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Abstract

We study the upscaling and prediction of large scale solute dispersion in heterogeneous
porous media with focus on preasymptotic or anomalous features such as tailing in break-
through curves and spatial concentration profiles as well as non-linear evolution of the
spatial variance of the concentration distribution. Spatial heterogeneity in the hydraulic
medium properties is represented in a stochastic modeling approach. Direct numerical
Monte Carlo simulations of flow and advective particle motion combined with a Markov
model for streamwise particle velocities give insight in the mechanisms of preasymptotic
and asymptotic solute transport in terms of the statistical signatures of the medium and
flow heterogeneity. Based on the representation of equidistantly sampled particle veloc-
ities as a Markov process, we derive an upscaled continuous time random walk approach
that can be conditioned on the flow velocities and thus hydraulic conductivity in the in-
jection region. In this modeling framework, we identify the Eulerian velocity distribu-
tion, advective tortuosity and the correlation length of particle velocities as the key quan-
tities for large scale transport prediction. Thus, the upscaled model predicts the spatial
concentration profiles, their first and second centered moments as well as the breakthrough
curves obtained from direct numerical Monte Carlo simulations in spatially heterogeneous
conductivity fields. The presented approach allows to relate the medium and flow prop-
erties to large scale preasymptotic and asymptotic solute dispersion.

Key Points:

* We derive a continuous time random walk approach for transport upscaling in het-
erogeneous media

« The approach is predictive through relation of its key parameters with medium
and flow properties

e The derived framework links classical stochastic approaches and continuous time
random walk models

1 Introduction

The dispersion of dissolved substances in the spatially varying flow through het-
erogeneous media has been the focus of intense research in the last 4 decades [Dagan,
1989; Gelhar, 1993; Rubin, 2003] due its central importance for the understanding and
prediction of large scale solute transport in environmental and industrial applications
ranging from groundwater management and remediation [Domenico and Schwartz, 1997]
to underground storage and energy production [Poinssot and Geckeis, 2012; Niemi et al.,
2017]. Spatial heterogeneity in the hydraulic medium properties implies spatial fluctu-
ations in the groundwater flow, which leads to macroscopic transport behaviors that are
different from the ones observed on the local scale. Spatial variability in hydraulic con-
ductivity is a singular feature for porous media transport because it may vary over or-
ders of magnitude ranging from ~ 1 m/s for coarse sand and gravel to ~ 1072 for clays
and granite [Bear, 1972; Sanchez-Vila et al., 2006a].

The impact of spatial heterogeneity on large scale solute dispersion has been quan-
tified in a systematic way using stochastic modeling, which derives the large scale trans-
port behaviors as the ensemble average over the behaviors in individual medium real-
izations that share the same geostatistical characteristics [Dagan, 1989; Gelhar, 1993].
For moderately heterogeneous porous media, Gelhar and Azness [1983] used perturba-
tion theory in the variance of the logarithm of hydraulic conductivity to derive an ex-
pression for the longitudinal macrodispersion coefficient in terms of the mean flow ve-
locity, the variance and correlation length of log-hydraulic conductivity. This expression

©2018 American Geophysical Union. All rights reserved.
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is a central result for transport upscaling in heterogeneous porous media because it re-

lates macroscopic solute transport to the hydraulic medium properties and flow condi-

tions. It describes solute dispersion at times that are large compared to the character-

istic advection time over the correlation scale for moderately heterogeneous media. At
preasymptotic times, however, solute dispersion evolves in time from local towards macrodis-
persion [Dagan, 1984]. With increasing heterogeneity, the asymptotic macrodispersion
coeflicients show a non-linear dependence on the variance of the logarithm of hydraulic
conductivity [Fiori et al., 2003; de Dreuzy et al., 2007; Gotovac et al., 2009]. Further-

more, the time scales to reach the asymptotic behavior increase with increasing hetero-
geneity [de Dreuzy et al., 2007].

In fact, for strong spatial heterogeneity, transport exhibits non-Fickian features such
as broad preasymptotic dispersion regimes characterized by non-linear growth of the dis-
persion coefficients, heavy-tailed breakthrough curves and non-Gaussian spatial concen-
tration distributions [Adams and Gelhar, 1992; Zheng et al., 2011; Haggerty et al., 2000;
Levy and Berkowitz, 2003; Kang et al., 2015; Haslauer et al., 2012]. For many practi-
cal situations, dispersion is indeed preasymptotic because the time scales to reach the
asymptotic behavior are given by the advection or diffusion times over characteristic het-
erogeneity length scales, which, depending on the underlying disorder may be of the or-
der of years. Anomalous or preasymptotic anomalous or preasymptotic large scale trans-
port has been modeled by a series of approaches including spatio-temporal non-local advection-
dispersion equations, fractional advection-dispersion equations, as well as multirate mass
transfer, continuous time random walk (CTRW) and time-domain random walk (TDRW)
approaches [Berkowitz et al., 2006; Frippiat and Holeyman, 2008; Neuman and Tartakovsky,
2008; Dentz et al., 2011; Noetinger et al., 2016]. While stochastic perturbation theory
provides a direct link between large scale transport and the medium and flow proper-
ties, this is often not the case for non-Fickian transport approaches. In the frameworks
of time-domain and continuous time random walks, Fiori et al. [2007], Cvetkovic et al.
[2014], Edery et al. [2014], and Tyukhova et al. [2016] investigated the relation between
the hydraulic conductivity distribution and advective travel times for heterogeneous porous
media. Edery et al. [2016], Kang et al. [2017] and Hyman et al. [2019] studied the rela-
tion of structural and hydraulic properties to large scale transport for 2 and 3 dimen-
sional discrete fracture networks.

Here we employ a particle based stochastic approach for transport and dispersion
upscaling. Stochastic particle approaches have quantified the impact of velocity fluctu-
ations on large scale transport based on stochastic representations of the series of par-
ticle velocities either in time [Dagan, 1989; Meyer and Tchelepi, 2010] or in space [Berkowitz
and Scher, 1997; Benke and Painter, 2003; Berkowitz et al., 2006; Fiori et al., 2007; Le Borgne
et al., 2007, 2008; Gotovac et al., 2009; Dentz et al., 2016]. Here, we choose the latter
approach, which renders the stochastic particle motion a continuous time or time-domain
random walk. This view accounts for the fact that particle velocities vary on the char-
acteristic heterogeneity length scale, while the time scales of variability can be broadly
distributed for a broad distribution of flow velocities. In fact, time series of particle ve-
locities in steady porous media flows exhibit intermittent patterns [de Anna et al., 2013;
Kang et al., 2014; Holzner et al., 2015; Morales et al., 2017], which reflects the long per-
sistence times in regions of low flow velocity [Dentz et al., 2016]. Using a stochastic mod-
eling approach for the medium heterogeneity, Hakoun et al. [2019] provide a thorough
statistical analysis of the particle velocities sampled equidistantly along trajectories and
their evolution from different initial conditions, this means different initial velocity dis-
tributions. In that work, the authors model equidistant velocity series as continuous Markov
processes which evolve as a function of streamline length. The velocity processes are pa-
rameterized by the Eulerian velocity distribution, a flow attribute, and the velocity cor-
relation scale.

©2018 American Geophysical Union. All rights reserved.
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In this paper, we study the upscaling of solute dispersion from the Darcy to the
regional scale using a continuous time random walk approach that is informed by the
velocity models presented in Hakoun et al. [2019]. The aim is to derive a framework that
allows to systematically link the statistical medium and flow properties to large scale preasymp-
totic transport behaviors in the spirit of the perturbation theory result for the longitu-
dinal macrodispersion coefficient. To this end, we consider spatial and temporal trans-
port signatures in terms of the average concentration profiles projected on the mean flow
direction, the evolution of the mean and variance of the concentration distribution, as
well as breakthrough curves. We focus also on the impact of the injection conditions and
heterogeneity in the injection domain on large scale transport [Le Borgne et al., 2007;
Hyman et al., 2015; Dagan, 2017; Kang et al., 2017; Morales et al., 2017; Puyguiraud et al.,
2019] and its prediction in an upscaled transport approach. The predictions of the de-
rived large scale transport model are compared to direct numerical Monte Carlo simu-
lation of flow and particle motion in 2-dimensional heterogeneous hydraulic conductiv-
ity fields, which also provides a further test for the robustness of the velocity models pre-
sented in Hakoun et al. [2019].

The paper is organized as follows. The next section introduces in the stochastic flow
and transport problem in heterogeneous porous media and explains the numerical setup.
Section 3 presents the upscaling methodology and the stochastic particle model. Section
4 discusses the transport behaviors determined by the numerical Monte Carlo simula-
tions and their prediction in terms of the stochastic particle model.

2 Basics

In the following, we present the equations governing flow and advective transport
in heterogeneous porous media, the stochastic modeling approach as well as some ba-
sic relations between Eulerian and Lagrangian velocity statistics.

