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Abstract5

We study the upscaling and prediction of large scale solute dispersion in heterogeneous6

porous media with focus on preasymptotic or anomalous features such as tailing in break-7

through curves and spatial concentration profiles as well as non-linear evolution of the8

spatial variance of the concentration distribution. Spatial heterogeneity in the hydraulic9

medium properties is represented in a stochastic modeling approach. Direct numerical10

Monte Carlo simulations of flow and advective particle motion combined with a Markov11

model for streamwise particle velocities give insight in the mechanisms of preasymptotic12

and asymptotic solute transport in terms of the statistical signatures of the medium and13

flow heterogeneity. Based on the representation of equidistantly sampled particle veloc-14

ities as a Markov process, we derive an upscaled continuous time random walk approach15

that can be conditioned on the flow velocities and thus hydraulic conductivity in the in-16

jection region. In this modeling framework, we identify the Eulerian velocity distribu-17

tion, advective tortuosity and the correlation length of particle velocities as the key quan-18

tities for large scale transport prediction. Thus, the upscaled model predicts the spatial19

concentration profiles, their first and second centered moments as well as the breakthrough20

curves obtained from direct numerical Monte Carlo simulations in spatially heterogeneous21

conductivity fields. The presented approach allows to relate the medium and flow prop-22

erties to large scale preasymptotic and asymptotic solute dispersion.23

Key Points:24

• We derive a continuous time random walk approach for transport upscaling in het-25

erogeneous media26

• The approach is predictive through relation of its key parameters with medium27

and flow properties28

• The derived framework links classical stochastic approaches and continuous time29

random walk models30

1 Introduction31

The dispersion of dissolved substances in the spatially varying flow through het-32

erogeneous media has been the focus of intense research in the last 4 decades [Dagan,33

1989; Gelhar , 1993; Rubin, 2003] due its central importance for the understanding and34

prediction of large scale solute transport in environmental and industrial applications35

ranging from groundwater management and remediation [Domenico and Schwartz , 1997]36

to underground storage and energy production [Poinssot and Geckeis, 2012; Niemi et al.,37

2017]. Spatial heterogeneity in the hydraulic medium properties implies spatial fluctu-38

ations in the groundwater flow, which leads to macroscopic transport behaviors that are39

different from the ones observed on the local scale. Spatial variability in hydraulic con-40

ductivity is a singular feature for porous media transport because it may vary over or-41

ders of magnitude ranging from ∼ 1 m/s for coarse sand and gravel to ∼ 10−12 for clays42

and granite [Bear , 1972; Sanchez-Vila et al., 2006a].43

The impact of spatial heterogeneity on large scale solute dispersion has been quan-44

tified in a systematic way using stochastic modeling, which derives the large scale trans-45

port behaviors as the ensemble average over the behaviors in individual medium real-46

izations that share the same geostatistical characteristics [Dagan, 1989; Gelhar , 1993].47

For moderately heterogeneous porous media, Gelhar and Axness [1983] used perturba-48

tion theory in the variance of the logarithm of hydraulic conductivity to derive an ex-49

pression for the longitudinal macrodispersion coefficient in terms of the mean flow ve-50

locity, the variance and correlation length of log-hydraulic conductivity. This expression51
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is a central result for transport upscaling in heterogeneous porous media because it re-52

lates macroscopic solute transport to the hydraulic medium properties and flow condi-53

tions. It describes solute dispersion at times that are large compared to the character-54

istic advection time over the correlation scale for moderately heterogeneous media. At55

preasymptotic times, however, solute dispersion evolves in time from local towards macrodis-56

persion [Dagan, 1984]. With increasing heterogeneity, the asymptotic macrodispersion57

coefficients show a non-linear dependence on the variance of the logarithm of hydraulic58

conductivity [Fiori et al., 2003; de Dreuzy et al., 2007; Gotovac et al., 2009]. Further-59

more, the time scales to reach the asymptotic behavior increase with increasing hetero-60

geneity [de Dreuzy et al., 2007].61

In fact, for strong spatial heterogeneity, transport exhibits non-Fickian features such62

as broad preasymptotic dispersion regimes characterized by non-linear growth of the dis-63

persion coefficients, heavy-tailed breakthrough curves and non-Gaussian spatial concen-64

tration distributions [Adams and Gelhar , 1992; Zheng et al., 2011; Haggerty et al., 2000;65

Levy and Berkowitz , 2003; Kang et al., 2015; Haslauer et al., 2012]. For many practi-66

cal situations, dispersion is indeed preasymptotic because the time scales to reach the67

asymptotic behavior are given by the advection or diffusion times over characteristic het-68

erogeneity length scales, which, depending on the underlying disorder may be of the or-69

der of years. Anomalous or preasymptotic anomalous or preasymptotic large scale trans-70

port has been modeled by a series of approaches including spatio-temporal non-local advection-71

dispersion equations, fractional advection-dispersion equations, as well as multirate mass72

transfer, continuous time random walk (CTRW) and time-domain random walk (TDRW)73

approaches [Berkowitz et al., 2006; Frippiat and Holeyman, 2008; Neuman and Tartakovsky ,74

2008; Dentz et al., 2011; Noetinger et al., 2016]. While stochastic perturbation theory75

provides a direct link between large scale transport and the medium and flow proper-76

ties, this is often not the case for non-Fickian transport approaches. In the frameworks77

of time-domain and continuous time random walks, Fiori et al. [2007], Cvetkovic et al.78

[2014], Edery et al. [2014], and Tyukhova et al. [2016] investigated the relation between79

the hydraulic conductivity distribution and advective travel times for heterogeneous porous80

media. Edery et al. [2016], Kang et al. [2017] and Hyman et al. [2019] studied the rela-81

tion of structural and hydraulic properties to large scale transport for 2 and 3 dimen-82

sional discrete fracture networks.83

Here we employ a particle based stochastic approach for transport and dispersion84

upscaling. Stochastic particle approaches have quantified the impact of velocity fluctu-85

ations on large scale transport based on stochastic representations of the series of par-86

ticle velocities either in time [Dagan, 1989; Meyer and Tchelepi , 2010] or in space [Berkowitz87

and Scher , 1997; Benke and Painter , 2003; Berkowitz et al., 2006; Fiori et al., 2007; Le Borgne88

et al., 2007, 2008; Gotovac et al., 2009; Dentz et al., 2016]. Here, we choose the latter89

approach, which renders the stochastic particle motion a continuous time or time-domain90

random walk. This view accounts for the fact that particle velocities vary on the char-91

acteristic heterogeneity length scale, while the time scales of variability can be broadly92

distributed for a broad distribution of flow velocities. In fact, time series of particle ve-93

locities in steady porous media flows exhibit intermittent patterns [de Anna et al., 2013;94

Kang et al., 2014; Holzner et al., 2015; Morales et al., 2017], which reflects the long per-95

sistence times in regions of low flow velocity [Dentz et al., 2016]. Using a stochastic mod-96

eling approach for the medium heterogeneity, Hakoun et al. [2019] provide a thorough97

statistical analysis of the particle velocities sampled equidistantly along trajectories and98

their evolution from different initial conditions, this means different initial velocity dis-99

tributions. In that work, the authors model equidistant velocity series as continuous Markov100

processes which evolve as a function of streamline length. The velocity processes are pa-101

rameterized by the Eulerian velocity distribution, a flow attribute, and the velocity cor-102

relation scale.103
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In this paper, we study the upscaling of solute dispersion from the Darcy to the104

regional scale using a continuous time random walk approach that is informed by the105

velocity models presented in Hakoun et al. [2019]. The aim is to derive a framework that106

allows to systematically link the statistical medium and flow properties to large scale preasymp-107

totic transport behaviors in the spirit of the perturbation theory result for the longitu-108

dinal macrodispersion coefficient. To this end, we consider spatial and temporal trans-109

port signatures in terms of the average concentration profiles projected on the mean flow110

direction, the evolution of the mean and variance of the concentration distribution, as111

well as breakthrough curves. We focus also on the impact of the injection conditions and112

heterogeneity in the injection domain on large scale transport [Le Borgne et al., 2007;113

Hyman et al., 2015; Dagan, 2017; Kang et al., 2017; Morales et al., 2017; Puyguiraud et al.,114

2019] and its prediction in an upscaled transport approach. The predictions of the de-115

rived large scale transport model are compared to direct numerical Monte Carlo simu-116

lation of flow and particle motion in 2-dimensional heterogeneous hydraulic conductiv-117

ity fields, which also provides a further test for the robustness of the velocity models pre-118

sented in Hakoun et al. [2019].119

The paper is organized as follows. The next section introduces in the stochastic flow120

and transport problem in heterogeneous porous media and explains the numerical setup.121

Section 3 presents the upscaling methodology and the stochastic particle model. Section122

4 discusses the transport behaviors determined by the numerical Monte Carlo simula-123

tions and their prediction in terms of the stochastic particle model.124

2 Basics125

In the following, we present the equations governing flow and advective transport126

in heterogeneous porous media, the stochastic modeling approach as well as some ba-127

sic relations between Eulerian and Lagrangian velocity statistics.128

2.1 Flow129

At the Darcy scale, porous media flow is ruled by the Darcy equation [Bear , 1972]130

q(x) = −K(x)∇h(x) , (1)131
132

where x = (x1, x2)> denotes the position vector, K(x) is the hydraulic conductivity133

and h(x) is the hydraulic head. In the following, we consider incompressible flow, which134

implies ∇ · q(x) = 0 and thus the groundwater flow equation135

∇K(x) · ∇h(x) +K(x)∇2h(x) = 0. (2)136
137

Spatial variability in hydraulic conductivity is quantified by a stochastic approach, which138

models K(x) as a stationary and ergodic random field [Rubin, 2003]. Hydraulic conduc-139

tivity here is obtained through the map K(x) = F{Y (x)} from the stationary and er-140

godic multi-Gaussian random field Y (x). The map is given by141

F (y) = P−1
K [Φ(y)], (3)142

143

where PK(k) is the cumulative distribution function (CDF) of hydraulic conductivity,144

