
HAL Id: hal-02309572
https://brgm.hal.science/hal-02309572

Submitted on 9 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Palaeozoic Basement of the Pyrenees
Josep Maria Casas, J. J Álvaro, S. Clausen, Maxime Padel, C. Puddu, J.

Sanz-López, T. Sánchez-García, M. Navidad, P. Castiñeiras, M. Liesa

To cite this version:
Josep Maria Casas, J. J Álvaro, S. Clausen, Maxime Padel, C. Puddu, et al.. Palaeozoic Basement
of the Pyrenees. Palaeozoic Basement of the Pyrenees, Springer, Cham, pp 229-259, 2019, Part
of the Regional Geology Reviews book series (RGR), Print ISBN 978-3-030-10518-1 / Online ISBN
978-3-030-10519-8. �10.1007/978-3-030-10519-8_8�. �hal-02309572�

https://brgm.hal.science/hal-02309572
https://hal.archives-ouvertes.fr


8Palaeozoic Basement of the Pyrenees

J. M. Casas, J. J. Álvaro, S. Clausen, M. Padel, C. Puddu, J. Sanz-López,
T. Sánchez-García, M. Navidad, P. Castiñeiras, and M. Liesa

Abstract
In the Pyrenees, the Cambrian-Lower Ordovician strata
represent a quiescent time span with no remarkable
tectonic activity, followed by a late Early-Mid Ordovician
episode of uplift and erosion that led to the formation of
the Sardic unconformity. Silurian sedimentation was
widespread and transgressive followed by a Devonian
succession characterized by a complex mosaic of sedi-
mentary facies. Carboniferous pre-Variscan sediments
(Tournaisian-Viséan cherts and limestones) precede the
arrival of the synorogenic siliciclastic supplies of the
Culm flysch at the Late Serpukhovian. All this succession
was subsequently affected by the Serpukhovian-
Bashkirian (Variscan) collision, as a result of which, the
Palaeozoic rocks were incorporated into the northeastern
branch of the Ibero-Armorican Arc.

8.1 Introduction

J. M. Casas, J. J. Álvaro

In the Pyrenees, the aftermath of the late Ediacaran-early
Terreneuvian magmatism, related to the Cadomian subduc-
tion, records the transition to passive-margin conditions.
Cambrian-Lower Ordovician strata represent a quiescent time
span with no remarkable tectonic activity, followed by a late
Early-Mid Ordovician episode of uplift and erosion that led to
the formation of the Sardic unconformity. Uplift was accom-
panied by magmatic activity that pursuit until the Late
Ordovician, the latter coincidingwith an extensional pulse that
developed normal faults and controlled the record of
post-Sardic sediments infilling palaeorelief depressions (the
significance of this magmatism and tectonic activity is still
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under debate; see Sect. 8.3). Silurian sedimentation was
widespread and transgressive, sealing the Sardic uplift
palaeorelief and Late Ordovician rifting pulsation, followed
by a Devonian succession characterized by a complex mosaic
of sedimentary facies. Tournaisian-Viséan cherts and lime-
stones represent the Carboniferous pre-Variscan sediments,
preceding the arrival of the synorogenic siliciclastic supplies
of the Culm flysch at the Late Serpukhovian. All this
succession was subsequently affected by the Serpukhovian-
Bashkirian (Variscan) collision, as a result of which, the
Palaeozoic rocks were incorporated into the northeastern
branch of the Ibero-Armorican Arc. In this chapter, we update
data and interpretations from these Palaeozoic rocks of the
Pyrenees, with a new proposal for the lower
Cambrian-Ordovician stratigraphy and an update of the Upper
Ordovician, Silurian, Devonian and pre-Variscan Carbonif-
erous stratigraphy. Exposed data emphasize the affinity of the
Pyrenean basement rocks with that of the neighbouring
Sardinia, Mouthoumet and Montagne Noire-French Central
Massif domains, as well as its differences with the Palaeozoic
evolution of the Iberian Massif.

