The samples of labelled regions are used to
retrain the CNN parameters, based on resolving the accuracy of the classification. The patch size used
is equal to 96 pixel square. Finally, with regard to the semantic segmentation phase, the testing dataset
from the original images are firstly over-segmented by means of the sticky-edge adhesive algorithm.
The superpixel patches are classified using the pre-trained network. Then, the fully-connected CRF is
applied for smoothing the results and better capturing the boundaries of the regions.

SolarCam images are used for superpixel partitioning, CNN training, superpixel-based
classification with CNN, and finally refining via fully-connected CRF.

As an example, for the explanation of the main steps related to the semantic segmentation phase,
Figure 3 shows the original image, over-segmented in superpixels (Figure 3a,d), the CNN-based
superpixels classification with class labels as mentioned above (Figure 3b,e), and finally the result from
the CRF refining mechanism used to smooth the segmentation map (Figure 3c,f).



J. Mar. Sci. Eng. 2020, 8, 23 8 of 21

Figure 2. Workflow of the methodology: training phase useful for building the models by means of
convolutional neural network (CNN) transfer learning mechanism, by using superpixel-based patches
and the semantic segmentation phase, whose results are used for testing the pixel-scale classification
accuracy. DCNN: deep CNN.

(a) (d)

(b) (e)

(c) (f)

Figure 3. Examples of the three steps aiming at image semantic segmentation applied to two images,
representative of the two main categories analyzed, beach morphology and harbour-type cover,
left and right side, respectively. (a,d) Superpixel partitioning by the sticky-edge adhesive algorithm;
(b,e) CNN superpixel classification; (c,f) The final semantic segmentation by means of fully connected
CRF refinement of the CNN classification.
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4. Results

In this section, the performance of the method described in Section 3 is evaluated on the basis
of 72 images in the testing dataset, based on six Solarcam cameras (12 images per camera), with full
resolution of 3264 × 2448 pixels. Around 3000 superpixels for each image were used as processing
units for CNN training.

The metric used in this work for analyzing the performance of the methodology presented is
mainly based on a confusion matrix, a table with rows and columns reporting the number of false
positives (FP), false negatives (FN), true positives (TP), and true negatives (TN), which allows for
more detailed analysis than the mere proportion of correct classifications (accuracy). “True” or “false”
indicates if the classifier predicted the class correctly, whereas “positive” and “negative” indicate
if the classifier predicted the desired class. The way to summarize the table is here presented
as a function of the F1-score, which is defined as an equal mean of Precision and Recall. The Precision
score is based on the total number correctly classified as positive divided by the total number of
predicted positives: Precision = TP

TP+FP . The Recall explains the total number of correctly classified
positives divided by the total number of positives: Recall = TP

TP+FN . Furthermore, the sensitivity of
results on the superpixels and CRF hyperparameters were assessed to demonstrate the capabilities
and applications of the trained model.

4.1. Experimental Results

During the CNN transfer training procedure, the main hyperparameters were kept constant:
the learning rate at 0.01, the training steps fixed as 2000. The batch size of the SolarCam classification
datasets of coastal images was set to 100. The codes ran on a computer with Intel R© CoreTM i5-7300HQ
CPU @ 2.50 GHz, 16 GB RAM, and Python 3.7. The gradient was computed via batch gradient descent,
employing only the CPU. TensorFlow [48] was chosen as the deep learning platform. Two models
were trained, related to the categories mentioned above (i.e., beach morphology and harbour-type
land cover). The classification accuracy was evaluated with respect to the superpixel-based CNN
classification, and then by inspecting the pixel-scale results, following CRF refinement.

Table 1 summarizes the CNN prediction accuracies (F1-score) at superpixel scale. The number of
training and testing superpixels was similar since the number of images used for training and testing
were almost equal. The overall classification accuracy was very positive. The maximum (96%) was
reached by the sky class, related to the harbour-type category, which was trained with the smaller
amount of data, while the minimum was associated to the anthropic one, among both categories.
Indeed, anthropic regions are often too small and difficult to detect, in both conditions. Conversely,
the sky class for the beach-type category was not well predicted. It was also found that the presence
of kites (Figure A1 in the Appendix A) could have invalidated the results. The algae were quite well
predicted for both categories. (See Figure A1 and A2 in the Appendix A for further qualitative results).