P−1
K (u) its inverse, and Φ(y) is CDF of the Gaussian distribution. The Gaussian ran-145

dom field Y (x) is characterized by zero mean 〈Y (x)〉 = 0 and the exponential covari-146

ance function147

〈Y (x)Y (x′)〉 = σ2
Y exp(−|x− x′|/λ) (4)148

149

where λ is the correlation length and σ2
Y the variance of Y (x). The ensemble average150

is denoted by angular brackets. We consider two distributions of point values for the hy-151
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draulic conductivity K(x), namely the lognormal and the truncated-Gamma distribu-152

tions153

pK(k) =
exp

{
− [ln (k)−µ]2

2σ2
f

}
k
√

2πσ2
f

(5a)154

pK(k) =
N(α, kc, k0)

kcΓ(α)

(
k

kc

)α−1

exp

(
− k

kc
− k0

k

)
, (5b)155

156

where µ and σ2
f are the mean and variance of f(x) = ln[K(x)], k0 and kc are the lower157

and upper cut-offs in the truncated Gamma distribution, α is the shape parameter and158

N the normalization factor which is given numerically. The choice of the lognormal dis-159

tribution is motivated by the fact that it is in a certain sense a standard disorder model160

for large scale heterogeneous porous media and was applied for the field scale medium161

characterization [Rehfeldt et al., 1992; Gelhar , 1993] as well as in many modeling works162

[Gómez-Hernández and Gorelick , 1989; Jankovic et al., 2003; de Dreuzy et al., 2007; Go-163

tovac et al., 2009]. Some authors, however, have challenged the Gaussianity of lnK for164

heterogeneous sedimentary media [Painter , 1996; Sanchez-Vila et al., 2006b]. For ex-165

ample, Haslauer et al. [2012] have shown that the Borden aquifer heterogeneity is best166

described by a distribution characterized by power-law tailing towards low K values and167

exponential decay for large hydraulic conductivities. The truncated Gamma distribu-168

tion that we use in this work is characterized by similar features. We refer to the trun-169

cated Gamma distribution in the following as Gamma distribution. The lognormal K(x)170

is obtained from Y (x) through the exponential map171

K(x) = exp [µ+ Y (x)] . (6)172
173

For the Gamma distributed conductivity field, there is no analytical map F (k) because174

there is no closed form expression for P−1
K (u). Thus, K(x) is obtained from Y (x) nu-175

merically through inverse sampling. The degree of heterogeneity of K(x) is measured176

by the variance σ2
f of f(x). For the lognormal K-field, σ2

f = σ2
Y . For the Gamma K-177

fields, σ2
f increases with decreasing α for a fixed mean 〈K(x)〉.178

The stochasticity of K(x) is mapped onto the Eulerian velocity field q(x) through183

the Darcy equation (1). The mean hydraulic gradient 〈∇h(x)〉 is aligned with the 1-direction184

of the coordinate system. Thus, the mean flow velocity is 〈q(x)〉 = e1〈q〉. It defines to-185

gether with the correlation length λ the characteristic time scale τc = λ/〈q〉. We de-186

note the magnitude of q(x) by ve(x) = |q(x)|, where | · | denotes the Euclidean norm.187

The velocity statistics are characterized here by the probability density function (PDF)188

of ve(x), which is obtained by spatial sampling as189

pe(v) = lim
V→∞

1

V

∫
Ω

dx δ[v − ve(x)] , (7)190

191

with Ω is the sampling domain, V its volume. Due to ergodicity, spatial sampling of ve(x)192

is equivalent to ensemble sampling and thus pe(v) = 〈δ[v − ve(x)]〉.193

The numerical generation of the hydraulic conductivity fields K(x), solution of the194

flow equation (2) and the setup of the numerical flow simulations are detailed in Appendix A:195

. Figures 1a and b illustrate realizations of Gamma-distributed and lognormal K fields,196

Figures 1c and d the spatial distribution of the corresponding velocity magnitude ve(x)197

and the particle distributions evolving from a line source perpendicular to the mean flow198

direction.199
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Figure 1. Map of f(x) = ln[K(x)] for (a) Gamma-distributed K(x) with α = 1/2, kc = 5

m/s and k0 = 10−11 m/s, which gives σ2
f = 4.5, and (b) lognormal K(x) with σ2

f = 7. Map of

ln(ve(x)/〈ve〉) for (c) Gamma and (d) lognormal K(x). The black dots denotes the distribution

of particles after time t = 2.5τc that are injected at time t = 0 along a line located at x1 = 15λ.

179

180

181

182

2.2 Transport200

We consider purely advective transport. Thus, the motion of a particle that starts201

at x(t = 0,a) = a is governed by the advection equation202

dx(t,a)

dt
= vt(t,a), (8)203

204

where vt(t,a) = q[x(t,a)]/φ is the Lagrangian particle velocity and φ is porosity, which205

we will assume constant. In particular, we set φ = 1, which is equivalent to rescaling206

time. We refer to vt(t,a) as t-Lagrangian velocity because it is measured as a function207

of time. The distance s(t,a) that a particle travels along a streamline satisfies208

ds(t,a)

dt
= vt(t,a), (9)209

210

where vt(t,a) = |q[x(t,a)]| is the t-Lagrangian velocity magnitude. We can express the211

equation of motion (8) as a function of distance s along the streamline by using the map (9)212

from t→ s, which gives213

dx(s,a)

ds
=

vs(s,a)

vs(s,a)

dt(s,a)

ds
=

1

vs(s,a)
, (10)214

215

where vs(s,a) = q[x(s,a)]. Its magnitude is denoted by vs(s,a) = |q[x(s,a)]|, to which216

we refer in the following as s-Lagrangian velocity. The distribution of initial particle po-217

sitions is denoted by ρ(a). Numerical particle tracking simulations to solve for the di-218

rect problem are detailed in Appendix A: . Figure 1b shows the distribution of parti-219

cles that were initially uniformly distributed along a line. The tortuous shape is due to220

spatial velocity heterogeneity. Furthermore, particles are retained in regions of low flow221

velocities.222
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Under Lagrangian ergodicity and stationarity the velocity statistics sampled along223

streamlines and between an ensemble of particles are equivalent. The stationary s-Lagrangian224

velocity PDF ps(v) is related to the Eulerian velocity PDF pe(v) by flux-weighting [Dentz225

et al., 2016; Comolli and Dentz , 2017]226

ps(v) =
vpe(v)

〈ve〉
(11)227

228

In general the Lagrangian velocity statistics evolve with time t or distance s along stream-229

line if the initial velocity distribution is not stationary. The next section provides a de-230

scription of two Markov velocity models to account for these evolutions and the approach231

to quantify its impact on particle transport.232

We consider here initial particle distributions along a line of length L� λ char-233

acterized by different weighting. Specifically, we take L = 100λ for lognormal and L =234

270λ for the Gamma fields. For a uniform initial particle distribution, ρ(a) = L−1δ(a1)235

for 0 ≤ a2 ≤ L, the initial velocities v0(a) = vs(s = 0,a) = vt(t = 0,a) are dis-236

tributed according to p0(v) = pe(v). This represents the stationary initial condition for237

the t-Lagrangian velocity statistics [Dentz et al., 2016]. For a flux-weighted initial dis-238

tribution,239

ρ(a) =
ve(a)

〈ve〉
δ(a1), (12)240

241

the initial velocity distribution p0(v) = ps(v) is given by the flux-weighted Eulerian ve-242

locity PDF (11). This means, the s-Lagrangian velocity PDF is stationary for the ini-243

tial distribution (12). Furthermore, we consider particle injections into velocity inter-244

vals v` < v < vu, this means, we condition the injection points a in the line on the245

velocity magnitude as246

ρ(a) =
I(v` < ve(a) < vu)δ(a1)

L

vu∫
v`

dvpe(v)

(13)247

248

where I(·) denotes an indicator function which is 1 if the argument is true and 0 else.249

This condition allows to investigate the impact of the initial particle velocities on aver-250

age transport in a systematic way. Note that for an unconditional point injection, ρ(a) =251

δ(a−a0), the ensemble average erases the dependence on the injection conditions in a252

single realization and is equivalent to the average over the initial particle positions for253

a uniform injection in a single medium realization. For the flux-weighted initial distri-254

bution and in general for initial distributions that are conditioned on velocity this is dif-255

ferent. The average preasymptotic transport properties in general depend on the initial256

particle distribution [Hyman et al., 2015; Dentz et al., 2016; Kang et al., 2017; Fiori et al.,257

2017; Zech et al., 2018].258

We focus here on particle transport along the mean flow direction. The distribu-259

tion of particles, here equivalent to the concentration distribution, is obtained through260

averaging over the particles in single realizations and over the ensemble of disorder re-261

alizations as262

c(x1, t) =

〈∫
daρ(a)δ[x1 − x1(t|a)]

〉
. (14)263

264

The displacement mean and variance are given by265

µ(t) =

〈∫
daρ(a)x1(t,a)

〉
, κ(t) =

〈∫
daρ(a) [x1(t,a)− µ(t)]

2

〉
. (15)266

267
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The longitudinal dispersion coefficient DL(t) describes the temporal rate of change of268

the displacement variance269

DL(t) =
1

2

dκ(t)

dt
. (16)270

271

Temporal aspects of longitudinal solute transport are characterized in terms of the272

breakthrough curves at a control plane located at a longitudinal position x1. The break-273

through time is defined by274

τ(x1,a) = min[t|x1(t,a) ≥ x1]. (17)275
276

The breakthrough curve f(t, x1) is obtained by sampling arrival times in single realiza-277

tions and averaging over the ensemble as278

f(t, x1) =

〈∫
daρ(a)δ[t− τ(x1,a)]

〉
. (18)279

280

In the following section, we discuss the upscaling methodology to quantify the behav-281

iors of particle distributions and breakthrough curves and their dependence on the in-282

jection conditions.283

3 Upscaling methodology284

The upscaling methodology is based on the representation of the s-Lagrangian ve-285

locity magnitude as a Markov process [Dentz et al., 2016; Hakoun et al., 2019]. This means,286

the series of particle velocities {vs(s,a)} is modeled as a stationary stochastic process287