2.1 Flow

At the Darcy scale, porous media flow is ruled by the Darcy equation [Bear, 1972]
q(x) = —K(x)Vh(x), (1)

where x = (x1,72)" denotes the position vector, K (x) is the hydraulic conductivity
and h(x) is the hydraulic head. In the following, we consider incompressible flow, which
implies V - g(x) = 0 and thus the groundwater flow equation

VK (x) - Vh(x) + K(x)V?h(x) = 0. (2)

Spatial variability in hydraulic conductivity is quantified by a stochastic approach, which
models K (x) as a stationary and ergodic random field [Rubin, 2003]. Hydraulic conduc-
tivity here is obtained through the map K(x) = F{Y (x)} from the stationary and er-
godic multi-Gaussian random field Y (x). The map is given by

Fy) = Pi'[e(y)), 3)

where Pk (k) is the cumulative distribution function (CDF) of hydraulic conductivity,
Pyt (u) its inverse, and ®(y) is CDF of the Gaussian distribution. The Gaussian ran-
dom field Y'(x) is characterized by zero mean (Y (x)) = 0 and the exponential covari-
ance function

(Y (x)Y (x)) = 0% exp(—[x = x|/) (4)

where ) is the correlation length and 0% the variance of Y (x). The ensemble average
is denoted by angular brackets. We consider two distributions of point values for the hy-
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draulic conductivity K (x), namely the lognormal and the truncated-Gamma distribu-
tions

exp {_ [In (;3_%—#]2 }

pi (k) = (5a)
k 27r0]20
et =T () en (- %), @

where p and aj% are the mean and variance of f(x) = In[K(x)], ko and k. are the lower
and upper cut-offs in the truncated Gamma distribution, « is the shape parameter and
N the normalization factor which is given numerically. The choice of the lognormal dis-
tribution is motivated by the fact that it is in a certain sense a standard disorder model
for large scale heterogeneous porous media and was applied for the field scale medium
characterization [Rehfeldt et al., 1992; Gelhar, 1993] as well as in many modeling works
[Gomez-Herndndez and Gorelick, 1989; Jankovic et al., 2003; de Dreuzy et al., 2007; Go-
tovac et al., 2009]. Some authors, however, have challenged the Gaussianity of In K for
heterogeneous sedimentary media [Painter, 1996; Sanchez-Vila et al., 2006b]. For ex-
ample, Haslauer et al. [2012] have shown that the Borden aquifer heterogeneity is best
described by a distribution characterized by power-law tailing towards low K values and
exponential decay for large hydraulic conductivities. The truncated Gamma distribu-
tion that we use in this work is characterized by similar features. We refer to the trun-
cated Gamma distribution in the following as Gamma distribution. The lognormal K (x)
is obtained from Y (x) through the exponential map

K(x) =exp[p+Y(x)]. (6)

For the Gamma distributed conductivity field, there is no analytical map F'(k) because
there is no closed form expression for Pr'(u). Thus, K (x) is obtained from Y (x) nu-
merically through inverse sampling. The degree of heterogeneity of K (x) is measured
by the variance 0]20 of f(x). For the lognormal K-field, J]% = 0. For the Gamma K-
fields, 0']2c increases with decreasing « for a fixed mean (K (x)).

The stochasticity of K(x) is mapped onto the Eulerian velocity field q(x) through
the Darcy equation (1). The mean hydraulic gradient (VA(x)) is aligned with the 1-direction
of the coordinate system. Thus, the mean flow velocity is (q(x)) = e1(g). It defines to-
gether with the correlation length A the characteristic time scale 7. = A/(g). We de-
note the magnitude of q(x) by v.(x) = |q(x)|, where |-| denotes the Euclidean norm.
The velocity statistics are characterized here by the probability density function (PDF)
of v.(x), which is obtained by spatial sampling as

i 1
pelv) = Jim o / dx v — v (x)] (1)

with Q is the sampling domain, V' its volume. Due to ergodicity, spatial sampling of v, (x)
is equivalent to ensemble sampling and thus p.(v) = (J[v — ve(x)]).

The numerical generation of the hydraulic conductivity fields K (x), solution of the
flow equation (2) and the setup of the numerical flow simulations are detailed in Appendix A:
. Figures 1a and b illustrate realizations of Gamma-distributed and lognormal K fields,
Figures 1c and d the spatial distribution of the corresponding velocity magnitude v, (x)
and the particle distributions evolving from a line source perpendicular to the mean flow
direction.

©2018 American Geophysical Union. All rights reserved.
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Figure 1. Map of f(x) = In[K(x)] for (a) Gamma-distributed K (x) with o = 1/2, k. = 5
m/s and ko = 107! m/s, which gives 07 = 4.5, and (b) lognormal K (x) with o7 = 7. Map of
In(ve(x)/(ve)) for (c) Gamma and (d) lognormal K(x). The black dots denotes the distribution

of particles after time ¢t = 2.57. that are injected at time ¢ = 0 along a line located at x1 = 15\.

2.2 Transport

We consider purely advective transport. Thus, the motion of a particle that starts
at x(t = 0,a) = a is governed by the advection equation

dx(t,a)

dt = Vt(tva)7 (8)

where v¢(t,a) = q[x(¢,a)]/¢ is the Lagrangian particle velocity and ¢ is porosity, which
we will assume constant. In particular, we set ¢ = 1, which is equivalent to rescaling
time. We refer to v¢(¢,a) as t-Lagrangian velocity because it is measured as a function
of time. The distance s(t,a) that a particle travels along a streamline satisfies

ds(t,a)

ikl (t,a), (9)

where v (t,a) = |q[x(t, a)]| is the t-Lagrangian velocity magnitude. We can express the
equation of motion (8) as a function of distance s along the streamline by using the map (9)
from ¢t — s, which gives

dx(s,a) vs(s,a) dt(s,a) 1

ds  vs(s,a) ds  vy(s,a)’ (10)

where v4(s,a) = q[x(s,a)]. Its magnitude is denoted by v,(s,a) = |q[x(s,a)]|, to which
we refer in the following as s-Lagrangian velocity. The distribution of initial particle po-
sitions is denoted by p(a). Numerical particle tracking simulations to solve for the di-
rect problem are detailed in Appendix A: . Figure 1b shows the distribution of parti-
cles that were initially uniformly distributed along a line. The tortuous shape is due to
spatial velocity heterogeneity. Furthermore, particles are retained in regions of low flow
velocities.

©2018 American Geophysical Union. All rights reserved.



223 Under Lagrangian ergodicity and stationarity the velocity statistics sampled along

224 streamlines and between an ensemble of particles are equivalent. The stationary s-Lagrangian
225 velocity PDF p,(v) is related to the Eulerian velocity PDF p.(v) by flux-weighting [Dentz

226 et al., 2016; Comolli and Dentz, 2017]

vpe (V)
227 D. (U) = (11)
228 ’ <U€>
229 In general the Lagrangian velocity statistics evolve with time ¢ or distance s along stream-
230 line if the initial velocity distribution is not stationary. The next section provides a de-
31 scription of two Markov velocity models to account for these evolutions and the approach
232 to quantify its impact on particle transport.
3 We consider here initial particle distributions along a line of length L > A char-

234 acterized by different weighting. Specifically, we take L = 100\ for lognormal and L =
35 270\ for the Gamma fields. For a uniform initial particle distribution, p(a) = L=16(ay)
236 for 0 < ay < L, the initial velocities vo(a) = vs(s = 0,a) = v (t = 0,a) are dis-
237 tributed according to po(v) = pe(v). This represents the stationary initial condition for
238 the t-Lagrangian velocity statistics [Dentz et al., 2016]. For a flux-weighted initial dis-
39 tribution,

_vla),
o pla) = 2 ow), (12)

241

242 the initial velocity distribution pg(v) = ps(v) is given by the flux-weighted Eulerian ve-
a3 locity PDF (11). This means, the s-Lagrangian velocity PDF is stationary for the ini-

244 tial distribution (12). Furthermore, we consider particle injections into velocity inter-
245 vals vy < v < w,, this means, we condition the injection points a in the line on the
16 velocity magnitude as
(v < ve(a) < vy)d(a
w7 p(a) = (ve ZS) u)d(a) (13)
L [ dop.
48 Ve
249 where I(-) denotes an indicator function which is 1 if the argument is true and 0 else.
50 This condition allows to investigate the impact of the initial particle velocities on aver-
251 age transport in a systematic way. Note that for an unconditional point injection, p(a) =
252 d(a—ayg), the ensemble average erases the dependence on the injection conditions in a
23 single realization and is equivalent to the average over the initial particle positions for
a uniform injection in a single medium realization. For the flux-weighted initial distri-
255 bution and in general for initial distributions that are conditioned on velocity this is dif-
256 ferent. The average preasymptotic transport properties in general depend on the initial

57 particle distribution [Hyman et al., 2015; Dentz et al., 2016; Kang et al., 2017; Fiori et al.,
258 2017; Zech et al., 2018].

59 We focus here on particle transport along the mean flow direction. The distribu-
50 tion of particles, here equivalent to the concentration distribution, is obtained through
261 averaging over the particles in single realizations and over the ensemble of disorder re-
262 alizations as

o1, ) = < / dap(a)de, — xl(t|a)]>. (14)

264

65 The displacement mean and variance are given by

w0y = [ampimtea)), w0 =( [dap@nta) - uo). (9

.67
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The longitudinal dispersion coefficient Dy, (t) describes the temporal rate of change of
the displacement variance

_ 1dr(?)

