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Abstract 8 

Discrete Bayesian Belief Network (BBN) has become a popular method for the analysis of 9 

complex systems in various domains of application. One of its pillar is the specification of the 10 

parameters of the probabilistic dependence model (i.e. the cause-effect relation) represented via 11 

a Conditional Probability Table (CPT). Depending on the available data (observations, prior 12 

knowledge, expert-based information, etc.), CPTs can be populated in different manners, i.e. 13 

different assumptions can be made and different methods are available, which might lead to 14 

uncertain BBN-based results. Through an extensive review study of the past ten years, we aim 15 

at addressing three questions related to the CPT uncertainties. First, we show how to constrain 16 

these uncertainties either using elicitation of expert inputs, or using a combination of scarce 17 

data and expert-derived information. Second, we show how to integrate these uncertainties in 18 

the BBN-based analysis through propagation procedures either using probabilities or imprecise 19 

probabilities within the setting of credal or evidential networks. Finally, we show how to test 20 

the robustness of the BBN-based results to these uncertainties via sensitivity analysis 21 

specifically dedicated to BBNs. A special care was paid to describe the best practices for the 22 

implementation of the reviewed methods and the remaining gaps. 23 

 24 
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1 Introduction 28 

Bayesian Belief Network (BBN) has become an increasingly popular method for the analysis 29 

of complex systems in various domains of application, like ecosystems (Milns et al., 2010), 30 

genetics and biology (Scutari et al., 2014), agriculture (Drury et al., 2017), industry (Weber et 31 

al., 2012), finance forecasting (Malagrino et al., 2018), marine safety (Hänninen et al., 2014), 32 

human reliability assessment (Mkrtchyan et al., 2015), nuclear power plants (Kwag and Gupta, 33 

2017), aviation risk analysis (Brooker, 2011), coastal systems (Jäger et al., 2018), structure 34 

reliability assessments (Langseth and Portinale, 2007), multi-hazard risk assessments (Gehl and 35 

D’Ayala, 2016), etc.  36 

Its benefits are: (1) its high flexibility to model any causal relationships; (2) its capability to 37 

integrate information from any kind of sources, including experimental data, historical data, 38 

and prior expert opinion, and (3) its capability to answer probabilistic queries about them and 39 

to find out updated knowledge of the state of a subset of variables when other variables (i.e. the 40 

evidence variables) are observed.  41 

Formally, a Bayesian belief Network (BBN) is a class of graphical model (see Jensen, 2001 for 42 

a complete and detailed introduction to BBNs), which allows to synthetically represent relations 43 

among random variables by means of a directed acyclic graph (DAG) composed of nodes (i.e. 44 

the states of the random variables) and arcs (i.e. dependency between nodes). The value of the 45 

nodes may be discrete or continuous, and we focus here on the former case, which is the most 46 

widely used. For instance, a Boolean node representing the state of a system component can be 47 

either “True” or “False”. The nodes connected by an arc are called the parent nodes and child 48 

nodes respectively. One child node may have several parent nodes, meaning that this node is 49 

affected by several factors. Similarly, a parent node could have several child nodes, meaning 50 

that this factor may have influences on several other factors. Conditional probabilities are the 51 

probabilities that reflect the degree of influence of the parent nodes on the child node. For BBNs 52 

with discrete nodes, the probabilistic dependence (i.e. the cause-effect relation) is often 53 

represented via a table called a Conditional Probability Table (CPT).  54 

As an illustration, Fig. 1 depicts the binary BBN adapted by van der Gaag et al. (2013) from 55 

Cooper (1984) in the field of oncology. The network is composed of 6 nodes and 6 arcs. Node 56 

MC refers to metastatic cancer, which may potentially lead to the development of a brain tumor 57 

(node B) and may give rise to an increased level of serum calcium (node ISC). The presence of 58 

a brain tumour can be established from a CT scan (node CT). Another indicator of the presence 59 

of a brain tumour can be related to severe headaches (node SH). A brain tumour or an increased 60 
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level of serum calcium are both likely to cause a patient to fall into a coma (the node C is 61 

connected to node B and node ISC). The conditional probabilistic relationships between the 62 

nodes (CPT entries) are provided in Fig. 1 next to the corresponding nodes. For instance, the 63 

probability that a patient falls into coma given brain tumor and increased level of serum calcium 64 

corresponds to the first entry of the table (1st row, 1st column), namely 65 

P(C=True|C=True,ISC=True)=0.80. 66 

 67 

 68 

Figure 1. Binary BBN adapted by van der Gaag et al. (2013) from Cooper (1984) in the field 69 

of oncology. The tables (called CPT) next to the nodes provide the conditional probabilities 70 

values. 71 

[Figure 1 about here] 72 

 73 

Two key ingredients are necessary to build a BBN, namely (1) the graph structure with the 74 

direction of the arcs, i.e. the DAG; (2) the states of nodes and the strength of the relationships 75 

between nodes, i.e. the CPT. In the present study, we assume that the DAG model has already 76 

been determined and restrict the analysis to the quantification of the BBN relationships. The 77 

process of deriving the CPTs and its associated uncertainties is recognized in the literature as 78 

one of the most delicate part of the BBN development (e.g., Chen and Pollino, 2012; Druzdzel 79 
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and van der Gaag, 2000; Marcot et al., 2006; Cain, 2001, etc.). It should, however, be noted 80 

that the process of DAG derivation (i.e. building the graph structure plus the directions; also 81 

known as causal structure learning) has its own challenges as well, in particular when the 82 

learning is based on data (see e.g., a comprehensive review by Heinze-Deml et al., 2018).  83 

Depending on the available data (observations, prior knowledge, expert-based information, 84 

etc.), CPTs can be evaluated in different manners, i.e. different assumptions can be made and 85 

different methods are available leading to different BBN-based results, hence resulting in 86 

uncertain BBN-based results. This raises the following questions: (1) how to constrain the 87 

uncertainties related to CPT derivation, i.e. what are the methods that are available to minimize 88 

these uncertainties? (2) how to integrate these uncertainties in the BBN-based analysis, i.e. what 89 

are the methods for propagating these uncertainties? (3) how to test the robustness of the BBN-90 

based results to these uncertainties, i.e. what are the methods for identifying the most influential 91 

uncertainties? These questions are addressed below through an extensive review of studies 92 

performed in the past ten years by focusing on discrete BBNs that can be used for modelling 93 

complex causal relationships, for merging different information sources, for prediction, and for 94 

belief/evidence propagation (i.e. probabilistic queries). Continuous BBNs (i.e. BBNs with 95 

continuous nodes) and dynamic BBNs (i.e. BBNs adapted to model systems evolving over 96 

time) are out of the scope of the review. 97 

The paper is organized as follows. The first section describes more specifically the problem of 98 

populating the CPT parameters directly from data/observations. This first part highlights the 99 

necessity for overcoming the lack of data by complementing with additional sources of 100 

information. Sect. 3 explores an expert-based option for constraining the uncertainties related 101 

to data incompleteness, namely by completing with different expert-based sources of 102 

information. Sect. 4 provides an overview of the different approaches embedded in different 103 

uncertainty analysis settings for evaluating the impacts of CPT uncertainties, either using 104 

probabilities or imprecise probabilities. Sect. 5 further addresses the problem of screening these 105 

uncertainties by describing sensitivity analysis techniques. Finally, Sect. 6 summarizes the main 106 

findings and discusses the open questions. 107 

2 Learning CPT from data 108 

In this section, we address the issues related to deriving the CPT entries from data. Sect. 2.1 109 

first discusses the problem of performing this task by using only data. Sect 2.2 and 2.3 further 110 

discuss two practical difficulties, namely: (1) the presence of missing values and (2) the 111 

problem of translating observations related to continuous variables into a limited number of 112 
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discrete states. Finally, Sect. 2.4 describes methods that make the most out of scarce data while 113 

exploiting qualitative information provided by experts.  114 

2.1 A pure data-driven approach 115 

Let us consider a BBN composed of n discrete nodes Xi=1,…,n. Let us denote ri the cardinality of 116 