In Figure 4, the confusion matrices describing the classification accuracies, at pixel-scale,
after CNN classification and CRF detailing, are shown as normalized data per class and category under
analysis. Further elucidations about the main metrics used are presented in Table 2. With respect to
beach morphology, the range of classification F1-score was between 77% and 96%. The anthropic-road
class reached the minimum, while the sky the maximum recall. The vegetation and anthropic-road
classes had higher incorrect classifications, where a peak of 26% of FP for the vegetation class
was evident. The algorithm was surprisingly able to predict beached algae well, with a 85%.
As excepted, misclassification derived from recognition ambiguities with respect to spatially closer
classes, particularly vegetation and sand. The foam and swash areas were combined in a unique
class, considering their highly similar visual appearance and since this type of neural network
has no contextual information capability. Together with the water class, they were well predicted.
In the analysis of the confusion matrix related to the harbour-type category, the results appeared
slightly sparse. The classification F1-score was in the range of 75% to 93%. There was often confusion
between vegetation and algae classes. This should be explained because these two class types may
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have similar spectral features. For both categories, it is evident that the vegetation class was well
predicted (high recall), but most often the buildings, which cover very tiny areas of the images,
were not well recognized by the CNN classification algorithm. The path size of the CNN network
plays a fundamental role in this issue since it was found that superpixels less than almost two-thirds
of the path size of the CNN network (96 pixels) are not able to catch the deep features.

Table 1. Summary of superpixel-based CNN classification accuracy (F1-score), for both categories
investigated: beach morphology and harbour-type land cover, respectively. Image classes were
analyzed singularly. The number of training and testing superpixel patches are highlighted.

Beach Harbour

Classes F1-Score Training Testing F1-Score Training Testing
Superpixels Superpixels Superpixels Superpixels

Algae 0.88 11,727 10,128 0.85 14,739 13201
Anthro-road 0.85 339 521 0.83 2319 1563
Foam-swash 0.88 11,814 16,230 0.93 13,026 230,217
Sand 0.91 6864 4260 - - -
Sky 0.84 1482 852 0.96 1838 1803
Vegetation 0.89 53,676 59,426 0.87 58,321 62,032
Water 0.95 32,679 25,362 0.93 26,449 15,260

As is well known, the overall accuracy is mainly influenced by the dominant classes in an image.
A sort of salt-and-pepper effect was found at very small-scale classifications, especially for algae
regions, labelled as vegetation.

(a) (b)

Figure 4. CNN + CRF pixel-scale classification results. The ground-truth data are represented on
the y-axis, the predicted ones on the x-axis. The lateral bar maps the percentage of data classified.
(a) The beach category of the testing database; (b) The harbour-type category.

Table 2. Summary of results by using metrics: precision, recall, and F1-score, for both categories
investigated: beach morphology and harbour-type land cover, respectively. Image classes were
analyzed singularly.

Beach Harbour

Classes Precision Recall F1-Score Precision Recall F1-Score

Algae 0.95 0.85 0.90 0.82 0.81 0.80
Anthro-road 0.95 0.65 0.77 0.72 0.8 0.75
Foam-swash 0.97 0.83 0.89 0.78 0.84 0.81
Sand 0.80 0.89 0.84 - - -
Sky 0.97 0.96 0.97 0.99 0.86 0.93
Vegetation 0.72 0.94 0.82 0.81 0.7 0.75
Water 0.78 0.93 0.85 0.81 0.88 0.85
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See Figures A1 and A2 in the Appendix A for further (qualitative) results.

4.2. Parameter Sensitivity Analysis

This paper presents a CNN-based classification method for coastal image analysis using superpixel
over-segmentation and CRF refining. The following section discusses the influences of the superpixel
over-segmentation input for CNN-based classification and the CRF hyperparameters, and the effects
of both on the pixel-scale results.

Figure 5 shows a sensitivity analysis carried out for the evaluation of the impact of the number of
superpixels used for image partitioning on the final accuracy, in which results are divided into each
class studied. A higher slope was observed in the range between 20 and 200 superpixels, with respect to
the right part of the curve. Approximately 850 superpixels were needed to roughly cover the patch size
of 96 pixels used as the CNN processing unit, using images having 8 Mp resolution as the case study.
It is clear that for almost all the classes, before reaching this value, convergence at the higher score
was achieved, even if a kind of oscillation was still present, mostly attributable to the influence of CRF
in the final segmentation. In order to find a compromise between computation speed and efficiency,
the number of superpixel units for CNN processing in the evaluation procedure was set to 800. We also
investigated the eventual influence of the compactness index in superpixel generation. This index
indicates the ratio of minimum enclosing rectangle area of the superpixel to the number of pixels
contained within it. After some experiments, by applying values around the default one, no specific
correlation was found.