(16)

Temporal aspects of longitudinal solute transport are characterized in terms of the
breakthrough curves at a control plane located at a longitudinal position x;. The break-
through time is defined by

7(21,a) = min[t|z, (¢, a) > x1]. (17)

The breakthrough curve f(¢,z1) is obtained by sampling arrival times in single realiza-
tions and averaging over the ensemble as

F(t,z) = </dap(a)5[t - T(xl,a)]> . (18)

In the following section, we discuss the upscaling methodology to quantify the behav-
iors of particle distributions and breakthrough curves and their dependence on the in-
jection conditions.

3 Upscaling methodology

The upscaling methodology is based on the representation of the s-Lagrangian ve-
locity magnitude as a Markov process [Dentz et al., 2016; Hakoun et al., 2019]. This means,
the series of particle velocities {vs(s,a)} is modeled as a stationary stochastic process
{vs(s)} which forms a Markov chain. One realization of v,(s) is considered the veloc-
ity series of a single particle. The average behavior is obtained by ensemble averaging
over all realizations of v,(s). The Markov chain is fully characterized by the transition
probability (v, s|v") to make a transition from v’ to v after a streamwise distance s, and
the steady-state s-Lagrangian velocity PDF p;(v), which is obtained from the Eulerian
velocity PDF according to (11). In the following, we first discuss the time-domain ran-
dom walk (TDRW) transport framework, which follows naturally from modeling v4(s)
as a Markov chain. Then, we summarize two analytical models to quantify the stochas-
tic evolution of vg(s).

3.1 Stochastic particle model

In the framework of a Markov model for the s-Lagrangian velocities, particle mo-
tion is described in terms of the distance s along the streamline and the particle time
t(s). Here, we focus on particle motion along the mean flow direction, which is aligned
with the 1-direction of the coordinate system. The motion along the streamline is pro-
jected onto the 1-direction by using the advective tortuosity x. Advective tortuosity is
a measure for the ratio between the displacement s along the trajectory and the displace-
ment z1(s) in mean flow direction in the limit of s — co. In Appendix B: we derive

(ve)
X = (19)
(@)
where (v.) = (|a(x)|) and {¢) = {(q1(x)). Thus, for s > A, longitudinal particle mo-
tion is described in terms of the position z1(s) and particle time #(s) as
dri(s) dt(s) 1

ds X ds :vs(s)' (20)

In practice, this provides a good approximation at distances of the order of a few \. The
particle velocity v,(s) is sampled from the s-Lagrangian velocity PDF p4(v, s), which evolves

©2018 American Geophysical Union. All rights reserved.
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from the initial distribution pg(v) as

/dv’r v, 8|v")po(v'). (21)

This model belongs to the class of continuous time or time-domain random walks [Painter
and Cvetkovic, 2005; Berkowitz et al., 2006; Noetinger et al., 2016] because it models par-
ticle motion through equidistant spatial steps of length ds/x with a random transition
time ds/vs(s), which is determined kinematically by the particle velocity vs(s). Note that
the inverse velocity v(s) = 1/vs(s) is also termed slowness [Gotovac et al., 2009]. The
steady state distribution . (vy) of slowness can be expressed in terms of ps(v) as

¥y (7) = 7 2ps(1/7)- (22)

In this framework, the initial particle distribution p(a) is translated to a distribu-
tion of initial particle velocities po(v). For the uniform initial condition and L > A, po(v) =
pe(v) due to the ergodicity of the velocity field. For a the flux-weighted injection, it is
po(v) = ps(v). For the injection mode conditioned on velocities in a certain velocity range,

0
po(v) is

po(v) = o . (23)

Furthermore, the particle position and velocity at a time ¢ are given by x1(t) = 21[s(¢)]
and ve(t) = vs[s(t)], where s(t) = min[s|t(s) < t]. The particle distribution along the
mean flow direction is given by

(@1, t) = (0 [z — s(t)/x]) - (24)

The angular brackets here denote the average over all particles. It is equivalent to the
ensemble average. The displacement mean and variance are given by

p(t) = x"(s(t)), k() = x7([s(t) = (s())]*). (25)

The solute breakthrough curve is given in this framework in terms of the particle time
t(s) as

ft) = (0]t = t(zx)]) - (26)

The upscaled transport dynamics can be expressed in terms of the joint distribu-
tion p(z1,v,t) = (8[x1 —xz1(¢)]d[v—v(t)]) of particle position and velocity. This is sim-
ilar in spirit to the quantification of Brownian motion, first in terms of a stochastic dif-
ferential equation for the particle velocity, and then in terms of a Kramers equation [Risken,
1996]. In Appendix C: , we derive for p(z1,v,t) the integro-differential equation

oo

= —up(x1,v,t) —|—/dv
0

Op(z1,v,t) n v Ip(x1,0,1) Jo'r(v As|v)

!
5t N o —————p(x1,0', t). (27)

The left side quantifies the advective translation of the distribution by the local veloc-
ity, the right side the transitions between velocities. This formulation of large scale trans-
port in terms of a Boltzmann equation is further studied elsewhere.

The Markov chain {vs(s)} converges toward its steady state on a characteristic length
scale €., the correlation length of vs(s). For lag distances As > ¢, subsequent veloci-
ties may be assumed independent. Thus, coarse-graining of the governing equations (20)

©2018 American Geophysical Union. All rights reserved.
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on the correlation scale /. gives

Le L.
T1(8p41) = z1(8n) + ;7 t(snt1) = t(sn) + —, (28)

n

where the v,, are independent identical distributed random variables distributed as ps(v)
for n > 0 and as pg(v) for n = 0. The time increment 7,, = {./v, are distributed ac-
cording to

U(D) = pa(te/1) (29)

for n > 0. For n = 0 we define ¢)(t) analogously. The asymptotic transport behavior

may be described by (28), which constitutes a CTRW or TDRW with independent ve-

locity, or time increments. Under steady conditions, this means for 1o (t) = ¥(t), the
CTRW framework provides predictions for the asymptotic dispersion behavior based on

the behavior of v (t) [Berkowitz et al., 2006]. For ¢(t) o t™'"#and 1 < B < 2, the
asymptotic behaviors of the displacement mean () and variance k. (t) the scalings p.,(t)
t and ki, (t) oc t*7P, the breakthrough curves scale as f(t,z) oc t 175, For the CTRW

model presented in this work, it is crucial to have a correct characterization of the ve-

locity PDF. This is provided by two velocity Markov models, which were proposed in
previous studies and are summarized in the next section.

3.2 Velocity transition model

In the following, we present two Markov models for the evolution of the s-Lagrangian
velocities, the Bernoulli and the Ornstein-Uhlenbeck processes [Dentz et al., 2016; Morales
et al., 2017; Kang et al., 2017]. Both processes reproduce the basic features of evolution
of the s-Lagrangian velocity PDF from a non-stationary initial condition toward the steady
state. While the Ornstein-Uhlenbeck model captures different aspects of intermittency
such as the distribution of velocity increments [Morales et al., 2017] and the evolution
of Lagrangian velocity statistics [Hakoun et al., 2019], the Bernoulli model is appealing
due to its simplicity. We compare the performance of both models in the prediction of
Darcy scale transport. Both models are stationary and have as the only parameter the
correlation scale /.. For completeness, in the following we summarize the Bernoulli and
Ornstein-Uhlenbeck velocity models as given in [Hakoun et al., 2019].

3.2.1 Bernoulli process

The Bernoulli process models the s-Lagrangian velocity series by the stochastic re-
laxation

vs(s + As) = E(s)o(s) + [1 = £(s)]v(s), (30)

where the v(s) are distributed according to ps(v) and the £(s) are independent identi-
cally distributed Bernoulli variables, which take the value 1 with probability exp(—As/£.)
and 0 with probability 1—exp(—As/{.). This means, after a distance As, a particle re-
mains at the same velocity with probability exp(—As/f.) and changes to a new random
velocity sampled from pg(v) with probability 1—exp(—As/{.). The initial velocities are
sampled from pg(v). The transition probability is given by [Dentz et al., 2016]

r(v,s|v') = exp (—s/l:)6(v —v") + [1 — exp (—s/L.)|ps(v). (31)

For the numerical calculations, we choose As = £./10. We refer to the stochastic par-
ticle model combined with the Bernoulli velocity process in the following as btdrw.