Xi and qi the one of the parent set of Xi, denoted pa(Xi). The kth probability value of the 117 

conditional probability distribution is ijk = 𝑃(𝑋𝑖 = 𝑘|𝑝𝑎(𝑋𝑖) = 𝑗) where i=1,…,n; j=1,….,qi; 118 

k=1,…., ri. 119 

In data rich contexts, CPT parameters can be evaluated by computing the appropriate 120 

frequencies from data. An example is provided by Chojnacki et al. (2019) for fire safety analysis 121 

where more than 1 million of numerical simulation results are used. This method corresponds 122 

to the maximum likelihood estimation (MLE), which is described below.  123 

Let us consider a dataset D where a total number Nij of data records are available for which 124 

pa(Xi) is in the state j and where Nijk data records are available for which Xi is in the state k and 125 

pa(Xi) is in the state j. MLE aims at maximizing the log-likelihood function l(.) of  given D as 126 

follows 127 

𝑙(|𝐷) = log(𝑃(𝐷|)) = ∑ 𝑁ijk𝑙𝑜𝑔ijk (ijk)      (Eq. 1) 128 

The solution is then 
𝑁ijk

𝑁ij
.  129 

The MLE method however fails to find good estimates due to data scarcity when Nij0, i.e. 130 

when training data are not sufficient in number in some specific variable state configurations. 131 

Examples of such contexts are not rare in practice; see e.g. rare disease diagnostic (Seixas et 132 

al., 2014), accident prevention (e.g., Hänninen, 2014), reliability analysis (e.g., Musharraf et 133 

al., 2014), etc. This problem is even worsened when the number of nodes increases. Recall that 134 

the number of conditional probabilities is exponential with the number of its parent nodes, i.e. 135 

for a node with i states and k parent nodes and if each parent node has n states, (i-1)nk CPT 136 

entry values have to be specified. For instance, a binary node with 2 binary parent nodes 137 

imposes to specify 4 entries, whereas for a ternary node with 2 ternary nodes, this number 138 

reaches 18. 139 
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2.2 Dealing with missing values 140 

The process for parameter learning of discrete BBNs may be complicated in the presence of 141 

missing values. This can be handled by means of different algorithms. The most popular ones 142 

are Expectation Maximization (Dempster et al., 1977) and Gibbs sampling (Geman and Geman, 143 

1984). Yet, they both assume that the values are missing at random. This hypothesis may not 144 

always be true in practice. Alternative methods have been proposed to overcome this 145 

disadvantage, like AI&M procedure (Jaeger, 2006), the RBE algorithm (Ramoni and 146 

Sebastiani, 2001), and the maximum entropy method (Cowell, 1999). Other methods have also 147 

been developed to speed up the learning process, like generalized conjugate gradient algorithm 148 

by Thiesson (1995) or the online updating of rules (Bauer et al., 1997). To deal with both 149 

missing data and qualitative influences (as described in Sect. 2.4), some initiatives have been 150 

proposed like the one of Masegosa et al. (2016), who further improved the combined Isotonic 151 

Regression - EM approach. 152 

2.3 Discretising continuous variables 153 

A second practical difficulty for parameter learning of discrete BBNs is inherent to the main 154 

assumption introduced by discrete BBNs, namely that data should be represented by a limited 155 

numbers of outcomes. This imposes to discretize continuous variables. This process might, 156 

however, lead to a loss of information, and potentially to an increase of the associated 157 

computational effort, because the size of discrete BBNs increases approximately exponentially 158 

with the number of discrete states of its nodes. Nojavan et al. (2017) investigated the 159 

implications of several mathematical methods for constructing discrete distributions in an 160 

unsupervised manner. Using a simple 3-node BBN describing chlorophyll concentrations in 161 

Finnish lakes, the authors evaluated the impact on the developed BBNs of the number of 162 

intervals and of the choice of the type of discretization methods. Three techniques were 163 

investigated, namely in which the data are divided into groups: (1) of equal length; (2) of equal 164 

sample size; (3) for which the moments of the discretized distribution match with the moments 165 

of the continuous data. They showed that none of the models did uniformly well in all 166 

comparison criteria (sum of squared errors, accuracy, area under the receiving operating 167 

characteristic curve) for the considered case. They concluded that they cannot justify using one 168 

discretization method against others. Using a 4-node BBN from the domain of coastal erosion, 169 

Beuzen et al. (2018) extended the tests to other types of discretization methods, namely manual 170 

and supervised techniques. They showed, on their specific test case, that supervised methods 171 
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led to a BBN of the highest average predictive skill, followed by the one with manual 172 

discretization. They also outlined the advantages of the different methods, namely that: 173 

- Manual methods allow ensuring physical meaningful BBNs; 174 

- Supervised methods can autonomously and optimally discretize variables and may be 175 

preferred when predictive skill is a modelling priority;  176 

- Unsupervised methods are computationally simple and versatile. 177 

Depending on the objective, some specific discretization algorithms have also been developed; 178 

for instance, Zwirglmaier and Straub (2016) developed specific methods to deal with rare 179 

events in reliability analysis; Neil et al. (2007) proposed a dynamic discretization method to 180 

perform inference in hybrid BBNs, i.e. both dealing with continuous and discrete variables. 181 

2.4 Combining scarce data and expert judgements 182 

When data are scarce, the parameter learning may be improved by incorporating additional 183 

information provided by experts. A popular approach relies on the Maximum a Posteriori 184 

(MAP) estimation using Dirichlet priors, which express experts’ belief (e.g., Heckerman et al., 185 

1995) about  in the absence of data. Formally, the Dirichlet distribution for CPT column ij is 186 

expressed as follows: 187 

 188 

𝑝(
𝑖𝑗

) =
1

𝑍𝑖𝑗
∏ 𝑖𝑗𝑘

(𝑖𝑗𝑘+1)−1𝑟𝑖
𝑘=1        (Eq. 2) 189 

with ∑ 𝑖𝑗𝑘 = 1𝑘 , 𝑖𝑗𝑘 ≥ 0,  𝑍𝑖𝑗  is a normalisation term ∫ ∏ 𝑖𝑗𝑘
(𝑖𝑗𝑘+1)−1𝑑𝑖𝑗𝑘 = 1

𝑟𝑖
𝑘=1

+

−
, and 190 

𝑖𝑗𝑘 is the parameter of the Dirichlet distribution, which can be intuitively interpreted as “how 191 

many times the expert believes he/she will observe Xi=k in a sample of ij instances drawn 192 

independently at random from the distribution ij” (Zhou et al., 2014). On this basis, MAP relies 193 

on the following equation: 194 

 195 

𝑝(|𝐷) ∝ 𝑃(𝐷|)𝑃(𝐷) ∝ ∏ 𝑖𝑗𝑘
(𝑖𝑗𝑘+𝑁𝑖𝑗𝑘)−1

𝑖𝑗𝑘      (Eq.3) 196 

This equation results in the estimate of ijk as 
𝑁ijk+ijk−1

𝑁ij+ij−1
, which combines information from 197 

the data and from the experts’ prior guess. In their computer experiments using twelve publicly 198 
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available BBNs (available at http://www.bnlearn.com/bnrepository/), Zhou et al. (2016a) 199 

showed that MAP achieves better performances than conventional MLE, which suffers from 200 

the absence of data in several state configurations in situations of limited sample size (typically 201 

50).  202 

Expert-based information can take several forms, and the one that corresponds to qualitative 203 

constraints have given rise to several developments. Instead of directly providing the exact 204 

value of the entries of binary BBN (denoted P1-2), the expert may feel more conformable in 205 

providing an ordering like “P1>P2”, “P1P2”, “P1>0.80”, etc. Zhou et al. (2016a) showed that 206 

incorporating such expert knowledge about the monotonic influences between nodes (translated 207 

into probability constraints) further outperformed MAP and MLE and was also robust to errors 208 

in labelling the monotonic influences. 209 

Different methods have been developped to incorporate qualitative constraints, namely: 210 

- Convex Optimization (Niculescu et al., 2006; Zhou et al., 2016a; de Campos and Ji, 211 

2008; Liao and Ji, 2009; Altendorf et al., 2005) is an extension of the MLE by 212 

incorporating constraints via penalty functions or by restricting parameter spaces;   213 

- Constrained MAP approach has also been proposed by Yang et al. (2019) to learn BN 214 

parameters by incorporating convex constraints; 215 

- Isotonic Regression (Feelders and van der Gaag, 2005; 2006) builds on qualitative 216 

information about the influences between the variables of a BBN. The most recent 217 

algorithm by Masegosa et al. (2016) also enables the analysist to learn the CPT 218 

parameters from incomplete data; 219 

- Qualitative MAP (originally proposed by Chang and Wang (2010) and further improved 220 

by Guo et al. (2017)) constructs Dirichlet priors from Monte-Carlo random samples of 221 

the constrained parameter space, which are used by the MAP algorithm; 222 

- Multinomial Parameter Learning with Constraints (Zhou et al., 2014; Hospedales et al., 223 