{vs(s)} which forms a Markov chain. One realization of vs(s) is considered the veloc-288

ity series of a single particle. The average behavior is obtained by ensemble averaging289

over all realizations of vs(s). The Markov chain is fully characterized by the transition290

probability r(v, s|v′) to make a transition from v′ to v after a streamwise distance s, and291

the steady-state s-Lagrangian velocity PDF ps(v), which is obtained from the Eulerian292

velocity PDF according to (11). In the following, we first discuss the time-domain ran-293

dom walk (TDRW) transport framework, which follows naturally from modeling vs(s)294

as a Markov chain. Then, we summarize two analytical models to quantify the stochas-295

tic evolution of vs(s).296

3.1 Stochastic particle model297

In the framework of a Markov model for the s-Lagrangian velocities, particle mo-298

tion is described in terms of the distance s along the streamline and the particle time299

t(s). Here, we focus on particle motion along the mean flow direction, which is aligned300

with the 1-direction of the coordinate system. The motion along the streamline is pro-301

jected onto the 1-direction by using the advective tortuosity χ. Advective tortuosity is302

a measure for the ratio between the displacement s along the trajectory and the displace-303

ment x1(s) in mean flow direction in the limit of s→∞. In Appendix B: we derive304

χ =
〈ve〉
〈q〉 , (19)305

306

where 〈ve〉 = 〈|q(x)|〉 and 〈q〉 = 〈q1(x)〉. Thus, for s � λ, longitudinal particle mo-307

tion is described in terms of the position x1(s) and particle time t(s) as308

dx1(s)

ds
= χ−1,

dt(s)

ds
=

1

vs(s)
. (20)309

310

In practice, this provides a good approximation at distances of the order of a few λ. The311

particle velocity vs(s) is sampled from the s-Lagrangian velocity PDF ps(v, s), which evolves312

–8–
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from the initial distribution p0(v) as313

p̂s(v, s) =

∞∫
0

dv′r(v, s|v′)p0(v′). (21)314

315

This model belongs to the class of continuous time or time-domain random walks [Painter316

and Cvetkovic, 2005; Berkowitz et al., 2006; Noetinger et al., 2016] because it models par-317

ticle motion through equidistant spatial steps of length ds/χ with a random transition318

time ds/vs(s), which is determined kinematically by the particle velocity vs(s). Note that319

the inverse velocity γ(s) = 1/vs(s) is also termed slowness [Gotovac et al., 2009]. The320

steady state distribution ψγ(γ) of slowness can be expressed in terms of ps(v) as321

ψγ(γ) = γ−2ps(1/γ). (22)322
323

In this framework, the initial particle distribution ρ(a) is translated to a distribu-324

tion of initial particle velocities p0(v). For the uniform initial condition and L� λ, p0(v) =325

pe(v) due to the ergodicity of the velocity field. For a the flux-weighted injection, it is326

p0(v) = ps(v). For the injection mode conditioned on velocities in a certain velocity range,327

p0(v) is328

p0(v) =
pe(v)I(v` < v < vu)

vu∫
v`

dvpe(v)

. (23)329

330

Furthermore, the particle position and velocity at a time t are given by x1(t) = x1[s(t)]331

and vt(t) = vs[s(t)], where s(t) = min[s|t(s) ≤ t]. The particle distribution along the332

mean flow direction is given by333

c(x1, t) = 〈δ [x1 − s(t)/χ]〉 . (24)334
335

The angular brackets here denote the average over all particles. It is equivalent to the336

ensemble average. The displacement mean and variance are given by337

µ(t) = χ−1〈s(t)〉, κ(t) = χ−2〈[s(t)− 〈s(t)〉]2〉. (25)338
339

The solute breakthrough curve is given in this framework in terms of the particle time340

t(s) as341

f(t, x1) = 〈δ [t− t(x1χ)]〉 . (26)342
343

The upscaled transport dynamics can be expressed in terms of the joint distribu-344

tion p(x1, v, t) = 〈δ[x1−x1(t)]δ[v−v(t)]〉 of particle position and velocity. This is sim-345

ilar in spirit to the quantification of Brownian motion, first in terms of a stochastic dif-346

ferential equation for the particle velocity, and then in terms of a Kramers equation [Risken,347

1996]. In Appendix C: , we derive for p(x1, v, t) the integro-differential equation348

∂p(x1, v, t)

∂t
+
v

χ

∂p(x1, v, t)

∂x1
= −vp(x1, v, t) +

∞∫
0

dv′
v′r(v,∆s|v′)

∆s
p(x1, v

′, t). (27)349

350

The left side quantifies the advective translation of the distribution by the local veloc-351

ity, the right side the transitions between velocities. This formulation of large scale trans-352

port in terms of a Boltzmann equation is further studied elsewhere.353

The Markov chain {vs(s)} converges toward its steady state on a characteristic length354

scale `c, the correlation length of vs(s). For lag distances ∆s > `c, subsequent veloci-355

ties may be assumed independent. Thus, coarse-graining of the governing equations (20)356
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on the correlation scale `c gives357

x1(sn+1) = x1(sn) +
`c
χ
, t(sn+1) = t(sn) +

`c
vn
, (28)358

359

where the vn are independent identical distributed random variables distributed as ps(v)360

for n > 0 and as p0(v) for n = 0. The time increment τn = `c/vn are distributed ac-361

cording to362

ψ(t) =
`c
t2
ps(`c/t). (29)363

364

for n > 0. For n = 0 we define ψ0(t) analogously. The asymptotic transport behavior365

may be described by (28), which constitutes a CTRW or TDRW with independent ve-366

locity, or time increments. Under steady conditions, this means for ψ0(t) = ψ(t), the367

CTRW framework provides predictions for the asymptotic dispersion behavior based on368

the behavior of ψ(t) [Berkowitz et al., 2006]. For ψ(t) ∝ t−1−β and 1 < β < 2, the369

asymptotic behaviors of the displacement mean µx(t) and variance κx(t) the scalings µx(t) ∝370

t and κx(t) ∝ t3−β , the breakthrough curves scale as f(t, x) ∝ t−1−β . For the CTRW371

model presented in this work, it is crucial to have a correct characterization of the ve-372

locity PDF. This is provided by two velocity Markov models, which were proposed in373

previous studies and are summarized in the next section.374

3.2 Velocity transition model375

In the following, we present two Markov models for the evolution of the s-Lagrangian376

velocities, the Bernoulli and the Ornstein-Uhlenbeck processes [Dentz et al., 2016; Morales377

et al., 2017; Kang et al., 2017]. Both processes reproduce the basic features of evolution378

of the s-Lagrangian velocity PDF from a non-stationary initial condition toward the steady379

state. While the Ornstein-Uhlenbeck model captures different aspects of intermittency380

such as the distribution of velocity increments [Morales et al., 2017] and the evolution381

of Lagrangian velocity statistics [Hakoun et al., 2019], the Bernoulli model is appealing382

due to its simplicity. We compare the performance of both models in the prediction of383

Darcy scale transport. Both models are stationary and have as the only parameter the384

correlation scale `c. For completeness, in the following we summarize the Bernoulli and385

Ornstein-Uhlenbeck velocity models as given in [Hakoun et al., 2019].386

3.2.1 Bernoulli process387

The Bernoulli process models the s-Lagrangian velocity series by the stochastic re-388

laxation389

vs(s+ ∆s) = ξ(s)v(s) + [1− ξ(s)]ν(s), (30)390
391

where the ν(s) are distributed according to ps(v) and the ξ(s) are independent identi-392

cally distributed Bernoulli variables, which take the value 1 with probability exp(−∆s/`c)393

and 0 with probability 1−exp(−∆s/`c). This means, after a distance ∆s, a particle re-394

mains at the same velocity with probability exp(−∆s/`c) and changes to a new random395

velocity sampled from ps(v) with probability 1−exp(−∆s/`c). The initial velocities are396

sampled from p0(v). The transition probability is given by [Dentz et al., 2016]397

r(v, s|v′) = exp (−s/`c)δ(v − v′) + [1− exp (−s/`c)]ps(v). (31)398
399

For the numerical calculations, we choose ∆s = `c/10. We refer to the stochastic par-400

ticle model combined with the Bernoulli velocity process in the following as btdrw.401
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3.2.2 Ornstein-Uhlenbeck process402

The Ornstein-Uhlenbeck process models the evolution of the normal scores w(s)403

corresponding to the vs(s). They are defined by the transformation404

w(s) = Φ−1{Ps[vs(s)]}, vs(s) = P−1
s {Φ[w(s)]}, (32)405

406

where Ps(v) is the CDF of ps(v) and Φ(w) the CDF of the unit Gaussian distribution.407

The w(s) evolve according to the Langevin equation [Gardiner , 1986]408

dw(s)

ds
= −`−1

c w(s) +
√

2`−1
c η(s), (33)409

410

where η(s) is a Gaussian white noise characterized by 0 mean and correlation 〈η(s)η(s′)〉 =411

δ(s−s′). The transition probability rw(w, s|w′) of w(s) is given by the conditional Gaus-412

sian PDF413

rw(w, s|w′) =
exp

(
− [w−w′ exp(−s/`c)]2

2[1−exp(−2s/`c)]

)
√

2π [1− exp(−2s/`c)]
. (34)414

415

The numerical implementation of (33) is based on the Euler scheme416

w(s+ ∆s) = w(s)
(
1− `−1

c ∆s
)

+
√

2`−1
c ∆sζ(s), (35)417

418

where ζ(s) is a Gaussian random variable of zero mean and unit variance. For the nu-419

merical simulations reported in the following, we set ∆s = `c/102 for the calculation420

of the spatial profiles and breakthrough curves and ∆s = `c/10 for the calculation of421

the spatial moments. The stochastic particle model combined with the Ornstein-Uhlenbeck422

velocity process is in the following referred to as outdrw.423

3.3 Discussion of model parameters424

Some remarks on the determination of the key parameters are in order. The ve-425

locity correlation distance `c is of the order of the correlation length λ of the multi-Gaussian426

random field, from which the lognormal and Gamma-distributed hydraulic conductiv-427

ity fields are derived. It varies only moderatley with increasing heterogeneity. Analyt-428

ical expressions for `c are only known from perturbation theory for weakly heterogeneous429

fields [Cvetkovic et al., 1996], who find `c = 8λ/3. For strong heterogeneity, we currently430

rely on empirical expressions [Cvetkovic et al., 1996; Hakoun et al., 2019]. Thus, more431

insight is needed on the dependence of `c on the medium structure and hydraulic con-432

ditions. Also, the approach relies on the knowledge of the Eulerian velocity statistics and433

tortuosity, both flow attributes. Thus the presented approach is predictive in the sense434

that it allows for transport predictions based on the estimation of a transport-independent435

quantities, in the spirit of the perturbation theory expression for the longitudinal macrodis-436

persion coefficient [Gelhar and Axness, 1983]. This is an important step towards a pre-437

dictive approach that links medium and flow properties to transport. A direct link be-438

tween hydraulic conductivity and flow velocity can be established for small values fol-439

lowing exact analytical results for isolated inclusions [Fiori et al., 2007; Cvetkovic et al.,440