—10—
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402 3.2.2 Ornstein-Uhlenbeck process

403 The Ornstein-Uhlenbeck process models the evolution of the normal scores w(s)
404 corresponding to the v,(s). They are defined by the transformation
5 w(s) = @ H{Pufvs(s)]}, vs(s) = P H{@[w(s)]}, (32)
a7 where Ps(v) is the CDF of p,(v) and ®(w) the CDF of the unit Gaussian distribution.
408 The w(s) evolve according to the Langevin equation [Gardiner, 1986]

d
o duw(s) = 07 w(s) + V202 tn(s), (33)
+10 ds
an where 7(s) is a Gaussian white noise characterized by 0 mean and correlation (n(s)n(s’)) =
12 d(s—s'). The transition probability r,(w, s|w’) of w(s) is given by the conditional Gaus-

413 sian PDF

[w—w’ exp(—s/L.)]?
€xp (* 2[1—exp]()—28/éc)] )

a1 ro(w, slw') = (34)
a5 V2m [1 —exp(—2s/(.)]
16 The numerical implementation of (33) is based on the Euler scheme

7 w(s+ As) = w(s) (1 — £, As) + V20 AsC(s), (35)

a1 where ((s) is a Gaussian random variable of zero mean and unit variance. For the nu-
420 merical simulations reported in the following, we set As = £./10? for the calculation
21 of the spatial profiles and breakthrough curves and As = ¢./10 for the calculation of
422 the spatial moments. The stochastic particle model combined with the Ornstein-Uhlenbeck
423 velocity process is in the following referred to as outdrw.
= 3.3 Discussion of model parameters
425 Some remarks on the determination of the key parameters are in order. The ve-
126 locity correlation distance £, is of the order of the correlation length A of the multi-Gaussian
7 random field, from which the lognormal and Gamma-distributed hydraulic conductiv-
428 ity fields are derived. It varies only moderatley with increasing heterogeneity. Analyt-
429 ical expressions for ¢, are only known from perturbation theory for weakly heterogeneous
30 fields [Cwetkovic et al., 1996], who find ¢, = 8\/3. For strong heterogeneity, we currently
431 rely on empirical expressions [Cvetkovic et al., 1996; Hakoun et al., 2019]. Thus, more
132 insight is needed on the dependence of £, on the medium structure and hydraulic con-
433 ditions. Also, the approach relies on the knowledge of the Eulerian velocity statistics and
tortuosity, both flow attributes. Thus the presented approach is predictive in the sense
435 that it allows for transport predictions based on the estimation of a transport-independent
436 quantities, in the spirit of the perturbation theory expression for the longitudinal macrodis-
37 persion coefficient [Gelhar and Azness, 1983]. This is an important step towards a pre-
438 dictive approach that links medium and flow properties to transport. A direct link be-
439 tween hydraulic conductivity and flow velocity can be established for small values fol-
0 lowing exact analytical results for isolated inclusions [Fiori et al., 2007; Cvetkovic et al.,
441 2014; Tyukhova et al., 2016]. A quantitative link between the full velocity and conduc-
442 tivity spectra, however, is still missing. Note also that the stochastic particle model con-
13 siders particle motion along streamlines, which is projected here on the mean flow di-
14 rection in terms of the average advective tortuosity. Using this average tortuosity leads
445 to accurate transport predictions at intermediate and asymptotic times, but may under-
46 estimate solute spreading at early times. Studying the distribution of tortuosity may give
47 further insight in the impact of medium geometry and hydraulic conditions on large scale
448 transport. Furthermore, the model predictions are of course affected by uncertainty in
449 the model parameters such as Eulerian velocity statistics and correlation length, which
50 however is the subject of a different study.
7117
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4 Transport behavior

We study here the transport behavior in the heterogeneous conductivity fields de-
scribed in Section 2.1 and its upscaling using the methodology detailed in Section 3. The
average transport behavior is obtained numerically as an ensemble average over 102 re-
alizations for each random field. We consider lognormally distributed K(x) character-
ized by UJ% from 0.1 to 7, and Gamma-distributed fields characterized by o = 1/2 with
0} = 4.5. The numerical Monte Carlo simulations use 10* realizations and between 10*
and 107 particles per realization. The detailed numerical setup is given in Appendix A:

. The setup of the stochastic particle model is discussed in Appendix D: .

4.1 Anomalous Dispersion

We study here the temporal evolution of the mean displacement and displacement
variance defined in (15) for the lognormal and Gamma fields by direct numerical sim-
ulations and the stochastic particle model, and discuss the expected early and long time
behaviors as well as estimates for the asymptotic longitudinal macrodispersion coefficient.
For the simulation times under consideration, there is no quantitative difference between
the predictions of the outdrw and the btdrw models. Thus, we display only the results
of the stochastic particle model based on the Ornstein-Uhlenbeck velocity process.

4.1.1 Mean displacement

Figure 2. Mean displacements from Monte Carlo simulations in 10? realizations each with

10* particles for (squares) uniform and (circles) flux-weighted injection in (a) Gamma field with
o = 1/2 and (b) lognormal conductivity field with 7 = 7. The simulations based on the outdrw
model use 10* particles and are marked by (flux-weighted) red dashed and (uniform) blue dashed

lines. The solid black lines denote the linear early and late time behaviors.

At times smaller than the advection time scale 7. = A/{q), the particle velocity
is constant and equal to the initial velocity such that the mean displacement is

u(t) = [ dap(aym (@t (36)
The stochastic particle model (20) predicts the early time behavior

p(t) = x* /dvpo(v)vt. (37)
0
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Figure 3. Displacement variances from Monte Carlo simulations in 10? realizations each with
10* particles for (squares) uniform and (circles) flux-weighted injection in (a) Gamma field with
o = 1/2 and (b) lognormal conductivity field with o7 = 7. The simulations based on the outdrw
model use 10* particles and are marked by (flux-weighted) red dashed and (uniform) blue dashed
lines. The solid black lines denote the ballistic early time behavior, the dashed green lines the

(pre-) asymptotic behaviors.

Under stationary condition, this means for a uniform initial distribution, or equivalently
for po(v) = pe(v), the particle displacement evolves as

p(t) = (g)t = x~" {ve)t, (38)

which is equal to the asymptotic long time behavior under arbitrary initial conditions.
Note that this is the behavior that is predicted by an unconditional stochastic model be-
cause the unconditional ensemble average erases any deviation from a uniform initial con-
dition. Figure 2 shows the evolution of the mean displacements for the lognormal and
Gamma fields from uniform and flux-weighted initial conditions. The outdrw model pre-
dicts quantitatively the full temporal evolution.

4.1.2 Displacement variance

We now focus on the displacement variance. At early times ¢t < 7., the displace-
ment variance grows ballistically and is given by

K(t) = ol 12, (39)

2

where oy

| is the variance of ¢ (a) in the initial plume

72, = [ dap@a(a) - | [ dapla)ar(a) (40)
Qo 0

The stochastic particle model (20) predicts
K(t) = X205, %, (41)

where o2 , is the variance of po(v). The ballistic early time behavior of the displacement
variance is underestimated by the approximation (20) of z(s) in terms of tortuosity, see
the discussion in Appendix B: . The ballistic early time behavior is illustrated in Fig-

ure 3 for the Gamma and lognormal fields as well as the predictions of the stochastic par-
ticle models. We now consider the behavior for times ¢ > 7.

—13—
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513 4.1.2.1 Gamma fields The Eulerian velocity PDF p.(v) behaves as a power-law
514 for v < (v.), which can be approximated by p.(v) o v*~! with a = 0.58. This is il-
515 lustrated in Figure D.1. Thus, the stationary s-Lagrangian velocity PDF behaves as

5 ps(v) oc 0”7 (42)

518 with 8 = 1.58. As discussed in Section 3.1, asymptotically the stochastic particle model
19 may be approximated by a CTRW characterized by independent random time increments
520 whose distribution is given by (29). For the power-law velocity PDF (42), it behaves as
521 (t) o< t7178. Thus, the CTRW framework predicts for the asymptotic growth of (t)

» the superlinear evolution [Shlesinger, 1974; Dentz et al., 2004; Berkowitz et al., 2006]

5 K(t) oc 375, (43)
525 This behavior is illustrated in Figure 3. The outdrw describes the full asymptotic vari-
“26 ance evolution with a slight underestimation of the data from the numerical Monte Carlo
527 simulation, which can be traced back again to the value of the correlation length £., see
528 also the discussion in the previous section. The model values increase with £.. We note
529 that, while the power-law scaling is the same for both injection modes, there is a quan-

30 titative difference in the pre-factors. This has been predicted in Dentz et al. [2016] based
531 on the Bernoulli velocity model. These authors provide explicit analytical solutions for

32 the longitudinal dispersion coefficients Dy (t) for Gamma-distributed ps(v) under uni-

33 form and flux-weighted initial conditions. The parallel dashed lines in Figure 3 show the
584 corresponding «(t) using the parameters obtained from a Gamma fit to the p.(v) shown

535 in Figure D.1, see also Appendix E: .

536 4.1.2.2 Lognormal fields For the lognormal conductivity field, we also observe

537 a power-law like behavior that sets in after the ballistic regime. In fact, we find the power-
58 law behavior £(t) oc t>/%. Indeed, this is not a true power-law scaling law, but rather

539 a preasymptotic cross-over behavior. This power-law like behavior arises in the time in-

10 terval that corresponds to the velocity range over which the velocity distribution pe(v)

541 shown in Figure D.1 may be fitted by the power-law p.(v) x v*~! with o = 3/4, as

542 discussed in Appendix D: . Thus, the CTRW framework predicts the behavior x(t) o

3 378 see (43), with 8 = 1+« over the time range corresponding to the velocity range

544 in Figure D.1. The cross-over behavior is well predicted by the outdrw and the btdrw (not
545 shown) approaches as show in Figure 3b.

546 4.2 Macrodispersion

o7 In this section, we focus on the asymptotic long time dispersion behavior for the
Lognormal hydraulic conductivity fields predicted by the proposed CTRW model. The

549 motivation for studying the asymptotic regime is threefold. First, we want to empha-

550 size that the displacement variance asymptotically grows linearly with time, and thus

51 show that the observed power-law in the UJ% = 7 case is indeed only a cross-over, as dis-

552 cussed above. Second, we show that the derived CTRW model provides estimates for macrodis-

553 persion, which are consistent with published results from direct numerical Monte-Carlo

54 simulations and stochastic perturbation theory calculations. This demonstrates again

355 the capabilities of the proposed continuous time random walk approach for the predic-

556 tion of large scale asymptotic solute dispersion at a low computational cost, which is re-

57 duced by orders of magnitude compared to the full Monte-Carlo simulation.