2015) rely on auxiliary BBNs, which are hybrid BBNs, to infer the posterior distribution 224 

of BBN parameters.  225 

2.5 Discussion 226 

Following a pure statistical data-driven approach for populating the BBN conditional model 227 

requires a large amount of statistically significant data to cover all BBN relationships. To 228 

compensate the lack of data, a possible option is to complement the analysis with expert-based 229 

information. Sect. 2.4 shows that a broad range of different tools/methods are available to 230 

http://www.bnlearn.com/bnrepository/
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incorporate expert-based information either in the form of qualitative influences or constraints, 231 

namely constraints that should be almost linear and convex (i.e. concave constraints like 232 

P1 ≠ 0.5 cannot be accounted for). The improvement of the learning accuracy of the parameters 233 

in BBNs from a small data set has been shown using each of the described methods compared 234 

to conventional methods; for instance Guo et al. (2017) compared MLE, constrained MLE, 235 

maximum entropy and constrained maximum entropy estimator, MAP and their qualitatively 236 

MAP estimator. Yang et al. (2019) showed the higher performance of their constrained MAP 237 

estimator compared to conventional parameter learning algorithms, MLE and MAP, and to 238 

constrained maximum likelihood algorithm. Yet, to the author’s best knowledge, no extensive 239 

benchmark exercise covering all the afore-mentioned estimators (as well as their pros and cons) 240 

is available yet; practical recommendations on how to implement them and their limitations is 241 

currently lacking in the literature.  242 

Among the possible limitations, the problem of under-fitting related to the use of prior 243 

distributions (that are common ingredients of most of the methods of Sect. 2.4) is seldom 244 

tackled. As described by Gao et al. (2019), imposing certain a priori knowledge on the CPT 245 

parameters might decrease the likelihood of the parameters, hence a reduction of the fitness 246 

between parameters and data. Azzimonti et al. (2019) proposed a hierarchical procedure to 247 

improve the widely-used approach based on Dirichlet priors. Gao et al. (2019) proposed a 248 

Minimax Fitness algorithm combined with an improved constrained maximum entropy method 249 

to overcome this problem. They also concluded that there is a need for further investigation to 250 

develop learning methods that does not require specification of prior strength. 251 

3 Learning from experts 252 

In many situation, the primary source of information for learning the CPTs is not based on data, 253 

but on inputs from expert domain. For instance, for rare-event situations like reliability analysis, 254 

inputs from expert domain stem from questionnaires, interviews and panel discussions. Sect. 3 255 

focuses on the process of deriving information from experts that is named “elicitation”. The 256 

issues and methods related to this task were analysed by review articles in different domains of 257 

application, namely shipping accidents by Zhang and Thai (2016), human reliability by 258 

Mkrtchyan et al. (2015) and more broadly regarding dependence in probabilistic modelling by 259 

Werner et al. (2017). The objective is to focus the elicitation on specific pieces of information 260 

to efficiently populate the CPTs by ensuring quality and consistency of the elicited result and 261 

minimizing the workload on the experts owing to the large number of CPT entries. Elicitation 262 

for CPT generally relies on three (possibly combined) main approaches through: (1) the 263 
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assessment of probabilities directly from an (or a panel of) expert (Sect. 3.1); (2) assumptions 264 

on the causal structure either by simplifying the network structure or by simplifying the causal 265 

dependence (Sect. 3.2); (3) filling-up methods (Sect. 3.3). 266 

3.1 Direct elicitation 267 

In a direct approach, experts are asked to give quantitative numbers (like frequencies or 268 

confidence intervals) using methods like probability wheel, probability scale and gambling 269 

analogy. An extensive discussion on the different types of biases are provided by Renooij 270 

(2001), and more specifically in the domain of ecology by Kuhnert et al. (2010). Overall, 271 

methods which map qualitative statements to numerical values like the probability scale (see 272 

an example in Fig. 2(A)) is preferred for its simplicity, which improves the consistency (as 273 

underlined by Wiegmann (2005), and as reported by Zhang and Thai (2016) for marine safety). 274 

Probability wheel is criticized for not being appropriate for the elicitation of small or large 275 

probabilities, and the gambling analogy is criticized for being too time-consuming. 276 

 277 

Figure 2. (A) Example of probability scale used to assist expert elicitation of CPTs (adapted 278 

from Knochenhauer et al. (2013)); (B) Translation of the probabilities qualified in (A) into 279 

Fuzzy sets (µ is the degree of membership). 280 

[Figure 2 about here] 281 

 282 

As an alternative, experts are preferably asked to give qualitative statements (like categorical 283 

or relative measure). To support this indirect approach, tools from the domain of multicriteria 284 
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decision-making have been proposed. For instance, Chin et al. (2009) adapted the Analytical 285 

Hierarchy Process method for the task of probability elicitation and semi-automatic generation 286 

of the parameters of CPTs. The basic idea is to elicit paired comparisons about the relative 287 

likelihood of the possible events using predefined scores (equally possible, etc.) instead of 288 

directly asking the probability values. Yet, this procedure is at the expense of an increase in the 289 

number of comparisons as the number of conditional probabilities increases.  290 

An alternative option proposes to directly process natural linguistic terms by mathematically 291 

modelling them using for instance a Fuzzy set (Zadeh, 1975). Let us consider the concept of 292 

membership function, which defines how each element x of the input space X (also named 293 

“universe of discourse”) is mapped to a degree of membership (denoted µ). Under the classical 294 

theory of Boolean logic, the membership function of a set A is simply defined as a binary 295 

function that takes the value µ(x) =1 if the element belongs to A and the value µ(x)=0, otherwise. 296 

The Fuzzy set theory of Zadeh (1965) introduces the concept of a set without a crisp (i.e. clearly 297 

defined) boundary. Such a set can contain elements with only a gradual (partial) degree of 298 

membership (µ is scaled between 0 and 1). The translation of the probability scale of Fig. 2(A) 299 

into Fussy sets is provided in Fig. 2(B). Some successful applications cover fault detection 300 

(D’Angelo et al., 2014), performance analysis of devices (Penz et al., 2012), safety risk analysis 301 

(Zhang et al., 2015), human reliability analysis (Peng-cheng et al., 2012; Li et al., 2012), and 302 

offshore risk (Ren et al., 2009). Two viewpoints exist in the literature on Fuzzy BBNs. 303 

Fuzziness can be incorporated in the variables (nodes) or on the probabilities. For instance, Ren 304 

et al. (2009) carried out studies using fuzzy probability calculations in BBNs (as illustrated in 305 

Fig. 2(B)). Conversely, Tang and Liu (2007) used fuzzy events (i.e. Fuzzy node states) in BBNs 306 

for a machinery fault diagnosis problem. İçen and Ersel (2019) incorporated both aspects with 307 

application in medicine. 308 

3.2 Making assumptions on the causal structure 309 

To reduce the elicitation burden, the number of CPT entries to be elicited should be kept 310 

“reasonable”. This can be performed by making assumptions regarding the causal structure. 311 

One option is by simplifying the structure through the introduction of “divorcing” nodes 312 

(Henderson et al., 2009). This involves aggregating a few of the nodes by adding a new node 313 

that summarizes them provided that the aggregations are logical and no interactions are lost in 314 

the procedure. Although this process adds nodes to the network, it reduces the combined size 315 

of CPTs in the network (Cain, 2001). Yet, divorcing might dilute the sensitivity of the final 316 
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node(s) to the input nodes and might increase the uncertainty propagated through the network 317 

as underlined by Cain (2001). 318 

A popular alternative aims at making some simplifications regarding the causal dependence 319 

based on the logical Noisy-OR gate (Pearl, 1988). In their typical implementation, Noisy-OR 320 

gates focus on binary BBN nodes and assume that the influence of the considered factor is 321 

independent from the presence of the other factors. This means that the probability of the 322 

outcome is the product of the probabilities of the outcome in presence of one factor at a time, 323 

with all other factors being absent. Formally, let us consider a binary variable Y with two states 324 

{False, True} and n binary parent variables Xi=1,..,n.  325 

 326 

Figure 3. (A) Schematic representation of the Noisy-OR gate with Pi=1,..,n the link 327 

probabilities; (B) Schematic representation of the Noisy-OR gate. 328 

[Figure 3 about here] 329 

 330 

The main principle of the Noisy-OR model is to define probabilities Pi (termed as link 331 

probability, Fig. 3(A)), which are defined as the probability that Y is False given that 𝑋𝑖 is False 332 

and 𝑋𝑗  is True for 𝑖 ≠ 𝑗. A Noisy-OR model is thus a disjunction “noisy" version of Xi (Pearl, 333 