2014; Tyukhova et al., 2016]. A quantitative link between the full velocity and conduc-441

tivity spectra, however, is still missing. Note also that the stochastic particle model con-442

siders particle motion along streamlines, which is projected here on the mean flow di-443

rection in terms of the average advective tortuosity. Using this average tortuosity leads444

to accurate transport predictions at intermediate and asymptotic times, but may under-445

estimate solute spreading at early times. Studying the distribution of tortuosity may give446

further insight in the impact of medium geometry and hydraulic conditions on large scale447

transport. Furthermore, the model predictions are of course affected by uncertainty in448

the model parameters such as Eulerian velocity statistics and correlation length, which449

however is the subject of a different study.450
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4 Transport behavior451

We study here the transport behavior in the heterogeneous conductivity fields de-452

scribed in Section 2.1 and its upscaling using the methodology detailed in Section 3. The453

average transport behavior is obtained numerically as an ensemble average over 102 re-454

alizations for each random field. We consider lognormally distributed K(x) character-455

ized by σ2
f from 0.1 to 7, and Gamma-distributed fields characterized by α = 1/2 with456

σ2
f = 4.5. The numerical Monte Carlo simulations use 102 realizations and between 104

457

and 107 particles per realization. The detailed numerical setup is given in Appendix A:458

. The setup of the stochastic particle model is discussed in Appendix D: .459

4.1 Anomalous Dispersion460

We study here the temporal evolution of the mean displacement and displacement461

variance defined in (15) for the lognormal and Gamma fields by direct numerical sim-462

ulations and the stochastic particle model, and discuss the expected early and long time463

behaviors as well as estimates for the asymptotic longitudinal macrodispersion coefficient.464

For the simulation times under consideration, there is no quantitative difference between465

the predictions of the outdrw and the btdrw models. Thus, we display only the results466

of the stochastic particle model based on the Ornstein-Uhlenbeck velocity process.467

4.1.1 Mean displacement468
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Figure 2. Mean displacements from Monte Carlo simulations in 102 realizations each with

104 particles for (squares) uniform and (circles) flux-weighted injection in (a) Gamma field with

α = 1/2 and (b) lognormal conductivity field with σ2
f = 7. The simulations based on the outdrw

model use 104 particles and are marked by (flux-weighted) red dashed and (uniform) blue dashed

lines. The solid black lines denote the linear early and late time behaviors.

469

470

471

472

473

At times smaller than the advection time scale τc = λ/〈q〉, the particle velocity474

is constant and equal to the initial velocity such that the mean displacement is475

µ(t) =

∫
Ω0

daρ(a)q1(a)t. (36)476

477

The stochastic particle model (20) predicts the early time behavior478

µ(t) = χ−1

∞∫
0

dvp0(v)vt. (37)479

480
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Figure 3. Displacement variances from Monte Carlo simulations in 102 realizations each with

104 particles for (squares) uniform and (circles) flux-weighted injection in (a) Gamma field with

α = 1/2 and (b) lognormal conductivity field with σ2
f = 7. The simulations based on the outdrw

model use 104 particles and are marked by (flux-weighted) red dashed and (uniform) blue dashed

lines. The solid black lines denote the ballistic early time behavior, the dashed green lines the

(pre-) asymptotic behaviors.

485

486
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489

490

Under stationary condition, this means for a uniform initial distribution, or equivalently481

for p0(v) = pe(v), the particle displacement evolves as482

µ(t) = 〈q〉t = χ−1〈ve〉t, (38)483
484

which is equal to the asymptotic long time behavior under arbitrary initial conditions.491

Note that this is the behavior that is predicted by an unconditional stochastic model be-492

cause the unconditional ensemble average erases any deviation from a uniform initial con-493

dition. Figure 2 shows the evolution of the mean displacements for the lognormal and494

Gamma fields from uniform and flux-weighted initial conditions. The outdrw model pre-495

dicts quantitatively the full temporal evolution.496

4.1.2 Displacement variance497

We now focus on the displacement variance. At early times t� τc, the displace-498

ment variance grows ballistically and is given by499

κ(t) = σ2
q1t

2, (39)500
501

where σ2
q1 is the variance of q1(a) in the initial plume502

σ2
q0 =

∫
Ω0

daρ(a)q1(a)2 −

∫
Ω0

daρ(a)q1(a)

2

(40)503

504

The stochastic particle model (20) predicts505

κ(t) = χ−2σ2
v0t

2, (41)506
507

where σ2
v0 is the variance of p0(v). The ballistic early time behavior of the displacement508

variance is underestimated by the approximation (20) of x1(s) in terms of tortuosity, see509

the discussion in Appendix B: . The ballistic early time behavior is illustrated in Fig-510

ure 3 for the Gamma and lognormal fields as well as the predictions of the stochastic par-511

ticle models. We now consider the behavior for times t� τc.512
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4.1.2.1 Gamma fields The Eulerian velocity PDF pe(v) behaves as a power-law513

for v � 〈ve〉, which can be approximated by pe(v) ∝ vα−1 with α = 0.58. This is il-514

lustrated in Figure D.1. Thus, the stationary s-Lagrangian velocity PDF behaves as515

ps(v) ∝ vβ−1 (42)516
517

with β = 1.58. As discussed in Section 3.1, asymptotically the stochastic particle model518

may be approximated by a CTRW characterized by independent random time increments519

whose distribution is given by (29). For the power-law velocity PDF (42), it behaves as520

ψ(t) ∝ t−1−β . Thus, the CTRW framework predicts for the asymptotic growth of κ(t)521

the superlinear evolution [Shlesinger , 1974; Dentz et al., 2004; Berkowitz et al., 2006]522

κ(t) ∝ t3−β . (43)523
524

This behavior is illustrated in Figure 3. The outdrw describes the full asymptotic vari-525

ance evolution with a slight underestimation of the data from the numerical Monte Carlo526

simulation, which can be traced back again to the value of the correlation length `c, see527

also the discussion in the previous section. The model values increase with `c. We note528

that, while the power-law scaling is the same for both injection modes, there is a quan-529

titative difference in the pre-factors. This has been predicted in Dentz et al. [2016] based530

on the Bernoulli velocity model. These authors provide explicit analytical solutions for531

the longitudinal dispersion coefficients DL(t) for Gamma-distributed ps(v) under uni-532

form and flux-weighted initial conditions. The parallel dashed lines in Figure 3 show the533

corresponding κ(t) using the parameters obtained from a Gamma fit to the pe(v) shown534

in Figure D.1, see also Appendix E: .535

4.1.2.2 Lognormal fields For the lognormal conductivity field, we also observe536

a power-law like behavior that sets in after the ballistic regime. In fact, we find the power-537

law behavior κ(t) ∝ t5/4. Indeed, this is not a true power-law scaling law, but rather538

a preasymptotic cross-over behavior. This power-law like behavior arises in the time in-539

terval that corresponds to the velocity range over which the velocity distribution pe(v)540

shown in Figure D.1 may be fitted by the power-law pe(v) ∝ vα−1 with α = 3/4, as541

discussed in Appendix D: . Thus, the CTRW framework predicts the behavior κ(t) ∝542

t3−β , see (43), with β = 1+α over the time range corresponding to the velocity range543

in Figure D.1. The cross-over behavior is well predicted by the outdrw and the btdrw (not544

shown) approaches as show in Figure 3b.545

4.2 Macrodispersion546

In this section, we focus on the asymptotic long time dispersion behavior for the547

Lognormal hydraulic conductivity fields predicted by the proposed CTRW model. The548

motivation for studying the asymptotic regime is threefold. First, we want to empha-549

size that the displacement variance asymptotically grows linearly with time, and thus550

show that the observed power-law in the σ2
f = 7 case is indeed only a cross-over, as dis-551

cussed above. Second, we show that the derived CTRW model provides estimates for macrodis-552

persion, which are consistent with published results from direct numerical Monte-Carlo553

simulations and stochastic perturbation theory calculations. This demonstrates again554

the capabilities of the proposed continuous time random walk approach for the predic-555

tion of large scale asymptotic solute dispersion at a low computational cost, which is re-556

duced by orders of magnitude compared to the full Monte-Carlo simulation.557

Figure 4 shows the long time behaviors estimated from the outdrw and btdrw mod-563

els. The asymptotic behavior of κ(t) is linear and given by564

κ(t) = 2D∞L t, (44)565
566

where D∞L is the asymptotic longitudinal macrodispersion coefficient. Unlike the veloc-567

ity distribution for the Gamma fields, here the behavior of pe(v) in the limit v → 0 does568
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Figure 4. Displacement variances for the lognormal conductivity field with σ2
f = 7 obtained

from (squares) Monte-Carlo simulations in 102 realizations each with 104 particles per realization,

(green dashed line) the btdrw model and (blue dashed line) outdrw model for uniform injec-

tion. The solid line denotes the prediction of the analytical expression (45) for the asymptotic

longitudinal dispersion coefficient.