On the basis of the above analysis, it can be summarized that there was a clear scale effect
in the final classification accuracy. This was particularly true in the regions with high complexity
(e.g., algae). That is, the deep features appeared less valuable at large scales as there was major
variability and lower consistency. There is no definite evidence to suggest that there is a unique
superpixel scale for all optimal classifications in each class.

Figure 5. The sensitivity of the final accuracy (F1-score), from CNN-based superpixels classification
and CRF refinement results at the superpixel scale.

The refinement step of semantic segmentation employs fully connected CRFs, which makes use of
the superpixels labelled regions as unary potentials and pairwise potential terms, modeling each pair
of pixels i and j in the image, no matter how far from each other they lie. The “scale” of the Gaussian
kernels, which shapes the pairwise potential, is controlled by the hyperparameters (see Section 3),
which significantly influence the final semantic segmentation map. By fixing the values of ω2 = 1
and ω1 = 1, the best combinations of the mentioned parameters were sought by exploring the solution
space on a subset of the testing sample (50 images). In the literature, challenging searching solutions are



J. Mar. Sci. Eng. 2020, 8, 23 12 of 21

employed based on schemes such as the coarse-to-fine search [47] or structured output SVM [49]. In this
context, a calibration exercise was considered in order to estimate the optimal range of values useful
for optimizing the pixel-wise classification (F1-score) accuracy. We fixed the number of mean-field
iterations at 20 for the entire analysis. Furthermore, since the running time is highly influenced by
the choice of the image scale, this value was fixed to 0.5, ensuring computation efficiency. Figure 6
maps the F1-score, averaged among all the classes and the two categories under analysis, in the space
of the hyper-parameters σα, σγ, σβ. The range of values investigated was chosen considering the work
in [47]. Specifically, the ranges were σβ ∈ [2 : 12], σα ∈ [20 : 120], and σγ ∈ [30 : 220].

A large range of values which led to solutions having accuracies greater than 70% was found
for kernel hyperparameters σα and σγ, while a smaller amplitude of admissible values was related
to σγ. To some extent, the former models the standard deviations for the location component of
the color-dependent and color-independent kernels. The latter is related to the standard deviation
for the color component of the color-dependent term, and it appeared to have a much greater impact
on the acceptable accuracy. The values chosen for use in the evaluation phase presented above were
σα = 90, σγ = 130, σβ = 5.

Finally, as regards the superpixels image partitioning, a newly proposed and widely used
algorithm, SEEDS [50], was also briefly tested in order to compare its influence on the feature extraction
and final superpixel classification results with respect to the sticky-edge algorithm. The running time
decreased by a factor of 1.8. With regard to the overall dataset, the superpixel classification (F1-score)
achieved slightly lower (2.64%) accuracy for the final classification, obtained by averaging all types of
classes. It can be concluded that sticky-edge adhesive algorithm performed slightly better than SEEDS
with almost the same running time, but with benefits from the shapes of superpixel regions. The main
reason is related to the fact that sticky-edge generates superpixel regions whose boundaries, derived
from an edge detector, are closer to practical land cover regions. Conversely, superpixel regions
generated by SEEDS could cross the border of two land covers, especially for those with blurred
borders. Moreover, the non-uniformity in the size and shape of superpixel regions, more noticeable in
SLIC, is supposed to improve the generalization capability of CNN, which could prevent over-fitting.

Figure 6. Classification sensitivity on the fully-connected CRF hyperparameters. The σα and σβ scales,
the so-called bilateral appearance kernel, depend on the pixel positions and color, respectively. σγ scales
the Gaussian kernel, related only to pixel positions.
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5. Discussion

At present, the great availability of low-cost camera systems and the great potential of portable
devices, coupled with autonomous and efficient energy collectors (e.g., solar panel), push the limits
of the current approaches for coastal video monitoring. Moreover, the newest advances in machine
learning allow further investigation of the capabilities for image understanding. In many occasions,
environmental contingencies require these types of new methodologies and tools to be easily
deployable and maintainable.