1988). This means that the distribution of Y conditional on X1; X2;…; Xn is 𝑃(𝑌 =334 

𝐹|𝑋1; … ; 𝑋𝑛) = 1 − ∏ (1 − 𝑃𝑖𝑖:𝑋𝑖∈𝑿𝑇
) where XT is the set of parent nodes whose states are True. 335 

The Noisy-OR model enables the analysist to specify fewer CPT parameters; the number of 336 

independent parameters being here reduced from 2n to 2n. The extension of Noisy-OR gate to 337 

multi-valued variables is the Noisy-MAX gate model (Diez, 1993; Henrion, 1989). If the parent 338 

node Xi has 𝑛𝑋𝑖
 states, then the total number of parameters that have to be elicited using leaky 339 

Noisy-MAX gate is 𝑁 = ∑ (𝑛𝑋𝑖
− 1)𝑛

𝑖=1 (𝑛𝑌 − 1) + 1 to be compared to the total number 340 

without Noisy-MAX gate, namely 𝑁 = (𝑛𝑌 − 1). ∏ 𝑛𝑋𝑖

𝑛
𝑖=1 . 341 
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Different empirical studies have been conducted to investigate the performance of the leaky 342 

Noisy-OR approach. Several authors (Oniśko et al., 2001; Anand and Downs, 2008; Bolt et al., 343 

2010; among others) showed how this approach helped reducing the burden of elicitation in 344 

practical real-life applications without impacting too much the performance of the network. 345 

Besides, Zagorecki and Druzdzel (2012) explored to which extend the pattern of causal 346 

interaction induced by Noisy-OR(MAX) gates are common in real cases. Using three existing 347 

BBNs, they showed that the Noisy-MAX gate provides a good fit for as many as 50% of CPTs 348 

in two of these networks. 349 

The Noisy-OR structure is based however on a strong assumption, i.e. that the node of interest 350 

is in the state False (considering the above illustrative case) with a probability equal to 1 if all 351 

its parent variables are in the state False. Yet, in many cases, it is often difficult to capture all 352 

the causes of the node of interest (e.g. for reliability purpose, it means to define all the failure 353 

modes of a component). To deal with this problem, Henrion (1989) proposed an extension 354 

called “leaky Noisy-OR” gate that includes a background probability that represents the 355 

influence of non-modelled causes as schematically depicted in Fig. 3(B). Zagorecki and 356 

Druzdzel (2004) proposed to elicit leaky and non-leaky Noisy-OR parameters as alternatives to 357 

conditional probabilities using statements like “What is the probability that Y is present when 358 

X1 is present and all other causes of Y (including those not modelled explicitly) are absent?”. 359 

They showed that the leaky Noisy-OR parameter was assessed as the most accurate (in terms 360 

of Euclidean distance to empirical distribution).  361 

The leaky Noisy-OR method was further extended by relaxing the necessity to define a crisp 362 

precise leaky probability value, i.e. by introducing uncertainty on this parameter. This type of 363 

uncertainty has been addressed within different uncertainty treatment settings (which are 364 

introduced in more details in Sect. 4). Antonucci (2011) developed an imprecise leaky Noisy-365 

OR gate model with uncertainty on the link probabilities modelled by intervals within the 366 

formalism of credal networks (see Sect. 4.2). Alternatively, Fallet-Fidry et al. (2012) (further 367 

extended by Zhou et al. (2016b)) proposed an imprecise extensions of the Noisy-OR within the 368 

formalism of evidential networks (see Sect. 4.3). Finally, Dubois et al. (2017) developed a 369 

version of noisy logical gates within the theory of possibility (Dubois and Prade, 1988) using 370 

possibilistic causal networks (as presented by Benferhat et al. (2002)) with illustration on an 371 

example taken from human geography.  372 
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3.3 Filling-up methods 373 

Alternative methods to Noisy-OR(MAX) gate are based on filling-up techniques. These 374 

methods are typically based on extracting information on the factor effects from known 375 

relationships (named anchor conditional probability distributions, denoted CPD) and 376 

extrapolating to the whole CPTs. Considering two BBNs (of respectively 3 and 4 nodes) for a 377 

human reliability problem, Mkrtchyan et al. (2015) tested five popular methods for CPT 378 

derivation considering nodes with multiple states, namely: 379 

- Method 1: the functional interpolation method (Podofillini et al., 2014) approximate 380 

CPDs elicited at the anchor positions by functions described by parameters (e.g., 381 

Normal functions); the parameters of the missing CPDs are then obtained by 382 

interpolating those corresponding to the anchor ones;  383 

- Method 2: the Elicitation BBN method (Wisse et al., 2008) is based on piecewise linear 384 

functions interpolating among the elicited CPDs, and on state influencing factors and 385 

importance weights;  386 

- Method 3: The Cain calculator (Cain, 2001) uses interpolation factors derived from 387 

CPDs to populate the missing relationships in CPTs;  388 

- Method 4: The method presented by Røed et al. (2009) is also based on functional 389 

relationships between influencing factors and outcome nodes; the parameters of the 390 

function (exponential) are then determined based on the elicitation of selected CPDs; 391 

- Method 5: the ranked node method by Fenton et al. (2007) (further improved by Laitila 392 

and Virtanen, 2016) is not based on interpolation of known CPDs. In this approach, all 393 

the nodes are defined on the interval [0–1]. For instance, let us consider a node with 5 394 

states, namely ‘‘very low”, ‘‘low”, ‘‘average”, ‘‘high”, and ‘‘very high”; each of the 395 

state is assigned to an interval width of 0.2; for instance, the value ‘‘low” is assigned to 396 

the interval [0.2–0.4]. To generate CPTs, the experts are asked to provide the weight 397 

parameters and to choose one algorithm (the mean average, the Minimum, the 398 

Maximum and the MixMinMax). Using this method, if there are m ranked nodes and 399 

each node has n states, the expert will only need m +1 parameter values, while it requires 400 

nm+1 values for full elicitation. 401 

Mkrtchyan et al. (2015) showed that: 402 

- All methods allow representing the different importance of the various influencing 403 

factors; 404 
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- The representation of the interactions (combined effects of multiple factors) is 405 

problematic for methods eliciting information on the influence of factors taken one at a 406 

time (methods 2-4); 407 

- Functional representation of the CPTs (methods 1, 5 and 4) can be traced more easily, 408 

because they allow an explicit representation of uncertainty in the factor relationships; 409 

- But methods 4 and 5 have difficulties in representing the different degrees of uncertainty 410 

in the relationships; 411 

- The method allowing the largest modelling flexibility is method 1 with respect to strong 412 

factor influences (single and multi-factor) and proper uncertainty characterization, but 413 

becomes too costly for large BBNs.  414 

3.4 Discussion 415 

The conclusions drawn by Mkrtchyan et al. (2015) serve as valuable recommendations 416 

regarding the use and applicability of the five most popular filling-up methods for reducing the 417 

expert burden of CPT elicitation. Despite the practical usefulness of this comparative exercise, 418 

it should be noted that they primarily focused, by construction, on the modelling aspects 419 

important for their application domain (here human reliability analysis), namely the 420 

representation of strong factor influences and interactions, and the characterization of different 421 

degrees of uncertainty in the relationships. Broader exercises are needed to cover a larger 422 

spectrum of methods (i.e. filling-up methods should be completed by Noisy- OR/MAX models, 423 

direct elicitation among others), of contexts (different network sizes, binary versus multivalued 424 

nodes, etc.), as well as of domains of application.  425 

Despite the clear advantages of these methods for BBN engineering, they cannot be applied 426 

uncritically, because the probability values can only be considered approximations of the true 427 

probabilities and whatever the considered methods, they are all based on simplifications that 428 

may hamper the BBN performance. Initiatives like the one by Woudenberg and van der Gaag 429 

(2015) for the Noisy-OR model should be intensified. They identified the conditions under 430 

which ill-considered use of this method can result in large impact on output probabilities; in 431 

particular, when the yet-unobserved cause variables in the mechanism have relatively skewed 432 

probability distributions and/or the obtained parameter probabilities have small values. For this 433 

purpose, sensitivity methods as described in Sect. 5 can play an important role. Fenton et al. 434 