563 Figure 4 shows the long time behaviors estimated from the outdrw and btdrw mod-

554 els. The asymptotic behavior of x(t) is linear and given by

g8 k(t) = 2D°t, (44)

567 where D?° is the asymptotic longitudinal macrodispersion coefficient. Unlike the veloc-

68 ity distribution for the Gamma fields, here the behavior of p.(v) in the limit v — 0 does

—14—
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Figure 4. Displacement variances for the lognormal conductivity field with 0'? = 7 obtained

from (squares) Monte-Carlo simulations in 10? realizations each with 10* particles per realization,
(green dashed line) the btdrw model and (blue dashed line) outdrw model for uniform injec-
tion. The solid line denotes the prediction of the analytical expression (45) for the asymptotic

longitudinal dispersion coefficient.

not give rise to heavy-tailed transition time distributions (¢). The Bernoulli velocity
model gives an analytical expression for the asymptotic dispersion coefficient for the dis-
placement along streamlines [Dentz et al., 2016]. In Appendix E: we use this result in
order to derive the following expression for the asymptotic longitudinal dispersion co-
efficient,

Di":w(w—l), (45)

X2 VH

where vy is the harmonic mean of the Eulerian velocity PDF p.(v). As shown in Fig-
ure 3, the Bernoulli model gives an asymptotic dispersion coefficient that is slightly larger
than the one estimated by the Ornstein-Uhlenbeck model. Fiori et al. [2003] used a self-
consistent approximation to derive an exponential dependence of D° exp(J]% /2) of

the asymptotic longitudinal macrodispersion coefficient for afc > 1. This estimation

is based on the assumption that velocity distribution at small values is proportional to
the longnormal distribution of hydraulic conductivity. Expresssion (45) is consistent with
this estimate, as can be seen by using a lognormal distribution for v.. Then, at o2, , >

1, where o, oj% is the variance of Inv,, we find an exponential dependence because

vy o exp(—of, ,/2) and (v.)/x = (q).

We study now the longitudinal macrodispersion coefficients for different 0]20 based
on the outdrw model. We choose to rely on this model because it provides an accurate
prediction of the Lagrangian velocity statistics [Hakoun et al., 2019]. Figure 5a shows
the evolution of Dy () for uniform injection condition, this means py(v) = pe(v). At
short times, we observe a ballistic linear increase and a cross-over toward the asymptotic
regime for times ¢ > 7.. The time to reach the asymptotic regime depends on the vari-
ance UJ% of the logarithm of hydraulic conductivity. While for aj% = 0.1 the asymptotic
value is reached for times around 107., the time to reach the asymptotic regime is about
10*7,. for JJ% = 7. A similar observation was made by de Dreuzy et al. [2007] in direct
numerical simulations, which reached times of about 1037,. This behavior can be attributed
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Figure 5. (a) Evolution of the longitudinal dispersion coefficient predicted by the Ornstein-
Uhlenbeck model for (diamonds) o7 = 0.1, (circles) 1, (squares) 4 and (triangles) 7 for uniform
particle injection. The horizontal lines denote the respective asymptotic values. (b) Asymptotic
dispersion coefficients as a function of o7 from (squares) the Ornstein-Uhlenbeck model, (dashed
line) Eq. (46), (solid line) Eq. (47) and (dash-dotted lines) Eq. (48).

on one hand to the fact that the correlation length £, is increasing with U]%, which is weak,
however. On the other hand, and more important is the broader distribution of veloc-
ities, which imply a broader spectrum of relaxation times toward the asymptotic regime.

Figure 5b shows the asymptotic values D?° obtained from the outdrw model, the
estimates by de Dreuzy et al. [2007] and Gotovac et al. [2009] as well as first-order per-
turbation theory. For small disorder variance cr]% < 1, stochastic perturbation theory
gives for an exponential covariance model the expression [Gelhar and Azness, 1983)

D = o3M\g). (46)

Expression (45) at small J? < 1 is consistent with (46), see Appendix E: . For stronger
disorder several authors have proposed expressions for the dependence of D on the dis-
order variance O'J% for multi-lognormal hydraulic conductivity fields. de Dreuzy et al. [2007]
found the following relation

D7 = (g)A (0.70F + 0.207) . (47)

Gotovac et al. [2009] propose the expression

0'2 0'4 0'6
D — [T
L= (4 5 T 500

4 3 o
3 + 5 &P <—5>] . (48)

The value obtained for D° for U]% = 0.1 is consistent with expressions (46)—(48). For

O'J% = 1, the outdrw estimate for D?° is on the curve (48), for 0]20 = 4 and 7, the out-
drw estimate lies on the curve (47). We have shown that the proposed Markov model
allows to make predictions for the non-perturbative behaviors and we have provided an
explanation why the time scales for which the asymptotic time regime is reached increase
with the heterogeneity strength, i.e. with JJ%. The results of the Markov model are fully
consistent with classical stochastic perturbation theory, as well as with the known re-
sults for large UJ% [de Dreuzy et al., 2007; Gotovac et al., 2009]. In this sense, the pre-
sented results close a gap between classical stochastic models and time domain and con-
tinuous time random walk models.
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Figure 7. Concentration profiles at ¢ = 837, in Gamma K fields for uniform (left panel) and
flux-weighted (right panel) injection modes. Symbols indicate the results from Monte Carlo direct
numerical simulations (100 realizations, 10° particles/realization). Lines refer to numerical sim-
ulations of the TDRW model with 107 particles, using the Bernoulli (dashed red lines) and the
Ornstein-Uhlenbeck (solid blue lines) models for the evolution of the velocity PDF.

4.3 Concentration distribution

We study the concentration distributions along the mean flow direction in direct
numerical simulations and the predictions by the upscaled stochastic model based on the
proposed velocity Markov processes for lognormal and Gamma conductivity fields.

Figure 6 shows the particle concentration for the lognormal fields obtained through
direct numerical simulations and the predictions of the btdrw and outdrw models. As
expected, for the uniform injection, we observe particle localization at the injection point
because particles sample high and low flow velocities with equal probability. For the flux-
weighted injection, there is no localization because particles sample preferentially higher
flow velocities. The peaks move approximately with the same velocity. This result em-
phasizes the importance of conditioning on the initial data, see also the works by Le Borgne
et al. [2007] and Dagan [2017] for Darcy scale heterogeneous media, Hyman et al. [2015]
and Kang et al. [2017] for fractured media, Morales et al. [2017] and Puyguiraud et al.
[2019] for por-scale transport. The outdrw predicts the concentration profiles under both
injection conditions with a slight underestimation of the forward tail under both injec-
tion conditions. This slight mismatch may be caused by uncertainty in the correlation
length £, given by the empirical expression (D.1). For a larger £., more particles are found
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in the backward and forward tails due to the increased persistence of low and high ve-
locities in particular. This is illustrated in Figure 6 for ¢, = 4\, which provides a bet-
ter match with the direct numerical simulations. Nevertheless, in the following, we will
employ the values for ¢, given in Appendix D: . The btdrw predictions are qualitatively
sound as they capture solute localization at the origin in the case of uniform injection
and the lack of it for flux-weighted. The weight of the peak at zero and peak displace-

ment are overestimated, however. This may be traced back to the fact that in the Bernoulli

model velocity transitions occur at a constant velocity-independent rate, while it appears
that high velocities converge slower and low velocities faster toward the steady state. Re-
markably, Figure 6 b also shows a mismatch between the btdrw predictions and the re-
sults by direct numerical simulations, despite the fact that the velocity statistics are sta-
tionary under flux-weighted injection conditions. This discrepancy again can be traced
back to the velocity transition probability between subsequent velocities, which is the
same for all velocities, unlike in the Ornstein-Uhlenbeck process, for which the transi-
tion probability depends on the velocity value.

Figure 7 shows the concentration profiles for the Gamma conductivity fields. The
basic features distinguishing the uniform and flux-weighted injection conditions are the
same as for the lognormal case. Also, the prediction of the outdrw model compares well
with the direct numerical simulations except for a slight mismatch in the forward tails,
similar as for the lognormal fields. Here, the prediction of the btdrw model compares bet-
ter with the direct simulation than for the lognormal field. The peak is slightly overes-
timated, the tail underestimated. This better match of the btdrw model may be due to
the fact that here transport is dominated rather by the strong tailing of the steady ve-
locity PDF toward low velocities than by correlation. This means the specific velocity
evolution model is less important than accounting for the fact that the initial velocity
distribution is non-stationary.