558

559

560

561

562

not give rise to heavy-tailed transition time distributions ψ(t). The Bernoulli velocity569

model gives an analytical expression for the asymptotic dispersion coefficient for the dis-570

placement along streamlines [Dentz et al., 2016]. In Appendix E: we use this result in571

order to derive the following expression for the asymptotic longitudinal dispersion co-572

efficient,573

D∞L =
〈ve〉`c
χ2

( 〈ve〉
vH
− 1

)
, (45)574

575

where vH is the harmonic mean of the Eulerian velocity PDF pe(v). As shown in Fig-576

ure 3, the Bernoulli model gives an asymptotic dispersion coefficient that is slightly larger577

than the one estimated by the Ornstein-Uhlenbeck model. Fiori et al. [2003] used a self-578

consistent approximation to derive an exponential dependence of D∞L ∝ exp(σ2
f/2) of579

the asymptotic longitudinal macrodispersion coefficient for σ2
f � 1. This estimation580

is based on the assumption that velocity distribution at small values is proportional to581

the longnormal distribution of hydraulic conductivity. Expresssion (45) is consistent with582

this estimate, as can be seen by using a lognormal distribution for ve. Then, at σ2
ln v �583

1, where σ2
ln v ∝ σ2

f is the variance of ln ve, we find an exponential dependence because584

vH ∝ exp(−σ2
ln v/2) and 〈ve〉/χ = 〈q〉.585

We study now the longitudinal macrodispersion coefficients for different σ2
f based591

on the outdrw model. We choose to rely on this model because it provides an accurate592

prediction of the Lagrangian velocity statistics [Hakoun et al., 2019]. Figure 5a shows593

the evolution of DL(t) for uniform injection condition, this means p0(v) = pe(v). At594

short times, we observe a ballistic linear increase and a cross-over toward the asymptotic595

regime for times t� τc. The time to reach the asymptotic regime depends on the vari-596

ance σ2
f of the logarithm of hydraulic conductivity. While for σ2

f = 0.1 the asymptotic597

value is reached for times around 10τc, the time to reach the asymptotic regime is about598

104τc for σ2
f = 7. A similar observation was made by de Dreuzy et al. [2007] in direct599

numerical simulations, which reached times of about 103τc. This behavior can be attributed600
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Figure 5. (a) Evolution of the longitudinal dispersion coefficient predicted by the Ornstein-

Uhlenbeck model for (diamonds) σ2
f = 0.1, (circles) 1, (squares) 4 and (triangles) 7 for uniform

particle injection. The horizontal lines denote the respective asymptotic values. (b) Asymptotic

dispersion coefficients as a function of σ2
f from (squares) the Ornstein-Uhlenbeck model, (dashed

line) Eq. (46), (solid line) Eq. (47) and (dash-dotted lines) Eq. (48).

586

587

588

589

590

on one hand to the fact that the correlation length `c is increasing with σ2
f , which is weak,601

however. On the other hand, and more important is the broader distribution of veloc-602

ities, which imply a broader spectrum of relaxation times toward the asymptotic regime.603

604

Figure 5b shows the asymptotic values D∞L obtained from the outdrw model, the605

estimates by de Dreuzy et al. [2007] and Gotovac et al. [2009] as well as first-order per-606

turbation theory. For small disorder variance σ2
f � 1, stochastic perturbation theory607

gives for an exponential covariance model the expression [Gelhar and Axness, 1983]608

D∞L = σ2
fλ〈q〉. (46)609

610

Expression (45) at small σ2
f � 1 is consistent with (46), see Appendix E: . For stronger611

disorder several authors have proposed expressions for the dependence of D on the dis-612

order variance σ2
f for multi-lognormal hydraulic conductivity fields. de Dreuzy et al. [2007]613

found the following relation614

D∞L = 〈q〉λ
(
0.7σ2

f + 0.2σ4
f

)
. (47)615

616

Gotovac et al. [2009] propose the expression617

D∞L = 〈q〉λ
(
σ2
f

4
+
σ4
f

5
+

σ6
f

500

)[
4

3
+

3

2
exp

(
−
σ2
f

5

)]
. (48)618

619

The value obtained for D∞L for σ2
f = 0.1 is consistent with expressions (46)–(48). For620

σ2
f = 1, the outdrw estimate for D∞L is on the curve (48), for σ2

f = 4 and 7, the out-621

drw estimate lies on the curve (47). We have shown that the proposed Markov model622

allows to make predictions for the non-perturbative behaviors and we have provided an623

explanation why the time scales for which the asymptotic time regime is reached increase624

with the heterogeneity strength, i.e. with σ2
f . The results of the Markov model are fully625

consistent with classical stochastic perturbation theory, as well as with the known re-626

sults for large σ2
f [de Dreuzy et al., 2007; Gotovac et al., 2009]. In this sense, the pre-627

sented results close a gap between classical stochastic models and time domain and con-628

tinuous time random walk models.629
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Figure 6. Concentration distributions at t = 100τc for the lognormal field with σ2
f = 7 for

(a) uniform and (b) flux-weighted injection conditions. Symbols indicate the direct numerical

simulations with 106 particles per each of the 102 realizations. The red dashed lines refer to the

predictions of the btdrw with 107 particles, the solid blue lines to the outdrw predictions for

`c = 3.5λ and the solid green lines for `c = 4λ using 107 particles.
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Figure 7. Concentration profiles at t = 83τc in Gamma K fields for uniform (left panel) and

flux-weighted (right panel) injection modes. Symbols indicate the results from Monte Carlo direct

numerical simulations (100 realizations, 106 particles/realization). Lines refer to numerical sim-

ulations of the TDRW model with 107 particles, using the Bernoulli (dashed red lines) and the

Ornstein-Uhlenbeck (solid blue lines) models for the evolution of the velocity PDF.
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4.3 Concentration distribution630

We study the concentration distributions along the mean flow direction in direct641

numerical simulations and the predictions by the upscaled stochastic model based on the642

proposed velocity Markov processes for lognormal and Gamma conductivity fields.643

Figure 6 shows the particle concentration for the lognormal fields obtained through644

direct numerical simulations and the predictions of the btdrw and outdrw models. As645

expected, for the uniform injection, we observe particle localization at the injection point646

because particles sample high and low flow velocities with equal probability. For the flux-647

weighted injection, there is no localization because particles sample preferentially higher648

flow velocities. The peaks move approximately with the same velocity. This result em-649

phasizes the importance of conditioning on the initial data, see also the works by Le Borgne650

et al. [2007] and Dagan [2017] for Darcy scale heterogeneous media, Hyman et al. [2015]651

and Kang et al. [2017] for fractured media, Morales et al. [2017] and Puyguiraud et al.652

[2019] for por-scale transport. The outdrw predicts the concentration profiles under both653

injection conditions with a slight underestimation of the forward tail under both injec-654

tion conditions. This slight mismatch may be caused by uncertainty in the correlation655

length `c given by the empirical expression (D.1). For a larger `c, more particles are found656
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in the backward and forward tails due to the increased persistence of low and high ve-657

locities in particular. This is illustrated in Figure 6 for `c = 4λ, which provides a bet-658

ter match with the direct numerical simulations. Nevertheless, in the following, we will659

employ the values for `c given in Appendix D: . The btdrw predictions are qualitatively660

sound as they capture solute localization at the origin in the case of uniform injection661

and the lack of it for flux-weighted. The weight of the peak at zero and peak displace-662

ment are overestimated, however. This may be traced back to the fact that in the Bernoulli663

model velocity transitions occur at a constant velocity-independent rate, while it appears664

that high velocities converge slower and low velocities faster toward the steady state. Re-665

markably, Figure 6 b also shows a mismatch between the btdrw predictions and the re-666

sults by direct numerical simulations, despite the fact that the velocity statistics are sta-667

tionary under flux-weighted injection conditions. This discrepancy again can be traced668

back to the velocity transition probability between subsequent velocities, which is the669

same for all velocities, unlike in the Ornstein-Uhlenbeck process, for which the transi-670

tion probability depends on the velocity value.671

Figure 7 shows the concentration profiles for the Gamma conductivity fields. The672

basic features distinguishing the uniform and flux-weighted injection conditions are the673

same as for the lognormal case. Also, the prediction of the outdrw model compares well674

with the direct numerical simulations except for a slight mismatch in the forward tails,675

similar as for the lognormal fields. Here, the prediction of the btdrw model compares bet-676

ter with the direct simulation than for the lognormal field. The peak is slightly overes-677

timated, the tail underestimated. This better match of the btdrw model may be due to678

the fact that here transport is dominated rather by the strong tailing of the steady ve-679

locity PDF toward low velocities than by correlation. This means the specific velocity680

evolution model is less important than accounting for the fact that the initial velocity681

distribution is non-stationary.682

In order to emphasize further the importance of flow heterogeneity at the injection683

region, we condition the initial velocity to the knowledge of the local properties at the684

injection site. To do so we consider two different scenarios. First, we inject particles in685

regions of low velocities. This scenario is motivated by the MADE experiment [Boggs686

et al., 1992; Adams and Gelhar , 1992; Rehfeldt et al., 1992], where the tracer injection687

was performed in low permeability regions [Harvey and Gorelick , 2000]. In our simula-688

tions, injection of particles is performed along a line, but only the velocities belonging689

to the first 10 percentiles of the Eulerian velocity PDF are taken into account. Second,690

we consider a scenario, in which particles are injected into regions of high velocities, so691

that the initial velocities belongs to the highest 10 percentiles of the full Eulerian veloc-692

ity PDF. The velocity ranges are highlighted in Figure D.1. Figure 8 shows the concen-693

tration profiles for injections in regions of low and high velocities obtained by the direct694

Monte Carlo simulations and the predictions by the outdrw approach for lognormal and695

Gamma conductivity fields. For injection in regions of low velocities, particles travel on696

average less distance than in the uniform and flux-weighted injection cases and a signif-697

icant backward tail can be observed. The concentration distribution is characterized by698

a peak at the origin, which is due to retention by low velocities and a moving peak of699

mobile solute. For injection in high velocity zones, there is no particle retention at the700

injection point and a fast advance of the peak position. The outdrw predicts both sce-701

narios qualitatively and quantitatively with a slight mismatch at the forward tails for702

the reasons discussed above.703

4.4 Breakthrough curves710

We now study the impact of medium heterogeneity and initial velocity distribu-715

tion and its prediction in terms of the stochastic particle models for solute breakthrough716

curves measured at different control planes. The direct numerical simulations consider717

102 disorder realizations with 107 particles per realization. The data from the direct nu-718
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Figure 8. Concentration profiles obtained by Monte Carlo simulation for injection in (cir-

cles) low and (squares) high velocity regions using 107 particles in 102 medium realizations. The

profiles for the lognormal K-distribution with σ2
f = 7 are for times t = 80τc and t = 135τc

respectively. For the Gamma distribution with α = 1/2, the profiles are at t = 110τc. The direct

numerical simulations are compared with the predictions of the corresponding outdrw model

conditioned on (solid line) low and (dashed line) high flow velocities using 107 particles.
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Figure 9. Breakthrough curves measured at (a) x1 = 2λ and (b) x1 = 20λ from (symbols)