(2019) also dealt with the limitations of leaky Noisy-OR model for backward inference. When 435 

the binary node of interest Y of the example in Fig. 3 is observed to be in the state False, the 436 

normal “explaining away” behaviour fails, which means that after observing the state of any 437 
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parent the remaining parents become independent, and the results may not result in what BBN 438 

practitioners expected. Fenton et al. (2019) described a simple extension of the model that 439 

requires the elicitation of only one extra parameter that can solve this problem for a large 440 

spectrum of cases in practice. 441 

4 Propagating the uncertainties 442 

Whatever the methods used to populate the CPTs, residual uncertainties may still prevail. This 443 

residual uncertainty should be reflected in BBN-based results. This means that the uncertainty 444 

on CPT entries should be propagated in order to evaluate their consequences on the BBN 445 

results. The propagation can either rely on probabilities (Sect. 4.1), or alternative mathematical 446 

representation tools like intervals (Sect. 4.2) or a generalization of a probability distribution 447 

(Sect. 4.3), i.e. within the theory of belief functions as introduced by Shafer (1976) and 448 

Dempster (1967). Fig. 4 summarizes the main principles of the different approaches by using a 449 

simple OR-gate model.  450 

 451 

Figure 4. (A) Example of an OR gate model translated into a BBN with two binary parent nodes 452 

X and Y (with states corresponding to T=True or F=False). The truth table related to the OR 453 

gate corresponds to the table next to the child node Z. Illustration of a probability-based 454 

approach where uncertainties on CPT entries are represented by: (B) Beta probability 455 

distributions (with an example here for node Y); (C) Interval-valued probabilities (credal 456 

network approach); (D) Mass probability tables; here the truth table includes the epistemic state 457 

E={T,F}; Two nodes were added to the network to calculate the belief and plausibility functions 458 

(see Sect. 4.3 for more details). 459 
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[Figure. 4 about here] 460 

4.1 Methods using probabilities 461 

The problem of uncertainty propagation for BBN has originally been addressed using 462 

probabilities. This approach assumes that the uncertainty on CPT entries follows a Beta 463 

probability distribution (or for more generic cases, a Dirichlet probability distribution), as 464 

schematically depicted in Fig. 4(B). Kleiter (1996) originally described a Monte-Carlo-based 465 

random simulation procedure to carry out the approximation of the spread of the probability 466 

distribution for the considered query. The method requires, however, a large number of random 467 

samples to accurately characterize the true variance. Van Allen et al. (2008) proposed an 468 

improved method by avoiding Monte Carlo sampling through the combination of bucket 469 

elimination (Dechter, 1998) with the “delta rule” that linearizes the relationship between the 470 

query probabilities and the corresponding Dirichlet conditional probabilities connecting the 471 

query variable to its parents and children. They further proved that the Beta approximation (for 472 

binary BBNs) is asymptotically valid. The conditions of the exact Beta distribution has 473 

extensively been investigated by Hooper (2008). This problem has further been formalized 474 

within the setting of subjective logic (Jøsang, 2001; 2016) as proposed by Kaplan and Ivasnoska 475 

(2018), who developed an efficient belief propagation for inference in a binary Bayesian 476 

network with a singly-connected graph. To introduce any type of probability distribution on 477 

CPTs, Fenton (2018) proposed to extend the BBN with continuous nodes corresponding to the 478 

uncertain prior probability distributions, but at the expense of a potentially large increase of 479 

computational time cost when the number of nodes and of CPTs increases.  480 

4.2 Methods using interval-valued probabilities 481 

Instead of specifying a crisp single value of each CPT entry, the formal setting of credal 482 

network, denoted CN (Cozman, 2000; 2005), integrates BBNs with credal sets, i.e. set of 483 

probability measures. A CN can be viewed as the representation of a set of BBNs, which share 484 

the same graphical structure but are associated to different conditional probability parameters; 485 

the interest being to provide a richer representation of uncertainty. In Fig. 4(C), the uncertainty 486 

in the CPTs are presented by intervals.  487 

Formally, given a variable X, we denote by , the possibility space of X, x a generic element 488 

of , P(X) the probability mass function for X and P(x) the probability of x. The credal set over 489 

X is K(X), which corresponds to a closed convex set of probability mass functions over X. For 490 

any x, the lower probability for x according to the credal set K(X) is 𝑃(𝑥) =491 
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𝑚𝑖𝑛𝑃(𝑋)𝜖𝐾(𝑋)𝑃(𝑥). Similar expression can be given for the upper probability. Within Walley’s 492 

theory of imprecise probabilities (Walley, 1991), credal sets can then be represented as 493 

polytopes, where each inner point has a valid probability mass, and can be obtained by 494 

computing the convex hull of a finite number of probabilities, called vertices (Cozman, 2000). 495 

A credal set for a random variable Xi is labelled 𝐾(𝑋𝑖), while the set comprising its extreme 496 

points is denoted by ext[𝐾(𝑋𝑖)]. 497 

A credal network CN (Cozman, 2000) over a set of random variables is thus a DAG where 498 

dependencies among variables are defined by a set of conditional credal sets as 𝐾(𝑋𝑖|𝑝𝑎(𝑋𝑖)). 499 

By analogy with BBN, it is possible to define a joint credal set as follows: 500 

 501 

𝐾(𝑋) = 𝐶𝐻(𝑃(𝑋): 𝑃(𝑥) = ∏ 𝑃(𝑥𝑖|𝑝𝑎(𝑋𝑖)
𝑛
𝑖=1 )     (Eq. 4) 502 

where 𝑃(𝑋𝑖|𝑝𝑎(𝑋𝑖) 𝑒𝑥𝑡[𝐾(𝑋𝑖|𝑝𝑎(𝑋𝑖)], CH is the convex hull operator, applied to the 503 

probabilities computed for the combination of all the vertices of all the conditional credal sets. 504 

In this setting, the task of inference aims at computing the probability bounds of the largest 505 

extension that satisfies the Markov condition (i.e., independence of each node of its non-506 

descendant non-parents given its parents) under the assumption of strong independence 507 

(Cozman, 2000). This results in the convex hull of the set containing all joint distributions that 508 

factorize the overall joint probability of the network, where the conditional distributions 509 

P(Xi|pa(Xi)=πk) are selected from the local sets K(Xi|pa(Xi)= πk). This task is a NP-hard (de 510 

Campos and Cozman, 2005), for which a number of exact and approximate algorithms have 511 

been proposed (Antonucci et al., 2015; Mauá et al. 2012; Ide and Cozman, 2008; Cano et al., 512 

2007), but only exact inference algorithms are suitable to polytree-shape binary networks. 513 

Though CN allows quantifying and integrating the uncertainty on CPTs on the BBN inference 514 

results, this increase in expressiveness comes at the expense of higher computational costs. 515 

Some real case applications of CN exist in different domains (Table 1), but the number of them 516 

remain limited (with comparison to BBN), despite the availability of some open-source 517 

solutions like OpenCossan (Tolo et al., 2018), the linear programming algorithm1 of Antonucci 518 

et al. (2015), the GL2U-II algorithm2 of Antonucci et al. (2010).  519 

 520 

 Domain of application Method Reference 

                                                
1 http://ipg.idsia.ch/software.php?id=135 
2 http://ipg.idsia.ch/software.php?id=142 



- 19 - 

1 Hazard assessment of debris flows CN Antonucci et al. (2007) 

2 Military identification CN Antonucci et al. (2009) 

3 Reliability analysis of a fire-detector 

system 

EN Simon et al. (2008; 2009; 

2017) 

4 Threat assessment  EN Benavoli et al. (2009) 

5 Convoy detection EN Pollard et al. (2010) 

6 Reliability analysis of oil filter plug 

linked to aero engines 

EN Yang et al. (2012) 

7 Railway dysfunction EN Aguirre et al. (2013) 

8 Food processing Dynamic CN Baudrit et al. (2016) 

9 Cyber attack analysis EN Friedberg et al. (2017) 

10 Vulnerability analysis of Nuclear 

Power Plant subject to external hazards 

CN Tolo et al. (2017) 

11 Reliability analysis of a safety 

instrumentation system for a 

pressurized vessel 

EN Zhang et al. (2017) 

12 Medical prognostic and diagnostic EN and 

Fuzzy sets 

Janghorbani and Moradi 

(2017) 

13 Fault diagnosis for railway BBN vs EN Verbert et al. (2017) 

14 Maritime accidents CN Zhang and Thai (2018) 

15 Terrorist attack analysis on a chemical 

storage plant 

EN vs CN Misuri et al. (2018) 

16 Landslides CN He et al. (2018) 

17 Risk assessment of an oscillating water 

column 

CN Estrada-Lugo et al. (2018) 

18 Reliability analysis of a feeding control 

system 

EN Mi et al. (2018) 

19 Human reliability for Nuclear Power 

Plant safety analysis 

EN Deng and Jiang (2018) 