Specifically, in order to face the Sargassum emergency in the Lesser Antilles and to benefit from
these new methods and instruments, a warning framework has been implemented in Martinique
that is useful for the quantification of floating and beached algae. The Sargassum warning framework
deployed uses the two phases described in Section 3. It makes use of the models trained and presented
above (two more models were trained) for employing an automatic segmentation in quasi-real-time.
Presently, the SolarCam stations in Martinique collect image snapshots every hour. Every three
daylight hours, starting from 09:00 a.m., an automatic routine is launched which performs an automatic
image segmentation. In this scenario, a region of interest (ROI) oriented toward the field-of-view
(FoV) areas prospectively affected by the beached/floating algae is considered. This allows high
computation power and time during CNN classification to be avoided. The predicted classes are
analyzed for the extraction of the Sargassum blobs. These potential predicted blobs are filtered based
on relative euclidean distances to the other predicted classes (specifically sand, foam, terrain/vegetation,
and sky, respectively) in order to remove suspected outliers (mainly false positives). Subsequently,
the computation of boundaries and areas of each spot is given. Finally, the determination of
an expected warning is based on site-specific temporal thresholds. Geo-referenced data are being
used, where available, to report data in meters rather than pixels, by means of a standard method
for georectification [51]. A location map where the framework is being tested is shown in Figure 7.
With respect to all sites monitored, presented in Section 2 (shown as points), the map marks the warning
system stations in red and green. Specifically, the green and red colors indicate the percentage of
manually validated data with respect to the excluded ones, respectively. This means that a percentage
is affected by different issues, mainly related to acquisition problems, loss of data, blurred conditions
(i.e., the two sites facing the Caribbean Sea), foggy environment, or classification errors.

In the same Figure 7, time series of floating/beached Sargassum for a few sites as examples are
drawn on top of the map. The red lines represent the temporal evolutions of the pixel/real-world
areas computed every 3 h (red points) at each station, while the shaded red curves on top of the red
lines, referred to as the “holes uncertainties”, are computed as tiny regions inside the great algae spots,
which are perceived as questionable predictions.
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Figure 7. Map of the locations where the SolarCam system was deployed (as in Figure 1). The points,
marked in red and green , indicate the sites where the warning framework has been installed. The green
and red colors pertain to the percentage of good and excluded data, respectively. As examples, five time
series of Sargassum surfaces, estimated in the context of the automatic warning framework, along with
holes uncertainties, are shown.

As mentioned above, at each site under analysis, the definition of a double threshold is being
realized, strictly related to spatial and temporal constraints. Particularly, as an example with respect
to the beach-type category, a first absolute minimum threshold was defined, specified as a percentage
of the beach covered area (30%). Furthermore, in order to ensure reliable information in the event of
beaching/arrival, so as to avoid the dissemination of useless warnings (i.e., false positives), the image
under analysis should exhibit a computed Sargassum area greater than 20% of the prior temporal result.
The warning framework is still under validation in order to be available for communities/municipalities.

The regions predicted as algae were seen to be affected by inaccuracies, specifically inside
the great blobs regions or at the boundaries, which are referred to as the questionable predictions
above. The CRF algorithm adopted, based on a fully connected graph [28], captures long-range
dependencies between image pixels. It is used to detail the CNN raw classification and to reclassify
pixel labels. Its hyperparameters combination, which controls the “scale” of Gaussian kernels,
was calibrated on several images with almost distinctive conditions (Section 4), but it still suffered
from the aforementioned ambiguities. A straightforward way to improve the semantic segmentation
output was conceived and built, based on the inclusion of the effects of boundary detection by
re-employing an edge-adhesive superpixels map. So, it was surprising to investigate the dual task
of the effects of superpixels on the semantic segmentation. A great interest of the coastal image
community is related to the identification of the so-called precise semantic boundaries (e.g., shoreline,
vegetation limit), which requires not only the detection of several boundaries but the association of
semantic classes to them. In the literature, this idea is typically seen as a combination of boundary
detection and semantic segmentation [52], which requires an association of precise boundaries to
a semantic class related to them. A common approach to the task is to separate methods such
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as semantic segmentation and contour detection, and hence fuse the results of both steps. In this
work, a superpixel over-segmentation was performed by employing a great number of superpixels
(i.e., 50,000), allowing a further refinement and smoothing of the boundaries. So, the semantic
segmentation CRF output was snapped to the superpixels by majority voting of the regions.
This means that superpixels that overlapped more than 50% with the semantic class were assigned
the corresponding label. Figure 8 shows an example of the result from the implementation of this
further refinement. At the bottom, it highlights two magnifications extracted from a zoom-box, defined
in Figure 8b. The CRF output (Figure 8c) from the methodology in Section 3 was further refined
by means of the superpixels and the majority voting of the regions (Figure 8d). Particularly, it is
evident that the sparse small regions labelled as water or vegetation were re-classified with the classes of
the superpixels which incorporated them (mainly algae, vegetation). Moreover, it allowed a smoothing
much more adherent to the reality (interfaces of water–sand or algae–sand). Particularly relevant for
improving Sargassum classification, we observed an increase in classification accuracy. On the basis
of 20 images from the same testing database, as above, the F1-score increased by 2.3% compared to
the results discussed in Section 4 with respect to beach-type morphology.