In order to emphasize further the importance of flow heterogeneity at the injection
region, we condition the initial velocity to the knowledge of the local properties at the
injection site. To do so we consider two different scenarios. First, we inject particles in
regions of low velocities. This scenario is motivated by the MADE experiment [Boggs
et al., 1992; Adams and Gelhar, 1992; Rehfeldt et al., 1992], where the tracer injection
was performed in low permeability regions [Harvey and Gorelick, 2000]. In our simula-
tions, injection of particles is performed along a line, but only the velocities belonging
to the first 10 percentiles of the Eulerian velocity PDF are taken into account. Second,
we consider a scenario, in which particles are injected into regions of high velocities, so
that the initial velocities belongs to the highest 10 percentiles of the full Eulerian veloc-
ity PDF. The velocity ranges are highlighted in Figure D.1. Figure 8 shows the concen-
tration profiles for injections in regions of low and high velocities obtained by the direct
Monte Carlo simulations and the predictions by the outdrw approach for lognormal and
Gamma conductivity fields. For injection in regions of low velocities, particles travel on
average less distance than in the uniform and flux-weighted injection cases and a signif-
icant backward tail can be observed. The concentration distribution is characterized by
a peak at the origin, which is due to retention by low velocities and a moving peak of
mobile solute. For injection in high velocity zones, there is no particle retention at the
injection point and a fast advance of the peak position. The outdrw predicts both sce-
narios qualitatively and quantitatively with a slight mismatch at the forward tails for
the reasons discussed above.

4.4 Breakthrough curves

We now study the impact of medium heterogeneity and initial velocity distribu-
tion and its prediction in terms of the stochastic particle models for solute breakthrough
curves measured at different control planes. The direct numerical simulations consider
10? disorder realizations with 107 particles per realization. The data from the direct nu-
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merical simulations is compared to the predictions of the stochastic particle model, which
is solved numerically using 108 particles. As above, we consider lognormal conductiv-

ity fields with 012‘- = 7 and Gamma fields characterized by o = 1/2. The initial parti-

cle distributions are uniform and flux-weighted. The stochastic particle model predicts
the breakthrough time at a control plane at distance z; from the inlet as

T1X

1
Hary) = 0/ dss. (49)

see (20). For the flux-weighted initial condition, the s-Lagrangian velocity PDF pg(v, s)
is stationary and equal to ps(v) = vpe(v)/{ve). Thus, under these conditions, the mean
arrival time is

T1X (9]

(t(z1x)) = /ds/dvlv]z;g) =X _ 2 (50)

T (ve) — (a)

Under non-stationary conditions, this is in general not the case and the mean breakthrough
time evolves with distance z1,

v = [ as [ a2 o)

For the btdrw model, ps(v,s) = po(v) exp(—s/L.) + [1 — exp(—s/¢.)]ps(v). This gives
for the mean breakthrough time

(Hr10) = 75+ [1 = expl—ar/0) / A= po(v) = pa(0)] (52)

For z1x > {., the mean breakthrough time is in leading order (t(z1x)) = x1/(q), this
means the mean breakthrough times for different initial distributions converge at large
distances. These results emphasize the impact of the initial velocity distribution on the
breakthrough curves. Note that the breakthrough curve in this framework is given by (26).
For a control plane located at a distance x; < ¢, smaller than the velocity correlation
length, we may approximate the s-Lagrangian velocity distribution ps(v, s) & po(v) by

the distribution of initial velocities. Thus, we obtain for the breakthrough curve at z; <

Ce

Ft,21) = (8t~ arx/v0)) = S5 polanx/). (53)

This implies for the uniform and flux-weighted initial particle distributions

T1X X’
f(t, xl) = tTpe(x1X/t)v f(t’xl) = 2531<Te>pe(x1X/t)v (54)

respectively, see also Kang et al. [2017]. Thus, at short distances the breakthrough curves
for uniform injection show stronger tailing than for flux-weighted. In the following, we
investigate these features and the impact of the heterogeneity distribution for the full
breakthrough curves. The direct numerical data are compared to the predictions of the
outdrw, which is based on an Ornstein-Uhlenbeck process for the normal scores of ve-
locity.

Figures 9 and 10 show the breakthrough curves obtained by direct Monte Carlo
simulations for the lognormal and Gamma fields, and the respective predictions by the
outdrw model. The outdrw provides accurate predictions at short and longer distances
from the inlet both for flux-weighted and uniform injection conditions. As discussed above,
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Figure 10. Breakthrough curves at measured at (a) 1 = 2\ and (b) 1 = 20\ from (symbols)
Monte Carlo simulations for (squares) uniform and (circles) flux-weighted injection for Gamma
conductivity with @« = 1/2. The solid lines indicate the corresponding predictions by the outdrw
for 107 particles. The dashed line is expression (54) for uniform injection and the dash-dotted
lines indicates the scalings t 1% and ¢t 7' with o = 0.58 and 8 = 1.58.

the breakthrough curves show stronger tailing for the uniform injection conditions be-
cause it places more weight on the low flow velocities. For the lognormal field the break-
through curves are converging with increasing distance x; from the inlet.

For the Gamma fields, we observe a clear power-law tailing, whose exponent is re-
lated to the behavior of the velocity PDF pg(v) and ps(v) at small velocities. As discussed
in the previous section, p.(v) oc v~ with @ = 0.58. According to (54), this implies
that f(t,x1) o< t~1= for uniform injection and 7 < /.. For the flux-weighted injec-
tion, we obtain accordingly f(t,z1) oc t=27%. These behaviors are clearly shown in Fig-
ure 10a. Figure 10b shows that the bulk of the breakthrough curves converge at increas-
ing distance x; and thus the mean breakthrough times, as discussed above. The differ-
ence in the exponent of the power-law tails, however, persists. In order to understand
this, we note that the breakthrough curves can be seen as the convolution of the initial
transition time distribution to(¢) with the transition time distributions (¢) of the sub-
sequent steps. Here, ¢g(t) oc 717 with o = 0.58 while ¢(t) oc t717# with f = 1 +
a = 1.58. This convolution is dominated by 1y (t), which means that the tail of the break-
through curves here is dominated by the initial velocity distribution. For the lognormal
conductivity field on the other hand, the initial velocity distribution only dominates at
short distance, but does not persist at large distances x; from the inlet because the ve-
locity distribution decays stronger than a power-law at small velocities.

5 Conclusions

We study the mechanisms and stochastic dynamics of advective transport in het-
erogeneous porous media with the aim of deriving an upscaled modeling approach to pre-
dict large scale solute dispersion. To this end, we conduct direct numerical Monte Carlo
simulations in heterogeneous hydraulic conductivity fields, which are compared to a stochas-
tic particle model which is based on the representation of equidistant s(pace)-Lagrangian
velocities as Markov processes. We focus on two injection modes over a line that spans
more than 100 correlation lengths A perpendicular to the mean flow direction, which is
close to ergodic injection conditions. As observed in the literature, the preasymptotic
transport behavior depends critically on the injection mode and the heterogeneity in the
injection region, which stresses the need for a predictive upscaled transport approach that
can be conditioned on the initial data. The proposed continuous time random walk ap-
proach can be conditioned on the initial velocity distribution in a systematic way through
the representation of the s-Lagrangian velocities as a Markov process. We consider two
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Markov models of different complexity, a Bernoulli process for the actual velocities and
a Ornstein-Uhlenbeck process for the normal scores of the particle velocities. The result-
ing CTRW models provide accurate predictions for the evolution of the concentration
distribution, dispersion and breakthrough curves for different types of heterogeneity and
different injection conditions.

The derived CTRW model can be implemented according to the following strat-
egy. First, determine the flow statistics of the heterogeneous porous medium from nu-
merical flow simulations in the hydraulic conductivity field with given geostatistical char-
acteristics and determine the velocity statistics at the injection region as well as the ad-
vective tortuosity. Second, determine the velocity correlation length either from pertur-
bation theory or from an empirical regression such as Eq. D.1 for the outdrw model or
the similar expression given in [Cvetkovic et al., 1996]. These quantities then fully pa-
rameterize the velocity transition model, the Bernoulli or the Ornstein-Uhlenbeck pro-
cess, which is incorporated into the time domain random walk model that allows for ac-
curate and fast predictions of the large scale transport behavior.

Apart from the practical value for the fast prediction of large scale transport, the
stochastic particle model sheds some new light on the mechanisms of preasymptotic and
asymptotic solute dispersion, specifically on the role of the velocity distribution versus
correlation. This is manifested for the Gamma fields in the superlinear asymptotic growth
of the spatial variance of the solute distribution is observed. This superdiffusive behav-
ior originates in a broad distribution of low flow velocities. For the lognormal fields, the
longitudinal macrodispersion coefficient evolves from a ballistic early time behavior through
a broad crossover region towards a constant asymptotic long time value. The size of the
crossover region and the time-scale to reach the asymptotic value depend strongly on the
variance a]% of log-hydraulic conductivity. For increasing values of 0?7 the Eulerian ve-
locity PDF becomes more tailed towards low velocities. As a result, the times for which
particles are caught in low velocity zones, increase. This explains the increasing times
to reach the asymptotic macrodispersion regime.

We expect the fundamental flow and transport mechanisms observed and quanti-
fied in this work to hold also for 3-dimensional heterogeneous porous media. The basic
mechanism is the existence of velocities transitions on characteristic length scales along
particle trajectories. This property requires essentially that the heterogeneous medium
is stationary and can be characterized by finite correlation lengths. Thus, it is not re-
stricted to 2-dimensional isotropic media. The dimensionality of space is expected to af-
fect quantitatively both the tortuosity x and the correlation scale £.. The extension of
the stochastic particle model to 2 and 3 dimensions requires the statistical characteri-
zation of the direction angle [Benke and Painter, 2003], whose mean points in the mean
flow direction with the magnitude 1/y.