20 Safety assessment of a truss EN Khakzad (2019) 

Table 1. Case studies of evidential networks (EN) and Credal Network (CN) 521 

[Table 1 about here] 522 

 523 

4.3 Methods based on Dempster-Shafer Theory 524 

An alternative setting for representing imprecision is the theory of belief functions, also called 525 

Dempster-Shafer Theory, denoted DST (Shafer, 1976, Dempster, 1967). Let X be a variable 526 

taking values in the frame of discernment  composed of q mutually and exhaustive possible 527 

state of X. For instance, for a binary node, the frame of discernment is ={True, False}. 528 
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Formally, the theory introduces the concept of basic belief assignment (BBA) based on the 529 

belief mass function m: 2[0,1] and satisfies ∑ 𝑚(𝐴) = 1 𝐴 , and 𝑚() = 0 (which 530 

assumes that at least one element of  is true). Every A2 such that m(A)>0 is called a focal 531 

element. 532 

In classical probabilities, a probability value can be assigned to the state True or False only. By 533 

defining the belief mass function based on the powerset of the frame of discernment 2  (which 534 

corresponds in the binary example to {,True, False, {True,False}}) enables the analysist to 535 

allocate a quantity supporting an additional state termed as epistemic state E={True, False}. 536 

Due to uncertainty, the analysist may not always be able to determine the amount of masses to 537 

attribute to each state, and the variable X may then be in both states, True or False. This means 538 

that the method allows characterizing uncertainty about the state of a given node.  539 

From a mass function m, two measures can be defined (instead of one for the probabilistic case) 540 

called the belief (Bl) and plausibility (Pl) measures. The latter are respectively defined, for any 541 

event A as follows: 542 

 543 

𝐵𝑙(𝐴) = ∑ 𝑚(𝐸)𝐸𝐴 , and 𝑃𝑙(𝐴) = ∑ 𝑚(𝐸)𝐸𝐴      (Eq. 5) 544 

where Bl measures how much event A is implied by the information (it sums masses that must 545 

be redistributed over elements of A), Pl measures how much event A is consistent with the 546 

information (it sums masses that could be redistributed over elements of A). These two 547 

measures can be associated to a (closed convex) set of bound probabilities {P |∀𝐴 ⊆, (𝐴) 548 

≤(𝐴)≤𝑃𝑙(𝐴)}. It is thus possible to associate an interval-valued probability to the event A, with 549 

minimum and maximum probabilities provided by Bel and Pl, respectively. This makes the 550 

formal link with CN. Conversely, it is also possible to reconstruct BBAs from Pl and Bel 551 

functions using a Möbius Transformation (Smets, 2002). 552 

As an illustration, let us assume consider a binary node for which the expert only knows that 553 

the probability of the event {X=True} is at least 0.8. The corresponding BBA is m({True})=0.8, 554 

m(E={True, False})=0.2, m({False})=0. This means that Bl({True})= m({True}), and 555 

Pl({True})= m({True})+ m(E)=0.8+0.2=1.0. This also means that Bl({True})=m({True})=0.8, 556 

and Pl({True})=m({True})+ m(E)=0.8+0.2=1.0. Then 0.8P({True})1.0. 557 

The evidence theory is the basis of evidential networks (EN), which is a DAG propagating 558 

belief masses. One of the first formulation by Xu and Smets (1996) is based on the Dempster’s 559 
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rule for combining and reasoning with the belief masses. Yet, one major limitation is that the 560 

inference algorithms in this formulation are less effective that the one for traditional BBNs as 561 

underlined for instance by Khakzad (2019). In the domain of system reliability analysis, Simon 562 

et al. (2008) proposed an alternative by mapping logical gates (like OR or AND typically used 563 

for fault tree analysis), as EN with the hypothesis described by Guth (1991). Despite its 564 

similarity with BBN, relations in EN between variables are not probabilities, but belief masses. 565 

The truth table of gates are replaced by conditional mass tables for AND and OR gates (see an 566 

example in Fig. 4(D)). To compute belief and plausibility measures in EN, specific nodes (as 567 

proposed by Simon and Weber 2009) are introduced. Three types of nodes (as represented in 568 

Fig. 4(D)) are thus defined (Simon and Bicking, 2017), namely: 569 

- Root nodes to which BBA are assigned, correspond to components; 570 

- Non-root nodes correspond to logical gates that encode its resulting states {True, False, 571 

{True,False}} given the states of its parents; 572 

- Evaluation nodes correspond to nodes that aim at providing estimates of the belief and 573 

plausibility measures of the system state. 574 

In the formulation by Simon and Weber (2009), the inference computation is based on the 575 

Bayes theorem, which is extended to DST by specifying a mass of 1 on one of the focal elements 576 

of the frame of discernment for a specific evidence (hard evidence). Non-specific evidence (soft 577 

evidence) corresponds to a mass distribution on the focal elements of the frame of discernment. 578 

This means that probability updating in such EN can be based on BBN inference algorithms.  579 

Misuri et al. (2018) compared CN and EN with illustration on a terrorist attack analysis on a 580 

chemical storage plant. They highlighted that: 581 

- When used for uncertainty propagation, EN and CN give the same results; 582 

- In terms of implementation, EN is simplier to use, because they can be built using 583 

existing codes for BBN, whereas CN requires specific codes; 584 

- In terms of interpretation, Misuri et al. (2018) concluded that EN is more intuitive, 585 

because experts directly assign some weight to the epistemic state (e.g. E={True,False} 586 

for a binary node), whereas they have to specify interval-valued probabilities for CN, 587 

which can become tricky for multivalued nodes. 588 

Khakzad (2019) further filled the gap between CN and EN by proposing some heuristic rules 589 

to determine prior belief masses based on imprecise probabilities. They further modified Simon 590 

and co-authors’ EN formulation to both improve the propagation and updating of the belief 591 
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masses using BBNs. In order to deal with linguistic variables for the network node’ states, the 592 

EN method can be combined either with Fuzzy sets (Zadeh, 1975) as applied by Janghorbani 593 

and Moradi (2017) for medical prognostic, or with a Naive Bayes classifier model as applied 594 

by Zhang et al. (2017) for safety analysis for nuclear power plant. 595 

4.4 Discussion 596 

Different settings are available to help the BBN analysist to deal with the problem of uncertainty 597 

propagation. A natural question is the justification for using approaches that are alternative to 598 

classical probabilities. A first argument often highlights the epistemic nature of the CPT 599 

uncertainties. Contrary to aleatory uncertainty (also referred to as randomness), which 600 

represents the variability of the physical environment or engineered system under study, 601 

epistemic uncertainty mainly stems from the incomplete/imprecise nature of available 602 

information (e.g. Hoffman and Hammonds, 1994). While tools from the probabilistic setting 603 

can appropriately handle aleatory uncertainties, it is the second type, which raises several 604 

problems in practice. In our situation, probability distribution cannot be inferred from 605 

data/observations, and should therefore be assumed; the procedure described in Sect. 4.1 is 606 

mainly based on the assumption that the uncertainties on the CPTs are described by a Beta (or 607 

for more generic cases, a Dirichlet probability distribution) probability distribution. Yet, this 608 

assumption may influence the final results of the BBN-based analysis (see. e.g., Ditlevsen, 1994 609 

for an extensive discussion in reliability analysis); Relying only on probabilities masks this 610 

problem and might induce an appearance of more refined knowledge with respect to the existing 611 

uncertainty than is really present (Klir, 1989; 1994). Sect. 4.2 and 4.3 describe alternative non-612 

probabilistic frameworks to represent uncertainty in situations characterized by limited 613 

available pieces of information, which are mainly restricted to expert judgements. Both 614 

approaches allow improving the expressiveness with respect to uncertainty representation (as 615 

shown by the few tens of application studies using these techniques, see Table 1), in particular 616 

by enabling the BBN analysist to translate his/her uncertainty on the node states or his/her 617 

imprecision on the CPT parameters by avoiding the need for specifying a probability model.  618 

Yet, extra-probabilistic approaches (whatever the considered methods, CN, EN or networks 619 

combined with linguistic variables or based on alternative uncertainty theories like possibility 620 

theory, see Dubois et al. (2017)) might come at the expense of higher level of sophistication 621 

and of complexity of the inference algorithms (and potentially higher computational costs). The 622 

danger is to add more confusion than insights as discussed by Aven and Zio (2011) with the 623 

viewpoint of decision making for risk management. The question of selecting the most 624 
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appropriate approaches for representing and characterizing the risk and uncertainties (in 625 

particular with application on BBNs) still remains open (see e.g., an extensive discussion by 626 