Monte Carlo simulations for (squares) uniform and (circles) flux-weighted injection for lognormal

conductivity with σ2
f = 7. The solid lines indicate the corresponding predictions by the outdrw

for 107 particles.
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merical simulations is compared to the predictions of the stochastic particle model, which719

is solved numerically using 108 particles. As above, we consider lognormal conductiv-720

ity fields with σ2
f = 7 and Gamma fields characterized by α = 1/2. The initial parti-721

cle distributions are uniform and flux-weighted. The stochastic particle model predicts722

the breakthrough time at a control plane at distance x1 from the inlet as723

t(x1χ) =

x1χ∫
0

ds
1

vs(s)
, (49)724

725

see (20). For the flux-weighted initial condition, the s-Lagrangian velocity PDF ps(v, s)726

is stationary and equal to ps(v) = vpe(v)/〈ve〉. Thus, under these conditions, the mean727

arrival time is728

〈t(x1χ)〉 =

x1χ∫
0

ds

∞∫
0

dv
1

v

vpe(v)

〈ve〉
=
x1χ

〈ve〉
≡ x1

〈q〉 . (50)729

730

Under non-stationary conditions, this is in general not the case and the mean breakthrough731

time evolves with distance x1,732

〈t(x1χ)〉 =

x1χ∫
0

ds

∞∫
0

dv
ps(v, s)

v
. (51)733

734

For the btdrw model, ps(v, s) = p0(v) exp(−s/`c) + [1 − exp(−s/`c)]ps(v). This gives735

for the mean breakthrough time736

〈t(x1χ)〉 =
x1

〈q〉 + [1− exp(−x1χ/`c)]

∞∫
0

dv
`c
v

[p0(v)− ps(v)]. (52)737

738

For x1χ� `c, the mean breakthrough time is in leading order 〈t(x1χ)〉 ≈ x1/〈q〉, this739

means the mean breakthrough times for different initial distributions converge at large740

distances. These results emphasize the impact of the initial velocity distribution on the741

breakthrough curves. Note that the breakthrough curve in this framework is given by (26).742

For a control plane located at a distance x1 < `c smaller than the velocity correlation743

length, we may approximate the s-Lagrangian velocity distribution ps(v, s) ≈ p0(v) by744

the distribution of initial velocities. Thus, we obtain for the breakthrough curve at x1 <745

`c746

f(t, x1) = 〈δ(t− x1χ/v0)〉 ≡ x1χ

t2
p0(x1χ/t). (53)747

748

This implies for the uniform and flux-weighted initial particle distributions749

f(t, x1) =
x1χ

t2
pe(x1χ/t), f(t, x1) =

x2
1χ

2

t3〈ve〉
pe(x1χ/t), (54)750

751

respectively, see also Kang et al. [2017]. Thus, at short distances the breakthrough curves757

for uniform injection show stronger tailing than for flux-weighted. In the following, we758

investigate these features and the impact of the heterogeneity distribution for the full759

breakthrough curves. The direct numerical data are compared to the predictions of the760

outdrw, which is based on an Ornstein-Uhlenbeck process for the normal scores of ve-761

locity.762

Figures 9 and 10 show the breakthrough curves obtained by direct Monte Carlo763

simulations for the lognormal and Gamma fields, and the respective predictions by the764

outdrw model. The outdrw provides accurate predictions at short and longer distances765

from the inlet both for flux-weighted and uniform injection conditions. As discussed above,766
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Figure 10. Breakthrough curves at measured at (a) x1 = 2λ and (b) x1 = 20λ from (symbols)

Monte Carlo simulations for (squares) uniform and (circles) flux-weighted injection for Gamma

conductivity with α = 1/2. The solid lines indicate the corresponding predictions by the outdrw

for 107 particles. The dashed line is expression (54) for uniform injection and the dash-dotted

lines indicates the scalings t−1−α and t−1−β with α = 0.58 and β = 1.58.

752

753

754

755

756

the breakthrough curves show stronger tailing for the uniform injection conditions be-767

cause it places more weight on the low flow velocities. For the lognormal field the break-768

through curves are converging with increasing distance x1 from the inlet.769

For the Gamma fields, we observe a clear power-law tailing, whose exponent is re-770

lated to the behavior of the velocity PDF p0(v) and ps(v) at small velocities. As discussed771

in the previous section, pe(v) ∝ vα−1 with α = 0.58. According to (54), this implies772

that f(t, x1) ∝ t−1−α for uniform injection and x1 < `c. For the flux-weighted injec-773

tion, we obtain accordingly f(t, x1) ∝ t−2−α. These behaviors are clearly shown in Fig-774

ure 10a. Figure 10b shows that the bulk of the breakthrough curves converge at increas-775

ing distance x1 and thus the mean breakthrough times, as discussed above. The differ-776

ence in the exponent of the power-law tails, however, persists. In order to understand777

this, we note that the breakthrough curves can be seen as the convolution of the initial778

transition time distribution ψ0(t) with the transition time distributions ψ(t) of the sub-779

sequent steps. Here, ψ0(t) ∝ t−1−α with α = 0.58 while ψ(t) ∝ t−1−β with β = 1 +780

α = 1.58. This convolution is dominated by ψ0(t), which means that the tail of the break-781

through curves here is dominated by the initial velocity distribution. For the lognormal782

conductivity field on the other hand, the initial velocity distribution only dominates at783

short distance, but does not persist at large distances x1 from the inlet because the ve-784

locity distribution decays stronger than a power-law at small velocities.785

5 Conclusions786

We study the mechanisms and stochastic dynamics of advective transport in het-787

erogeneous porous media with the aim of deriving an upscaled modeling approach to pre-788

dict large scale solute dispersion. To this end, we conduct direct numerical Monte Carlo789

simulations in heterogeneous hydraulic conductivity fields, which are compared to a stochas-790

tic particle model which is based on the representation of equidistant s(pace)-Lagrangian791

velocities as Markov processes. We focus on two injection modes over a line that spans792

more than 100 correlation lengths λ perpendicular to the mean flow direction, which is793

close to ergodic injection conditions. As observed in the literature, the preasymptotic794

transport behavior depends critically on the injection mode and the heterogeneity in the795

injection region, which stresses the need for a predictive upscaled transport approach that796

can be conditioned on the initial data. The proposed continuous time random walk ap-797

proach can be conditioned on the initial velocity distribution in a systematic way through798

the representation of the s-Lagrangian velocities as a Markov process. We consider two799
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Markov models of different complexity, a Bernoulli process for the actual velocities and800

a Ornstein-Uhlenbeck process for the normal scores of the particle velocities. The result-801

ing CTRW models provide accurate predictions for the evolution of the concentration802

distribution, dispersion and breakthrough curves for different types of heterogeneity and803

different injection conditions.804

The derived CTRW model can be implemented according to the following strat-805

egy. First, determine the flow statistics of the heterogeneous porous medium from nu-806

merical flow simulations in the hydraulic conductivity field with given geostatistical char-807

acteristics and determine the velocity statistics at the injection region as well as the ad-808

vective tortuosity. Second, determine the velocity correlation length either from pertur-809

bation theory or from an empirical regression such as Eq. D.1 for the outdrw model or810

the similar expression given in [Cvetkovic et al., 1996]. These quantities then fully pa-811

rameterize the velocity transition model, the Bernoulli or the Ornstein-Uhlenbeck pro-812

cess, which is incorporated into the time domain random walk model that allows for ac-813

curate and fast predictions of the large scale transport behavior.814

Apart from the practical value for the fast prediction of large scale transport, the815

stochastic particle model sheds some new light on the mechanisms of preasymptotic and816

asymptotic solute dispersion, specifically on the role of the velocity distribution versus817

correlation. This is manifested for the Gamma fields in the superlinear asymptotic growth818

of the spatial variance of the solute distribution is observed. This superdiffusive behav-819

ior originates in a broad distribution of low flow velocities. For the lognormal fields, the820

longitudinal macrodispersion coefficient evolves from a ballistic early time behavior through821

a broad crossover region towards a constant asymptotic long time value. The size of the822

crossover region and the time-scale to reach the asymptotic value depend strongly on the823

variance σ2
f of log-hydraulic conductivity. For increasing values of σ2

f , the Eulerian ve-824

locity PDF becomes more tailed towards low velocities. As a result, the times for which825

particles are caught in low velocity zones, increase. This explains the increasing times826

to reach the asymptotic macrodispersion regime.827

We expect the fundamental flow and transport mechanisms observed and quanti-828

fied in this work to hold also for 3-dimensional heterogeneous porous media. The basic829

mechanism is the existence of velocities transitions on characteristic length scales along830

particle trajectories. This property requires essentially that the heterogeneous medium831

is stationary and can be characterized by finite correlation lengths. Thus, it is not re-832

stricted to 2-dimensional isotropic media. The dimensionality of space is expected to af-833

fect quantitatively both the tortuosity χ and the correlation scale `c. The extension of834

the stochastic particle model to 2 and 3 dimensions requires the statistical characteri-835

zation of the direction angle [Benke and Painter , 2003], whose mean points in the mean836

flow direction with the magnitude 1/χ.837

The proposed approach is valid for advection-dominated transport at high Péclet838

numbers, which at the field scale is rather the rule than an exception [Dagan, 1989; Gel-839

har , 1993; Rubin, 2003]. Nevertheless, the impact of local scale dispersion is expected840

to mitigate for example the localization of solute at the injection regions because par-841

ticles may be released by dispersive mass transfer. Also, persistent superlinear growth842

of the variance, which is due to the persistence of low velocities will eventually tend to-843

wards a linear behavior because particle velocities decorrelate due to local dispersive mass844

transfer. In the current modeling framework, the impact of local-scale dispersion on large845

scale transport can be accounted for through a cut-off in the transition times over the846

characteristic heterogeneity length scales [Dentz et al., 2004].847

In conclusion, while some questions remain open, the proposed approach represents848

a step towards linking hydraulic medium properties and flow conditions to large scale849

transport in a predictive upscaled modeling framework.850
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A: Direct numerical simulations856