Figure 8. Original image from dataset, beach-type category (a). Semantic segmentation output from
CNN classification and CRF refinement. A zoom box is overlapped on the semantic segmentation
map (b). At the bottom, the zoomed regions show both the magnified area (c) and the smoothed region
obtained from the majority voting mechanism of the regions derived from superpixel partitioning (d).

The great advantage of employing such models could be straightforward for several applications
related to coastal monitoring research and case studies. Because only a few images are required for
training since the superpixel partitioning creates a broad and adequate database for CNN transfer
learning (i.e., the number of training superpixels in Table 1), easy prototyping of models can be realized.
Applications related to shoreline detections and/or nearshore bars evolution, beach widths, dune growth,
or Posidonia banquettes dynamics [53] could result in effortless automation. With respect to coastal
classification algorithms (e.g., based on SVM [16]), the transfer learning method described here allowed
us to employ 10× less ground-truth data while still achieving around the same classification accuracy [16].
Furthermore, the powerful refining capability of the fully connected CRF makes it possible to better
catch classes’ borders and small scattered data, with respect to the superpixel scale [16].

There are still some limitations to the proposed approach, most significantly the disadvantage
related to unstable plastic support of the SolarCam. This causes the cameras to experience high-frequency
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vibrations due to low-to-average winds, and, in a few occasions, minor absolute displacements due to
wind gusts. The latter condition is very inconvenient due to loss of image geometry reference, which is
useful for the real-world computation of Sargassum area. Additionally, problems of variations in lighting
and weather change greatly affect distributions of color, contrast, and brightness. Herein we observed,
particularly during season transitions, certain soil cover appearance changes (vegetation became reddish)
and this could greatly affect the classification efficacy. Another practical limitation is due to issues in
proper network coverage.

6. Conclusions

This work combines ideas from per-superpixel deep convolutional neural networks and fully
connected CRF, creating a method able to generate semantically accurate predictions and detailed
segmentation maps, while remaining computationally efficient. To achieve a high overall classification
accuracy, the over-segmentation has to hold a balance between compactness and boundary accuracy.
Accordingly, an algorithm based on SLIC specifically focused on snapping the boundaries, computed by
means of a fast and effective edge detector, is employed. The work demonstrates the general
effectiveness of a small, very fast, existing CNN framework (MobileNetV2) for image patch
classification. The fully connected CRF was proved to be very efficient in detailing a sparse
and raw semantic segmentation. Experimental results indicate that for beach and harbour-type image
categories the average accuracies were in the range of 75% to 96%, across a dataset derived from six
cameras. By means of a superpixel over-segmentation method at a variety of scales, in coastal-specific
environments, the effectiveness of deep features extracted by CNN was evaluated and the optimal
scale was discussed. A sensitivity of final classification accuracy to the CRF hyperparameters space
is proposed. For some images with few small land-cover spots or some simple artificial regions,
the methodology can suffer from ambiguities. A case study related to the implementation of a warning
system for Sargassum monitoring is presented to exhibit the capabilities and potential applications
of the trained models. Particularly, when a further post-processing procedure based on superpixels
region-based majority voting was applied, the F1-score related to the Sargassum class reached 91%,
with respect to images of beach-type morphology.

The presented procedure promotes the use of camera-based images for applications related
to automatic feature recognition and coastal quality monitoring. Further experiments are being
planned with a larger dataset (including other Lesser Antilles islands) and aiming at the application
of the method to other sources of data, such as videos. Moreover, further studies are focused on
processing the time-series data derived from the warning system in order to retrieve parametrization of
the meteo-oceanographic forces useful for describing the probability of occurrence of algae degradation
over time, disintegration due to wave impact, or removal due to tide oscillations.
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Appendix A

Figure A1. Examples of the semantic segmentation routine, constrained on a region of interest (ROI),
applied at the three testing sites of beach-type morphology. Specifically, the over-segmentation (left)
and the CNN + CRF classification segmentation results (right), both applied on a ROI, are shown.
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Figure A2. Examples of the semantic segmentation routine, but constrained in ROIs applied at the three
testing sites from the harbour-type land cover category. Specifically, the over-segmentation (left)
and the CNN + CRF classification segmentation results (right), both applied on an ROI, are shown.
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