Flage et al. 2014). 627 

5 Characterizing the uncertainties 628 

Methods presented in Sect. 4 allows evaluating the impacts of CPT uncertainties on the BBN 629 

results. But, this tells nothing about the respective contribution of the different CPT entries on 630 

the total uncertainty, i.e. the influence of the different uncertainties. This is the purpose of 631 

sensitivity analysis (SA), which can be used, in the construction phase of the BBN model, to 632 

study how the output of a model varies with variation of the CPT parameters. Subsequently, 633 

the results from SA can be used as a basis for parameter tuning, as well as for studying the 634 

robustness of the model output to changes in the parameters (Coupé and van der Gaag, 2002; 635 

Laskey et al., 1995). 636 

5.1 Description of the methods 637 

For discrete BBNs, a widespread SA method relies on the use of sensitivity functions (Coupé 638 

and van der Gaag, 2002; Castillo et al., 1997), which describe how the considered output 639 

probability varies as one CPT entry value is changed. An example of application in the domain 640 

of marine safety is provided by Hänninen and Kujala (2012). Formally, consider the conditional 641 

probability P(Z=k|e), where e denotes the available evidence, and a CPT entry x=P(X=i|) where 642 

i is a value of a variable X and  is a combination of values for the parents of X. The sensitivity 643 

function then corresponds to a quotient of two functions that are linear in x of the following 644 

form: 645 

 646 

𝑓(𝑥) =
𝑐1𝑥+𝑐2

𝑐3𝑥+𝑐4
          (Eq. 6) 647 

where the constants ci are built from the values of the network’s non-varied parameters. The 648 

numerator of Eq. 6 expresses the joint probability P(Z=k|e) as a function of x, and its 649 

denominator describes P(e) in terms of x. Using the example described in Fig. 1, we focus on 650 

the probability of having brain tumor given absence of coma but increased level of serum 651 

calcium, i.e. 𝑃(𝐵 = 𝑇|𝐶 = 𝐹, 𝐼𝑆𝐶 = 𝑇). Van der Gaag et al. (2013) estimated the sensitivity of 652 

this probability of interest to the probability of having coma given absence of brain tumor but 653 

increased level of serum calcium,  𝑥 = 𝑃(𝐶 = 𝑇|𝐵 = 𝐹, 𝐼𝑆𝐶 = 𝑇). The sensitivity function 654 
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was established as 
−0.03

𝑥−1.03
 (as depicted in Fig. 5(A)). This type of function shows that the 655 

probability of interest steeply increases when x exceeds 0.80, i.e. above the original 656 

parametrization given by Cooper (1984). 657 

 658 

Figure 5. (A) One-way sensitivity function for the BBN described in Fig. 1; (B) Two-way 659 

sensitivity function for the BBN described in Fig. 1 considering the probability P(C=T) as the 660 

targeted probability. 661 

[Figure 5 about here] 662 

 663 

Two-way sensitivity functions can be expressed in a similar form as a quotient of two bi-linear 664 

functions. Consider the sensitivity function of f(𝑥, 𝑦) that expresses P(Z=k|e) as a function of 665 

the parameter probabilities 𝑥 = 𝑃(𝑋 = 𝑖|𝑋) and 𝑦 = 𝑃(𝑌 = 𝑗|𝐷), where i and j are values of 666 

the variables X and Y, and 𝑋 and 𝑌are combinations of values for the parents of X and of Y. 667 

The function holds as follows: 668 

 669 

𝑓(𝑥, 𝑦) =
𝑐1𝑥.𝑦+𝑐2𝑥+𝑐3𝑦+𝑐4

𝑐5𝑥.𝑦+𝑐6𝑥+𝑐7𝑦+𝑐8
        (Eq. 7) 670 

where the constants ci are estimated from the values of the network’s non-varied parameters. 671 

In the tumor BBN example (Fig. 1), we focus on the probability of having a cancer P(C=T) and 672 

its sensitivity to the simultaneous variation of the conditional probabilities x=P(B=T|MC=T) 673 

and y=P(ISC=T|MC=T), which was established by van der Gaag et al. (2013) as 0.374 +674 



- 25 - 

0.15. 𝑥. 𝑦 − 0.15. 𝑥 − 0.15. 𝑦 (Fig. 5(B)). This type of function shows that despite the large 675 

variation of x and y (from 0 to 1), the probability of interest varies over a moderate range of 676 

values of only ~15%.  677 

A complementary approach for SA involves the study of the Chan–Darwiche (CD) distance 678 

(Chan and Darwiche, 2002; 2005), which is a measure for bounding probabilistic belief change. 679 

It is complementary in the sense that it gives insight in the effect of parameter changes on the 680 

global joint distribution, rather than on a specific (posterior) output probability of interest (as 681 

sensitivity functions do). In practices, the CD distance can be used to identify parameter 682 

changes, which lead the closer distance between the original and the varied BBN distributions 683 

(Chan and Darwiche, 2005). It should however be noted that the choice of the type of distance 684 

is rather arbitrary as outlined by Renooij (2014) and other distances like the KL-divergence 685 

(Kullback and Leibler, 1951) or the -divergences (Ali and Silvey, 1966) could also be of 686 

interest.  687 

Recent studies have focused on the properties of the SA methods. Renooij (2014) thoroughly 688 

investigated the different schemes for varying a probability from a (conditional) distribution, 689 

while co-varying the remaining probabilities from the same distribution; the proportional co-690 

variation scheme being the most popular one. Leonelli et al. (2017) further formalized the SA 691 

problem for discrete BBNs within the generic setting of multilinear models. They developed a 692 

unifying approach to sensitivity methods via the interpolating polynomial representation of 693 

discrete statistical models in the context of “BBNs single full CPT analyses”, i.e. where one 694 

parameter from each CPT of one vertex of a BBN given each configuration of its parents is 695 

varied. This approach based on multilinear probabilistic models enabled them to address the 696 

problem of multi-way SA (with dimension ≥2). Furthermore, they proved the optimality of 697 

proportional covariation by showing that the CD distance is minimized when parameters are 698 

proportionally co-varied.  699 

5.2 Discussion 700 

Since the nineties, the BBN community has seen the developments of SA methods that are 701 

specifically dedicated to their respective needs regarding the BBN use and application. Though 702 

simple and efficient to implement, the approach based on sensitivity functions (combined with 703 

CD-distance analysis) remains local, because one parameter values are varied, while the other 704 

ones are kept constant. Multi-way SA methods have been proposed, but can rapidly become 705 

intractable. Interestingly, outside the BBN community, the problem of SA is commonly 706 

addressed with alternative tools; variance-based global SA techniques being the most popular 707 
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one (Iooss and Lemaitre, 2015). Such techniques were adapted by Li and Mahadevan (2018) to 708 

bridge the gap between both communities. Their approach has the advantage to be global i.e. 709 

in the sense that all CPT parameters’ values are changed all together. Besides, this approach 710 

can be applicable to any types of BBN (discrete, hybrid or continuous), i.e. it is model-free. 711 

6 Concluding remarks 712 

6.1 Summary 713 

The current survey has investigated how to deal with uncertainties related to the specification 714 

of CPTs for discrete BBNs. Three questions were addressed, namely: (1) how to constrain the 715 

uncertainties related to CPT derivation; (2) how to integrate these uncertainties in the BBN-716 

based analysis; (3) how to test the robustness of the BBN-based results to these uncertainties. 717 

Table 2 provides a summary of the main methods/approaches (together with their advantages 718 

and limits) to answer these questions. 719 

 720 

Question Approach Advantages Limits Section 

1 Learning CPT by 

combining data and 

expert prior 

knowledge via MAP 

estimation 

- It improves the 

MLE-based fitting 

when the number of 

data is limited. 

- The representation of 

expert belief is 

restricted to the use 

of Dirichlet priors; 

- There is a possible 

problem of “under-

fitting” in sparse 

situations. 

Sect. 2.4-

2.5 

1 Learning CPT by 

combining data and 

qualitative constraints 

- The accuracy of the 

MLE/MAP-based 

fitting is largely 

improved when data 

are scarce; 

- The experts may feel 

more conformable in 

providing ordering 

than precise CPT 

values. 

- Many new estimators 

are available, but 

many lack practical 

recommendations; 

- There is a possible 

problem of “under-

fitting” depending on 

the chosen priors. 

Sect. 2.4-

2.5 

1 Direct elicitation 

using qualitative 

statements 

- The experts may feel 

more conformable in 

providing qualitative 

statements than 

quantitative 

estimates. 

- Mathematical 

modelling of 

linguistic terms may 

lead to information 

loss or increased 

computation burden. 