Direct numerical simulations are of the Monte Carlo type. We consider 102 real-857

izations of K(x) of each random field under consideration. Monte Carlo simulations are858

carried out according to a methodology that consists of two steps. The first step con-859

sists in generating random fields of hydraulic conductivity and in solving Darcy equa-860

tion (2) numerically to obtain the flow field. Secondly, we simulate transport through861

particle tracking, which uses 104 particles in each disorder simulation. The methodol-862

ogy is summarized in the following. More details can be found in Hakoun et al. [2019].863

A.1 Field generation and flow solver864

We generate multi-Gaussian fields Y (x) of size Lx×Ly using the Random Fields865

package [Schlather et al., 2015] of the R software environment for statistical computing.866

The resolution of all fields is ∆x = ∆y = λ/10. We then map the point values of the867

multi-Gaussian field onto the desired distribution through the transformation (3), which868

is implemented by inverse transform sampling [Devroye, 1986]. Table A.1 summarizes869

the values of the parameteres that we used in the simulations.870

Next, we solve the Darcy equation (2) for incompressible flows within the gener-871

ated K(x) fields. We impose permeameter-like boundary conditions, i.e. a constant head872

gradient along the x direction and no-flow conditions at the bottom and top boundaries.873

The head gradient is set so that flow occurs from left to right. The inter-cell hydraulic874

conductivity is taken as the harmonic mean of the K of two adjacent cells. We use a flow875

solver based on the finite volume scheme adapted from Aarnes et al. [2007]. To avoid876

instabilities of the flow field due to border effects, we perform transport simulations by877

excluding an external frame of 20λ for the lognormal fields and of 15λ for the Gamma878

fields. Particle injection is thus performed along a line placed at x1 = 20λ and at x1 =879

15λ, respectively.880

A.2 Particle tracking881

The last step consists in simulating transport in the obtained Darcy flows by track-882

ing particles at equal distances as they advect along their streamlines. The discretized883

trajectory reads884

xn+1 =
q[xn]∆s

||q(xn)|| , tn+1 = tn +
∆s

||q[xn]|| , (A.1)885

886

where ∆s is a constant spatial increment. The process (A.1) is a time domain random887

walk [Noetinger et al., 2016; Russian et al., 2016]. Compared to classical random walk888

particle tracking, this process guarantees faster computations for our scenarios, since the889

number of steps does not depend on the local velocity. This is an asset for us, since our890

flow fields are characterized by very low velocities. The finite volume flow solver provides891

the values of the velocity components at the cell faces. To obtain the velocities within892

the cells, we use the bi-linear interpolation scheme proposed by Pollock [1988]893

q1(x) = A1(x1 − x1,L) + q1,L (A.2)894

q2(x) = A2(x2 − x2,B) + q2,B , (A.3)895
896
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Field λ [m] Lx Ly ∆x, ∆y µ σ2
Y α k0 [m/s] kc [m/s]

Lognormal 10 600λ 150λ λ/10 0 0.1–7 - - -
Gamma 10 300λ 300λ λ/10 - - 1/2 10−11 5

Table A.1. Parameters used for direct numerical simulations for the lognormal and Gamma

fields considered in this study.

901

902

where897

A1 = (q1,R − q1,L)/∆x1 (A.4)898

A2 = (q2,T − q2,B)/∆x2, (A.5)899
900

where x1,L and x2,B are the coordinates of the left and bottom face of the cell, respec-903

tively, q1,L and q1,R are the longitudinal components of the velocity at the left and right904

cell face, respectively, while q2,B and q2,T are the transverse components of the veloc-905

ity at the bottom and top cell face, respectively.906

B: Advective tortuosity907

The advective tortuosity compares the length of the streamline to the linear dis-908

tance. Advective tortuosity has been considered in the context of pore-scale flow [Ko-909

ponen et al., 1996; Ghanbarian et al., 2013]. Here we determine it in the context of Darcy-910

scale flow with the aim of providing an approximation for the particle displacement in911

mean flow direction. To this end, we consider the 1-component x1(s,a) of the s-Lagrangian912

trajectory x(s,a) defined in Eq. (10),913

dx1(s,a)

ds
=

q1[x(s,a)]

|q[x(s,a)]| ≡ ω(s,a). (B.1)914

915

Thus, the linear distance as a function of streamwise distance is given by916

x1(s,a) =

s∫
0

ds′
q1[x(s,a)]

|q[x(s,a)]| . (B.2)917

918

Thus, the ratio between linear and streamwise distance is given by919

x1(s,a)

s
=

1

s

s∫
0

ds′
q1[x(s,a)]

|q[x(s,a)]| , (B.3)920

921

this means, it is equal to the streamwise average of q1[x(s,a)]/|q[x(s,a)]|. Under ergodic922

conditions, the streamwise average is equal to the average over the ensemble of particles.923

In order to define the ensemble average here, we recall that for the streamwise sampling924

mode employed in the s-Lagrangian formulation, the flux-weighted injection represents925

the stationary initial condition [Dentz et al., 2016]. Thus, we consider the ensemble av-926

erage with respect to the flux-weighted injection condition (12). This gives927

lim
s→∞

1

s

s∫
0

ds′
q1[x(s,a)]

|q[x(s,a)]| = lim
V0→∞

∫
Ω0

da
|q(a)|
〈|q(a)|〉

q1[x(s,a)]

|q[x(s,a)]| ≡ χ
−1, (B.4)928

929

which is equal to the inverse of tortuosity. Thus, tortuosity here compares the stream-930

wise distance s to linear distance x1(s,a) at large distances s.931
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B.1 Approximation of displacement in mean flow direction932

It quantifies at the same time the average of ω(s,a) such that we can approximate933

dx1(s, a)

ds
≈ χ−1. (B.5)934

935

This is valid for streamwise distances s� λ because then936

x1(s, a) = s

1

s

s∫
0

ds′
q1[x(s,a)]

|q[x(s,a)]|

 ≈ s

χ
. (B.6)937

938

Note that for s� λ939

x1(s,a) = χ−1s+ ω′0s, (B.7)940
941

where ω′(s,a) = ω(s,a)− χ−1. This implies that942

x1(t,a) = χ−1v0t+ ω′0v0t, (B.8)943
944

where ω′0 = ω′(s = 0,a). Thus, we obtain for the mean displacement945

µ(t) = χ−1〈v0〉t (B.9)946
947

and for the displacement variance948

κ(t) = χ−2σ2
v0t

2 + σ2
ω0
σ2
v0t

2 (B.10)949
950

Thus, the approximation (B.5) estimates accurately the early time behavior of the mean951

displacement, but underestimates the ballistic early time behavior of the displacement952

variance.953

B.2 Explicit analytical expression for tortuosity954

We obtain an explicit analytical expression for χ by considering the ensemble av-955

erage956

χ−1 = lim
V0→∞

1

V0

∫
Ω0

da
|q(a)|
〈|q(a)|〉

q1[x(s,a)]

|q[x(s,a)]| (B.11)957

958

Thus, we perform the variable transform a→ x,959

χ−1 = lim
V0→∞

1

V0

∫
Ω(s)

dx
1

J(s,a)

|q(a)|
〈|q(a)|〉

q1(x)

|q(x)|

∣∣∣∣
a=a(x,s)

(B.12)960

961

which is characterized by the Jacobian determinant J(s,a), which is the determinant of962

the deformation gradient tensor963

Fij(s,a) =
∂xi(s,a)

∂aj
. (B.13)964

965

The Jacobian satisfies [Batchelor , 2000, p. 75]966

∂J(s,a)

∂s
= J(s,a) ∇ · q(x)

|q(x)|

∣∣∣∣
x=x(s,a)

. (B.14)967

968

This expression can be expanded as969

∂J(s,a)

∂s
= −J(s,a) q(x) · ∇|q(x)|

|q(x)|2
∣∣∣∣
x=x(s,a)

, (B.15)970

971
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where we used ∇ · q(x) = 0. In order to simplify the right side, we note that972

d|q[x(s, a)]|
ds

=
dx(s, a)

ds
· ∇|q(x)|x=x(s,a). (B.16)973

974

By using (10), the latter can be written as975

d|q[x(s, a)]|
ds

= q(x) · ∇|q(x)

|q(x)|

∣∣∣∣
x=x(s,a)

(B.17)976

977

and therefore978

q(x) · ∇|q(x)

|q(x)|2
∣∣∣∣
x=x(s,a)

=
1

vs(s,a)

dvs(s,a)

ds
, (B.18)979

980

where we set vs(s,a) = |q[x(s,a)]|. Thus, Eq. (B.15) can be written as981

∂J(s,a)

∂s
= −J(s,a)

d ln[vs(s,a)]

ds
. (B.19)982

983

This equation can be integrated by separation of variables, which gives984

J(s,a) =
vs(0,a)

vs(s,a)
=

|q(a)|
|q[x(s,a)]| , (B.20)985

986

where we used that by definition J(s = 0,a) = 1. Inserting this expression into (B.12)987

gives988

χ−1 = lim
V0→∞

1

V0

∫
Ω(s)

dx
q1(x)

〈|q(a)|〉 =
〈q1(x)〉
〈|q(x)|〉 . (B.21)989

990

C: Boltzmann equation991

We derive here equation (27) for the joint distribution p(x1, v, t) of particle posi-992

tion and velocity. The joint distribution is defined by993

p(x1, v; t) =

∞∫
0

ds〈δ[s− s(t)]δ[x1 − x1(s)]δ[v − v(s)]〉, (C.1)994

995

We make use of the following property of Dirac Delta996

δ[s− s(t)] =
δ[t− t(s)]
ds(t)/dt

, (C.2)997

998

which, in virtue of the equivalence ds(t)/dt = v(t) = vs[s(t)], reads as999

δ[s− s(t)] =
δ[t− t(s)]
vs(s)

. (C.3)1000

1001

By substituting the latter into Equation (C.1), we obtain1002

p(x1, v; t) =

∞∫
0

dsv−1R(x1, v, t; s) (C.4)1003

1004

where we defined1005

R(x1, v, t; s) = 〈δ[t− t(s)]δ[x1 − x1(s)]δ[v − v(s)]〉. (C.5)1006
1007
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By considering an increment of length ∆s, we can write1008