The proposed approach is valid for advection-dominated transport at high Péclet
numbers, which at the field scale is rather the rule than an exception [Dagan, 1989; Gel-
har, 1993; Rubin, 2003]. Nevertheless, the impact of local scale dispersion is expected
to mitigate for example the localization of solute at the injection regions because par-
ticles may be released by dispersive mass transfer. Also, persistent superlinear growth
of the variance, which is due to the persistence of low velocities will eventually tend to-
wards a linear behavior because particle velocities decorrelate due to local dispersive mass
transfer. In the current modeling framework, the impact of local-scale dispersion on large
scale transport can be accounted for through a cut-off in the transition times over the
characteristic heterogeneity length scales [Dentz et al., 2004].

In conclusion, while some questions remain open, the proposed approach represents
a step towards linking hydraulic medium properties and flow conditions to large scale
transport in a predictive upscaled modeling framework.
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A: Direct numerical simulations

Direct numerical simulations are of the Monte Carlo type. We consider 102 real-
izations of K (x) of each random field under consideration. Monte Carlo simulations are
carried out according to a methodology that consists of two steps. The first step con-
sists in generating random fields of hydraulic conductivity and in solving Darcy equa-
tion (2) numerically to obtain the flow field. Secondly, we simulate transport through
particle tracking, which uses 10# particles in each disorder simulation. The methodol-
ogy is summarized in the following. More details can be found in Hakoun et al. [2019].

A.1 Field generation and flow solver

We generate multi-Gaussian fields Y (x) of size Ly x L, using the Random Fields
package [Schlather et al., 2015] of the R software environment for statistical computing.
The resolution of all fields is Az = Ay = A\/10. We then map the point values of the
multi-Gaussian field onto the desired distribution through the transformation (3), which
is implemented by inverse transform sampling [Devroye, 1986]. Table A.1 summarizes
the values of the parameteres that we used in the simulations.

Next, we solve the Darcy equation (2) for incompressible flows within the gener-
ated K (x) fields. We impose permeameter-like boundary conditions, i.e. a constant head
gradient along the x direction and no-flow conditions at the bottom and top boundaries.
The head gradient is set so that flow occurs from left to right. The inter-cell hydraulic
conductivity is taken as the harmonic mean of the K of two adjacent cells. We use a flow
solver based on the finite volume scheme adapted from Aarnes et al. [2007]. To avoid
instabilities of the flow field due to border effects, we perform transport simulations by
excluding an external frame of 20\ for the lognormal fields and of 15X for the Gamma
fields. Particle injection is thus performed along a line placed at x; = 20\ and at z; =
15), respectively.

A.2 Particle tracking

The last step consists in simulating transport in the obtained Darcy flows by track-
ing particles at equal distances as they advect along their streamlines. The discretized
trajectory reads

qlx,]As As

B t +1:t +77
lla(xn)ll ! " lalxa]ll

(A1)

Xn+1 =

where As is a constant spatial increment. The process (A.1) is a time domain random
walk [Noetinger et al., 2016; Russian et al., 2016]. Compared to classical random walk
particle tracking, this process guarantees faster computations for our scenarios, since the
number of steps does not depend on the local velocity. This is an asset for us, since our
flow fields are characterized by very low velocities. The finite volume flow solver provides
the values of the velocity components at the cell faces. To obtain the velocities within
the cells, we use the bi-linear interpolation scheme proposed by Pollock [1988]

@1(x) = Ai(z1 —21,0) + @11 (A.2)
q2(x) = Ag(z2 — z2,B) + ¢2,B, (A.3)
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Field Am] L, L, Az, Ay p o% a ko [m/s] ke [m/s]

Lognormal 10  600A 150A A/10 0 0.1-7 - - -
Gamma 10 300N 300\ /10 - - 1/2 1074 5

Table A.1. Parameters used for direct numerical simulations for the lognormal and Gamma

fields considered in this study.

where

A1 = (q,r — q1,0)/ Ay (A.4)
As = (g2, — q2,B)/ Az, (A.5)

where 1 1, and x5 p are the coordinates of the left and bottom face of the cell, respec-
tively, ¢1,1, and g1,r are the longitudinal components of the velocity at the left and right
cell face, respectively, while g2 p and g 1 are the transverse components of the veloc-
ity at the bottom and top cell face, respectively.

B: Advective tortuosity

The advective tortuosity compares the length of the streamline to the linear dis-
tance. Advective tortuosity has been considered in the context of pore-scale flow [Ko-
ponen et al., 1996; Ghanbarian et al., 2013]. Here we determine it in the context of Darcy-
scale flow with the aim of providing an approximation for the particle displacement in
mean flow direction. To this end, we consider the 1-component x1(s,a) of the s-Lagrangian
trajectory x(s,a) defined in Eq. (10),

dz1(s,a) _ @ [x(s,a)]
ds lafx(s,a)]|

=w(s,a). (B.1)

Thus, the linear distance as a function of streamwise distance is given by

S
@1[x(s,a)]
r1(s,a) = /ds'i. (B.2)
lafx(s,a)]l
0
Thus, the ratio between linear and streamwise distance is given by
S
I1(57a) — l/dS/ q1 [X(57a)] , (B3)
s s ) Tlabsa)l

this means, it is equal to the streamwise average of ¢ [x(s,a)]/|q[x(s,a)]|. Under ergodic
conditions, the streamwise average is equal to the average over the ensemble of particles.
In order to define the ensemble average here, we recall that for the streamwise sampling
mode employed in the s-Lagrangian formulation, the flux-weighted injection represents
the stationary initial condition [Dentz et al., 2016]. Thus, we consider the ensemble av-
erage with respect to the flux-weighted injection condition (12). This gives

S

o L gl @) alx(sa)] _
sl—mso/d la[x(s,a)]| Vg—nxjg d @) [ax(s, )] X s (B.4)

which is equal to the inverse of tortuosity. Thus, tortuosity here compares the stream-
wise distance s to linear distance x1(s,a) at large distances s.
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932 B.1 Approximation of displacement in mean flow direction

933 It quantifies at the same time the average of w(s,a) such that we can approximate
: W ~x L (B.5)
036 This is valid for streamwise distances s > X because then
S
oa7 r1(s,a) = s 1/ds'M ~ 2. (B.6)
5 lalx(s,a)]| | x

38 0

939 Note that for s < A

0 z1(s,a) = X 's + wps, (B.7)
42 where w’(s,a) = w(s,a) — x~!. This implies that
7 1 (t,a) = X~ wot + whuot, (B.8)
45 where wj = w’(s = 0,a). Thus, we obtain for the mean displacement
e p(t) = x"Hvo)t (B.9)
948 and for the displacement variance
519 K(t) = x2oo t° + o oo t? (B.10)
951 Thus, the approximation (B.5) estimates accurately the early time behavior of the mean
952 displacement, but underestimates the ballistic early time behavior of the displacement
53 variance.
954 B.2 Explicit analytical expression for tortuosity
155 We obtain an explicit analytical expression for y by considering the ensemble av-
36 erage
1
- X71 = lim 7/da |q(a)| Q1[X(S’a)} (Bll)
Vo—roo Vo (la(2)]) lax(s,a)]]
958 Qo
259 Thus, we perform the variable transform a — x,
1 1
Y= lim — / dx la(@)] @) (B.12)
Vo—roo Vo I(s,a) (la(@)]) l[a®)| |azax,s)
961 Q(s)
s which is characterized by the Jacobian determinant J(s,a), which is the determinant of
963 the deformation gradient tensor
O
Fij(s,a) = 2il5:3), (B.13)
965 aaj
966 The Jacobian satisfies [Batchelor, 2000, p. 75]
0
967 w = J(s,a) V- q(X) (B.14)
- s 140 (s
69 This expression can be expanded as
9J(s,a) Via()|
970 = —J(s,a) q(x) - , (B.15)
71 Os |q(x)\2 x=x(s,a)
7257
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o72 where we used V - q(x) = 0. In order to simplify the right side, we note that

dla[x(s,a)]| _ dx(s,a)

g;i ds = ds ’ v|q(x)|x:x(s7a)- (B16)

s By using (10), the latter can be written as

. dalx(s.a)] _ gy Viat _-—
977 5 |q(x)| x=x(s,a)
8 and therefore
Vl]q(x) 1 dus(s,a)

979 q(x) . = D e—— (B.lg)
L la(x)|? x=x(s,a) vs(s,a)  ds
o8t where we set vs(s,a) = |q[x(s,a)]|. Thus, Eq. (B.15) can be written as

dJ(s,a) dnfvs(s, a)]

— Pl S Sk 2 B.1
= o5 ~ Ty (B.19)
84 This equation can be integrated by separation of variables, which gives
s (0,

85 J(s,a) = vs(0,2) = [a(@)] , (B.20)
36 vs(s;a)  |q[x(s,a)]l

987 where we used that by definition J(s = 0,a) = 1. Inserting this expression into (B.12)
88 gives

_ 1 a(x) _ (q(x)