Sect. 3.1 

1 Use of “divorcing” 

nodes 

- The number of nodes 

is decreased through 

aggregation of nodes. 

- Care should be paid 

to avoid the loss of 

interactions in the 

procedure; 

- It may dilute the 

sensitivity of the 

final node(s) to the 

input nodes; 

Sect. 3.2 
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- It might increase the 

uncertainty 

propagated through 

the BBN. 

1 Simplification of the 

causal structure using 

logical gates (e.g. 

Noisy-OR gate) 

- The number of nodes 

to be elicited is 

largely decreased 

(e.g. from from 2n to 

2n for a binary node 

with n parents). 

- The assumptions on 

the causal 

relationships might 

not always be valid in 

real life applications; 

- The simplifications 

may hamper the 

BBN performance. 

Sect. 3.2 

1 Extracting 

information on the 

factor effects from 

known relationships 

and extrapolating 

them 

- A large variety of 

different “filling-up” 

methods exist to 

relieve the elicitation 

burden; 

- Some feedbacks on 

real case applications 

exist (e.g. for human 

reliability analysis). 

- Simplifications are 

introduced and the 

derived probabilities 

can only be 

considered 

approximations of 

the true probabilities. 

Sect. 3.3 

2 Uncertainty 

propagation using 

probabilities 

- The degree of 

confidence in the 

BBN-based results 

can be quantified. 

- The uncertainty 

representation is 

restricted to the use 

of Beta/Dirichlet 

probability 

distributions; 

- It can become 

computationally 

intensive. 

Sect. 4.2 

2 Uncertainty 

propagation using 

intervals with credal 

networks (CN) 

- It avoids selecting a 

probability model to 

represent the 

uncertainty; 

- The experts may feel 

more comfortable in 

assigning intervals 

than probabilities. 

- The specification of 

interval-valued 

probabilities can 

become tricky for 

multivalued nodes; 

- It needs specific 

sophisticated 

inference algorithms 

and software 

solutions (with 

potential high 

computational costs). 

Sect. 4.3 

2 Uncertainty 

propagation within 

the Dempster-Shafer 

Theory by using 

evidential networks 

(EN) 

- The expressiveness 

is improved like for 

CN; 

- EN is more intuitive 

than CN, because 

experts directly 

assign some weight 

to the epistemic state; 

- It can be 

implemented with 

existing BBN 

softwares. 

- The translation of 

interval-valued 

probabilities within 

this setting can 

become difficult for 

multivalued nodes; 

- The inference 

algorithms for 

combining 

joint/disjoint belief 

masses are not so 

effective as those 

based on probability 

theory. 

Sect. 4.4 

3 Sensitivity Analysis 

(SA) using sensitivity 

functions 

- The theory is well-

established; 

- It is simple to 

implement; 

- It focuses on the 

influence of one (or 

multiple) CPT 

parameters while the 

Sect. 5.1 
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- The graphical 

representation is 

straightforward to 

interpret. 

other ones are kept 

constant; 

- It requires specific 

co-variations 

schemes; 

- Multi-way SA can 

rapidly become 

intractable. 

3 Sensitivity Analysis 

using Chan–

Darwiche distance 

- It complements the 

sensitivity functions 

by giving insight in 

the effect of 

parameter changes 

on the global joint 

distribution. 

- It presents the same 

disadvantages than 

the sensitivity 

functions; 

- The choice of the 

distance can be rather 

arbitrary. 

Sect. 5.1 

Table 2. Summary of the advantages and limits of the main approaches 721 

[Table 2 about here] 722 

Considering the first question, we described methods for deriving CPT entries from different 723 

sources of information (observations, prior knowledge, expert-based information, etc.). 724 

Traditional estimators like MLE and MAP (or new ones) were proposed to make the best use 725 

of the data available even in scarce situations when completed by qualitative constraints like 726 

knowledge about the monotonic influences between nodes. For rare-event situations like 727 

reliability analysis, the main source of information relies on inputs from expert domain using 728 

different elicitation techniques; the main challenge being the minimization of the workload on 729 

the experts owing to the large number of CPT entries while preserving the quality and 730 

consistency of the elicited result. Elicitation for CPTs generally relies on three (possibly 731 

combined) main approaches: (1) through the assessment of probabilities directly from an expert 732 

or a panel of experts; (2) through a simplification of the causal structure using the popular 733 

Noisy-OR(MAX) model (and its improved versions like the leaky one); (3) through filling-up 734 

methods, which have in particular been thoroughly benchmarked on test cases in the domain of 735 

human reliability analysis.  736 

The second question can be addressed using different approaches, either using probabilities, or 737 

imprecise probabilities either using interval-valued probabilities within the setting of credal 738 

networks or within the Dempster-Shafer theory within the setting of evidential networks. 739 

Though the latter approach enables an increase in expressiveness with respect to uncertainty 740 

representation (as shown by the few tens of application studies using these techniques, see Table 741 

1), this might come however at the expense of higher complexity of the inference algorithms 742 

(and higher computational costs). Finally, the third question is investigated by methods 743 

specifically developed for sensitivity analysis of BBN; in particular through the use of one- or 744 

multi- way sensitivity functions.  745 
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6.2 Discussion and open questions 746 

BBN is now viewed as a suitable tool for overcoming data gaps, estimating uncertainties, and 747 

visualizing complex causal relationships. Despite its clear advantages, it cannot be applied 748 

uncritically, and addressing the question of uncertainties in its construction, and more 749 

specifically in the CPT derivation, should become standard practices to increase the confidence 750 

in its use. The analysis of the literature (Table 2) shows that any analysist is now equipped with 751 

a handful of different tools/methods to address the question of uncertainties. This participates 752 

to the minimization of the concern of Neil et al. (2000): “In the literature much more attention 753 

is given to the algorithmic properties of BBNs than to the method of actually building them in 754 

practice”. 755 

Yet, the developments of these techniques is only one part of the problem, and effort should be 756 

intensified to bring them to an operative state. To this purpose, the implementation of these 757 

techniques within commonly-used BBN software packages (like Beuzen and Simmons 2019 758 

for the widely-used Netica software, Norsys Software Corp., 2006 or Tolo et al. (2018) who 759 

proposed an open-source software package OpenCossan) should be strengthened. Second many 760 

methods lack practical recommendations. Therefore, more benchmark / comparative exercises 761 

are needed to cover broader situations and to serve as best practices for selecting the most 762 

appropriate tools depending the characteristics of the considered situation. For instance, the 763 

filling-up methods benchmarked by Mkrtchyan et al. (2015) should be completed by Noisy- 764 

OR/MAX models, direct elicitation among others, and applied in different contexts (different 765 

network sizes, binary versus multivalued nodes, etc.), as well as domains of application. 766 

Similarly, there is a need for comparing the pros and cons of using alternative frameworks for 767 

uncertainty representation and propagation in BBNs, i.e. comparing approaches using 768 

probabilities, or interval-valued or Dempster-Shafer structures or possibility distributions or 769 

Fuzzy sets, for instance by following the initiatives conducted for probabilistic risk analysis 770 

(e.g., Pedroni et al., 2013, Loschetter et al., 2016).  771 

The current work has focused on CPT derivation for discrete BBN development. The second 772 

key ingredient of BBNs is the DAG specification, whose learning from data has been 773 

investigated in numerous studies (e.g., Heinze-Deml et al. (2018), Scutari et al. (2018), Beretta 774 

et al. (2018), etc.). To address the whole spectrum of uncertainties in BBN building, studies 775 

both covering DAG and CPT learning would be beneficial. To integrate both sources of 776 

uncertainty, possible lines of future research may either focus on the improvement of existing 777 

algorithm like the structural expectation-maximization algorithm (Benjumeda et al., 2019) to 778 

simultaneously learn the structure and parameters of a BN from incomplete data, or on the 779 
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combination/aggregation of multiple BBNs, each of them being based on a different set of 780 

assumptions either regarding structure or CPT parametrisation (Kim and Cho, 2017; Feng et 781 

al., 2014).  782 

Finally, it should be underlined that BBN modelling is a rapidly advancing field (see e.g., 783 

Marcot and Penman, 2019) that covers new applications and features (like the incorporation of 784 

the time and space dimension, the improvements in the treatment of discrete and continuous 785 

variables, its links with artificial intelligence, among others). The research on the uncertainty 786 

treatment for these new developments is active (see e.g., recent advances for sensitivity analysis 787 

of a wide array of graphical models by Leonelli (2019)), and the scope of the current work 788 

should be broadened in the future to include them. 789 
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