R(x1, v, t; s+ ∆s) =

∞∫
0

dv′r(v,∆s|v′)R(x1 −∆s/χ, v′, t−∆s/v′; s). (C.6)1009

1010

We consider the limit ∆s→ 0 and perform the Taylor expansion1011

R(x1 −∆s/χ, v, t−∆s/v; s) = R(x1, v, t; s)−
∆s

χ

∂

∂x1
R(x1, v, t; s)1012

− ∆s

v

∂

∂t
R(x1, v, t; s) + ... (C.7)1013

1014

so that Equation (C.6) reduces to1015

R(x1, v, t; s+ ∆s) =

∞∫
0

dv′r(v,∆s|v′)R(x1, v
′, t; s)1016

−
∞∫

0

dv′r(v,∆s|v′)∆s
[

1

χ

∂

∂x1
+

1

v′
∂

∂t

]
R(x1, v

′, t; s). (C.8)1017

1018

We can further write1019

∂R(x1, v, t; s)

∂s
=

∞∫
0

dv′
r(v,∆s|v′)

∆s
[R(x1, v

′, t; s)−R(x1, v, t; s)]1020

−
[

1

χ

∂

∂x
+

1

v

∂

∂t

]
R(x1, v, t; s), (C.9)1021

1022

where we used that r(v, 0|v′) = δ(v−v′). Integration of Equation (C.9) over s and us-1023

ing expresion (C.4) gives (27).1024

D: Setup of stochastic particle model1025

The stochastic particle model requires as input the Eulerian velocity point distri-1026

bution pe(v), advective tortuosity χ and the Lagrangian velocity correlation scale `c. Through-1027

out Section 4, we focus on the preasymptotic transport behaviors in the Lognormal field1028

for σ2
f = 7 and the Gamma field with β = 1/2. In Section 4.2, we use the ouctrw to1029

model asymptotic longitudinal macrodispersion coefficients for σ2
f = 0.1, 1, 4 and 7.1030

The velocity correlation scale `c for the hydraulic conductivity fields under consid-1031

eration are were studied in detail in Hakoun et al. [2019]. The correlation length is model1032

dependent and increases with the variance of the log-conductivity f(x). In the Ornstein-1033

Uhlenbeck model, the correlation length for the lognormal fields is given by the empir-1034

ical expression1035

`c
λ

= 0.181σ2
f + 2.221, (D.1)1036

1037

which is consistent with the expression provided in Cvetkovic et al. [1996]. The corre-1038

lation length increases with increasing σ2
f because the streamline tortuosity increases and1039

thus the streamline length. The correlation length for the Gamma field in the Ornstein-1040

Uhlenbeck model is `c = 2.7λ. In the Bernoulli model, the correlation length for the1041

Lognormal field with σ2
f = 7 is `c = 5.7λ and for the Gamma field it is `c = 3.1λ.1042

The PDFs are computed by sampling the Eulerian velocity magnitudes in every
node of the numerical velocity field for all the 102 medium realizations, which gives a
sample of about 109 velocity values. The histograms are computed using logarithmically
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Figure D.1. Eulerian velocity PDF for the lognormal and Gamma conductivity fields. Col-

ored areas indicate the velocity range corresponding to the first (light gray) and the last (dark

gray) 10 percentiles. The solid lines represent the scalings pe(v) ∼ vα−1 with (a) α = 3/4 and (b)

α = 0.58.

1043

1044

1045

1046

spaced bins between the minimum and the maximum velocities. The data is normalized
by the total count and respective bin size. No smoothing is performed nor needed, be-
cause of the large amount of entries. We briefly describe some features of the Eulerian
velocity PDF for the lognormal fields with σ2

f = 7 and the Gamma field for β = 1/2,
which are shown in Figure D.1. The velocity PDFs for the Lognormal fields with σ2

f =
0.1, 1 and 4, which are used in Section 4.2 for the extrapolation of the longitudinal macrodis-
persion coefficients in the ouctrw are shown in Figure D.2. Figure D.1a shows that, in
an intermediate velocity range of about 1 and a half orders of magnitude, the velocity
PDF can be approximated with the power-law vα−1 with α = 3/4. Although no real
power-law arises, this approximation is useful to understand the preasymptotic disper-
sion behavior that we observe in the intermediate regime, which could be mistaken for
superdiffusion, as we discuss below. Figure D.1b shows the velocity PDF correspond-
ing to the Gamma field. Here, we observe a clear power-law tail as vα−1 toward low ve-
locities over several orders of magnitude with α = 0.58. For a power-law pe(v) ∝ vα−1,
the steady s-Lagrangian velocity PDF behaves as ps(v) ∝ vβ−1 with β = α + 1. This
implies that the transition probability ψ(t) given by Equation (29) scales as ψ(t) ∝ t−1−β .
The velocity distribution for σ2

f = 0.1 can be approximated by the lognormal distri-
bution

pe(v) =
1

v

exp
[
− log(v/〈ve〉)2/2σ2

ln v

]√
2πσ2

ln v

. (D.2)

In fact, the Darcy equation indicates that

ve(x) = K(x)|∇h(x)|. (D.3)

Thus, for a slowly varying head gradient ve(x) ∝ K(x). Furthermore, the mean and1049

variance of ve(x) are given in first order perturbation theory by ve = q and σ2
v = σ2

q1 =1050

3σ2
f/8 [Dagan, 1989], and σ2

ln v = 〈ve〉2σ2
v .1051

The advective tortuosities are determined from the mean velocity magnitude and1052

mean streamwise velocity according to Equation (19). Thus, we obtain for the advec-1053

tive tortuosities of the lognormal fields χ = 1 for σ2
f = 0.1, χ = 1.06 for σ2

f = 1,1054

χ = 1.2 for σ2
f = 4 and χ = 1.3 for σ2

f = 7. The tortuosity for the Gamma field is1055

χ = 1.2.1056
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Figure D.2. The triangles show pe(v) for σ2
f = 4, the circles for σ2

f = 1 and the square for

σ2
f = 0.1. The solid line denotes the lognormal distribution (D.2) with 〈ve〉 = 1 and σ2

ln v = 3σ2
f/8.

1047

1048

E: Longitudinal dispersion in the Bernoulli model1057

We consider here the analytical expressions for dispersion coefficients in the Bernoulli1058

model derived in Dentz et al. [2016]. These authors consider the dispersion of the par-1059

ticle position s(t) along streamlines, which is given by1060

D(t) =
1

2

d

dt

[
〈s(t)2〉 − 〈s(t)〉2

]
. (E.1)1061

1062

According to (20), x1(t) = s(t)/χ. Thus, the longitudinal dispersion coefficient DL(t)1063

is given in terms of D(t) as1064

DL(t) =
D(t)

χ2
. (E.2)1065

1066

E.1 Anomalous Dispersion1067

Dentz et al. [2016] derive expressions for D(t) for the Gamma-distributed pe(v)1068

pe(v) =
1

vcΓ(α)

(
v

vc

)α−1

exp

(
− v

vc

)
. (E.3)1069

1070

Under stationary conditions, this means for the uniform injection, they obtain for t�1071

τv1072

DL(t) =
〈ve〉`ccα
χ2(1− α)

(t/τ0)1−α, (E.4)1073

1074

where τ0 = `c/vc, c = Γ(2− α)/Γ(1− α). For the non-stationary case, this means for1075

the flux-weighted injection, DL(t) is given by1076

DL(t) =
〈ve〉2τα0 cα
χ2(1− α)

t1−α. (E.5)1077

1078

This gives for the displacement variances1079

κ(t) =

{
2cα〈ve〉`cτα−1

0 t2−α steady

2cα〈ve〉2τα0 t2−α non-steady,
(E.6)1080

1081

where cα = cα/[(1− α)(2− α)χ2]. Note that α = β − 1.1082
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E.2 Macrodispersion1083

Dentz et al. [2016] derived the following analytical expression for the dispersion of1084

particle positions s(t) along streamlines,1085

D = 〈ve〉`c
( 〈τ2

s 〉
2τ2
v

− 1

)
, (E.7)1086

1087

where τs is distributed according to ψs(t), which is given by1088

ψs(t) =
1

τv

∞∫
0

dv exp(−tv/`c)
vps(v)

〈ve〉
(E.8)1089

1090

where τv = `c/〈ve〉. Using relation (11) it can be written as1091

ψs(t) =
1

τv

∞∫
0

dv exp(−tv/`c)
v2pe(v)

〈ve〉2
(E.9)1092

1093

In order to obtain expression (45), we evaluate1094

〈τ2
s 〉 =

∞∫
0

dtt2ψs(t). (E.10)1095

1096

Using expression (E.9), we obtain1097

〈τ2
s 〉 =

1

τv

∞∫
0

dv
2`3c
v3

v2pe(v)

〈ve〉2
=

2`2c
〈ve〉

∞∫
0

dv
pe(v)

v
=

2`2c
〈ve〉vH

=
2τ2
v 〈ve〉
vH

, (E.11)1098

1099

where the harmonic mean of pe(v) is defined as1100

1

vH
=

∞∫
0

dv
pe(v)

v
. (E.12)1101

1102

Inserting (E.11) into (E.7) and using (E.2) gives (45). We now show the consistence of1103

this expression with stochastic perturbation theory. To this end, we first decompose ve1104

into its mean and fluctuation1105

ve =
√
q2
12 + q2

2 = 〈q〉+ q′1, (E.13)1106
1107

where we only account for terms linear in the velocity fluctuation and note that 〈q2〉 =1108

0. Using this decomposition in expression (45) and expanding up to first order in the ve-1109

locity fluctuation gives1110

D∞L ≈ 〈q〉`c
σ2
q1

〈q〉2 . (E.14)1111

1112

We note that in this approximation `c is equal to the correlation distance of the fluctu-1113

ations q′1. The velocity correlation `c and the velocity covariance are in leading order given1114

by [Dagan, 1989; Cvetkovic et al., 1996]1115

`c =
8

3
λ, σ2

q1 =
3

8
σ2
f . (E.15)1116

1117

Inserting this expressions into (E.14) gives expression (46) for the longitudinal macrodis-1118

persion coefficient in first order perturbation theory in σ2
f .1119
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