1

989 x = lim — / dx = . (B.21)
Vo—roe Vo (la@)])  (ax=)])

930 Q(s)

991 C: Boltzmann equation

» We derive here equation (27) for the joint distribution p(x1,v,t) of particle posi-

493 tion and velocity. The joint distribution is defined by

oo

por,vit) = [ ds{ols = s()oler - (s)]6lo — w(o) (1)

995 0

<96 We make use of the following property of Dirac Delta

ot — #(5)
5ls — s(t)] = —— 1 C.2

7 [s — s(t)] ds(0)/dt (C.2)
999 which, in virtue of the equivalence ds(t)/dt = v(t) = vs[s(t)], reads as

5[t —t(s)]
: o[s — s(t)] = ————=. C.3
). s = 8] = =7 (C3)
1002 By substituting the latter into Equation (C.1), we obtain
1003 p(x1,v;t) = /dsv_lR(xl,v,t;s) (C.4)
04 0
1005 where we defined
7 R(x1,v,t;8) = (8]t — t(5)]0[z1 — z1(s)]0[v — v(s)]). (C.5)
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By considering an increment of length As, we can write
R(z1,v,t;8+ As) = /dv'r(v, As|v")R(z1 — As/x, v, t — As/v'; s). (C.6)
0

We consider the limit As — 0 and perform the Taylor expansion

As 0

R(z1 — As/x,v,t — As/v;s) = R(z1,v,t;s) — —=—R(x1,0,t; 5)
x 011
As 0
- 753(96170,15, s)+ ... (C.7)
so that Equation (C.6) reduces to
R(z1,v,t;5 4+ As) = /dv’r(v,As|v’)R(x1,1/,t;s)
0
e asras [0 4 20T rn wr

/d r(v, As|v")As {Xaﬂh + i R(xq1,v',t; s). (C.8)
0

We can further write

OR(x1,0,t5) _ /dv'M[R(m v t;s) — R(z1, v, t:5)]

Os As
0
10 10
_ {x@x + v@t} R(z1,v,t; ), (C.9)

where we used that (v, 0[v") = 6(v—v"). Integration of Equation (C.9) over s and us-
ing expresion (C.4) gives (27).

D: Setup of stochastic particle model

The stochastic particle model requires as input the Eulerian velocity point distri-
bution p.(v), advective tortuosity x and the Lagrangian velocity correlation scale .. Through-
out Section 4, we focus on the preasymptotic transport behaviors in the Lognormal field
for U)2c = 7 and the Gamma field with § = 1/2. In Section 4.2, we use the ouctrw to
model asymptotic longitudinal macrodispersion coefficients for aj% =0.1,1,4 and 7.

The velocity correlation scale £, for the hydraulic conductivity fields under consid-
eration are were studied in detail in Hakoun et al. [2019]. The correlation length is model
dependent and increases with the variance of the log-conductivity f(x). In the Ornstein-
Uhlenbeck model, the correlation length for the lognormal fields is given by the empir-
ical expression

% =0.18107 + 2.221, (D.1)
which is consistent with the expression provided in Cvetkovic et al. [1996]. The corre-
lation length increases with increasing ch% because the streamline tortuosity increases and
thus the streamline length. The correlation length for the Gamma field in the Ornstein-
Uhlenbeck model is £, = 2.7\. In the Bernoulli model, the correlation length for the
Lognormal field with 0]20 =7Tis l. = 5.7\ and for the Gamma field it is ¢, = 3.1\.

The PDF's are computed by sampling the Eulerian velocity magnitudes in every
node of the numerical velocity field for all the 10? medium realizations, which gives a
sample of about 10° velocity values. The histograms are computed using logarithmically
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1043 Figure D.1. Eulerian velocity PDF for the lognormal and Gamma conductivity fields. Col-
44 ored areas indicate the velocity range corresponding to the first (light gray) and the last (dark

1045 gray) 10 percentiles. The solid lines represent the scalings pe(v) ~ v*~ ! with (a) a = 3/4 and (b)
146 a = 0.58.

spaced bins between the minimum and the maximum velocities. The data is normalized
by the total count and respective bin size. No smoothing is performed nor needed, be-
cause of the large amount of entries. We briefly describe some features of the Eulerian
velocity PDF for the lognormal fields with a}% = 7 and the Gamma field for 5 = 1/2,
which are shown in Figure D.1. The velocity PDFs for the Lognormal fields with UJ% =
0.1,1 and 4, which are used in Section 4.2 for the extrapolation of the longitudinal macrodis-
persion coefficients in the ouctrw are shown in Figure D.2. Figure D.1a shows that, in

an intermediate velocity range of about 1 and a half orders of magnitude, the velocity
PDF can be approximated with the power-law v®~1 with o = 3/4. Although no real
power-law arises, this approximation is useful to understand the preasymptotic disper-
sion behavior that we observe in the intermediate regime, which could be mistaken for
superdiffusion, as we discuss below. Figure D.1b shows the velocity PDF correspond-

ing to the Gamma field. Here, we observe a clear power-law tail as v*~! toward low ve-
locities over several orders of magnitude with o = 0.58. For a power-law p,(v) oc v¥ 1,
the steady s-Lagrangian velocity PDF behaves as ps(v) oc ¥°~! with 8 = o + 1. This
implies that the transition probability 1 (¢) given by Equation (29) scales as v(t) oc t~175.
The velocity distribution for O‘J% = 0.1 can be approximated by the lognormal distri-
bution

_ lexp [_ 1Og(v/<v€>)2/2012nv} )

DelV D.2
In fact, the Darcy equation indicates that
ve(x) = K(x)|Vh(x)|. (D.3)
1049 Thus, for a slowly varying head gradient v.(x) o« K(x). Furthermore, the mean and
50 variance of v.(x) are given in first order perturbation theory by v, = g and 02 = 0'31 =
051 30%/8 [Dagan, 1989], and o, = (ve)’0s.
152 The advective tortuosities are determined from the mean velocity magnitude and
53 mean streamwise velocity according to Equation (19). Thus, we obtain for the advec-

1054 tive tortuosities of the lognormal fields y = 1 for o7 = 0.1, x = 1.06 for 07 = 1,
105 x = 1.2 for UJ% = 4 and x = 1.3 for UJ% = 7. The tortuosity for the Gamma field is
.56 x =1.2.
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E: Longitudinal dispersion in the Bernoulli model

We consider here the analytical expressions for dispersion coefficients in the Bernoulli
model derived in Dentz et al. [2016]. These authors consider the dispersion of the par-
ticle position s(t) along streamlines, which is given by

1d
D(t) = 53 [(50%) = (5())?] (E1)

According to (20), z1(t) = s(t)/x. Thus, the longitudinal dispersion coefficient Dy, (¢)
is given in terms of D(t) as
D(t
Dp(t) = % (E.2)
X
E.1 Anomalous Dispersion

Dentz et al. [2016] derive expressions for D(t) for the Gamma-distributed p.(v)

Under stationary conditions, this means for the uniform injection, they obtain for ¢ >
To
Dy(t) = M(UT yL-a (E.4)
BRSO '
where 79 = £./ve, ¢ =T'(2 — @) /T'(1 — «). For the non-stationary case, this means for
the flux-weighted injection, Dy (t) is given by

(ve)* 78 car g g

Dp(t) = ———— E.5
w0 = S (E.5)
This gives for the displacement variances
20a<ve>€c7'°‘71t2*°‘ steady
K(t) = o (E.6)
2¢q (Ve )27t non-steady,

where ¢, = ca/[(1 — a)(2 — a)x?]. Note that a = 3 — 1.
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E.2 Macrodispersion

Deniz et al. [2016] derived the following analytical expression for the dispersion of
particle positions s(t) along streamlines,

D= ot (42 -1). (1)

where 7, is distributed according to s (¢), which is given by

i i UV ex v va(v)
= g/ci exp(—to/10) 2 (E.8)

where 7, = {./(ve). Using relation (11) it can be written as

1 [ v exp(—tv v*pe(v)
_%Jd p(—to/t) (.9

In order to obtain expression (45), we evaluate

(oo}
= / dtt?,(t). (E.10)
0
Using expression (E.9), we obtain
1002632@ T pe 22 2r2(u,
(Tf)z—/dv vpe(v) _ /dvp _ e 2nfvl) (E.11)
Ty v3 (v,  (ve)vy vl
0

where the harmonic mean of p.(v) is defined as

o 7 Upe(v)
H_O/d - (E.12)

Inserting (E.11) into (E.7) and using (E.2) gives (45). We now show the consistence of
this expression with stochastic perturbation theory. To this end, we first decompose v,

into its mean and fluctuation
ve =1/ 432+ @3 = (@) + ¢, (E.13)

where we only account for terms linear in the velocity fluctuation and note that (g2) =
0. Using this decomposition in expression (45) and expanding up to first order in the ve-
locity fluctuation gives

DS~ (g)lo 20 (E.14)

We note that in this approximation ¢, is equal to the correlation distance of the fluctu-
ations ¢j. The velocity correlation £, and the velocity covariance are in leading order given
by [Dagan, 1989; Cvetkovic et al., 1996]

be = =), 04 = 50%- (E.15)

Inserting this expressions into (E.14) gives expression (46) for the longitudinal macrodis-
persion coefficient in first order perturbation theory in aj%.
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