In the Pyrenees, the pre-Variscan Palaeozoic rocks con-
stitute a 3–4 km-thick succession that crops out in the
backbone of the cordillera (Fig. 8.1). These rocks form an
elongated strip unconformably overlain by Mesozoic and
Cenozoic rocks, which lie geographically disconnected from
neighbouring outcrops of the Catalan Coastal Range to the
south, the Mouthoumet and Montagne Noire (southern

French Central) massifs to the north, and Sardinia to the east.
Palaeozoic rocks are involved in three main Alpine thrust
sheets, the so-called Lower Structural Units (Muñoz 1992)
named Nogueres, Orri and Rialp thrust sheets. These units
form an antiformal stack with their basal thrusts
north-dipping or subvertical in the northern side of the chain,
subhorizontal in the central part, and south-dipping in the
southern contact with the Mesozoic-Cenozoic cover. In the
description that follows, we will focus on the Palaeozoic
rocks of the Nogueres and Orri units, which constitute a
complete pre-Variscan succession, ranging in age from
Cambrian to Carboniferous. Exposures of the Rialp unit only
occur in a small tectonic window of the central Pyrenees.

Transverse (N-S-trending) displacement related to the
Alpine deformation is about 150–160 km (Muñoz 1992), so
the original Palaeozoic basin should be located northward
from present-day arrangement. Moreover, the Alpine
deformation gave rise to important horizontal axes rotation
related to antiformal stack development. In contrast, Alpine
metamorphism is absent and internal deformation is mod-
erated. As a result, the original characteristics of the
Palaeozoic rocks may be confidently reconstructed in the
Pyrenees. As discussed below, other pre-Alpine movements
may be also envisaged in order to obtain a reliable original
Early Palaeozoic palaeoposition of the Pyrenenan domain
and to establish its geodynamic relationship with the
neighbouring Variscan Sardinia, Mouthoumet and Montagne
Noire-French Central Massif domains.

Fig. 8.1 Simplified geological map of the Pyrenees with the location of the massifs mentioned in the text
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8.2 Cambro-Ordovician (pre-Sardic)
Stratigraphy: Jujols Group

J. J. Álvaro, J. M. Casas, S. Clausen, M. Padel

The Jujols Group (Fig. 8.2) was firstly described by Cavet
(1957) as the Jujols Schists, comprising a monotonous
succession of alternating shale and sandstone overlying the
Canaveilles Series in the northern Canigó massif. Cavet
(1957) attributed an Ordovician age to the Jujols Schists,
which then included what is now considered as Upper
Ordovician conglomerates and volcanic deposits. These are
underlain by a significant erosive unconformity and angular
discordance representative of the Sardic Phase, and therefore
excluded from the Jujols Group (Laumonier 1988).
According to Cavet (1957), the base of the Jujols Schists
was characterized by the presence of grey shales with car-
bonate nodules and quartzite interbeds. As reported in
Chap. 2, the Jujols Group overlies the Cadomian volcanic
activity reported in the Canaveilles Group.

In this contribution, we follow Padel (2016) and Padel
et al. (2018) updating revision of the Jujols Group in the
Eastern Pyrenees based on new stratigraphic data and geo-
metric relationships (Fig. 8.2). These authors propose a
subdivision of the Jujols Group into the Err, Valcebollère
and Serdinya formations. The base of the Jujols Group
coincides with the base of the Err Formation (Fig. 8.2),
which onlaps an inherited palaeorelief formed by the Pic de
la Clape Formation to the south of the Canigó massif (see
Chap. 2). Where the Pic de la Clape volcanosedimentary
complexes are absent, the Err Formation conformably
overlies the Olette Formation. The top of the Jujols Group is
highlighted by the Middle-Upper (pars) Ordovician hiatus
associated with the Sardic Phase. The thickness of the group
can be estimated at about 3–4 km.

The Err Formation (Fig. 8.2) is a relatively monotonous
shale-dominated unit, up to about 2000 m thick. It consists
of grey, brownish and greenish shales and centimetre-to-
decimetre thick, fine-grained sandstones locally punctuated
by gravelly sandstones. The latter never exceed 10 m in
thickness and can be observed in the Puigmal area, near the
summit of the Puigmal d’Err and at the Pic de la Clapa,
where they overlie the Puig Sec Member. These sandstones
are also well developed in the Aspres and Conflent areas.

The Valcebollère Formation (Fig. 8.3) consists of a lower
massive-to-bedded limestone-to-marble package (up to
300 m thick), overlain and passing westward to a 15–200 m
thick, shale/carbonate alternation that changes upsection into
green shales bearing carbonate nodules. The thickness of the
formation and its carbonate content diminish northward dis-
appearing to the north of the Canigó massif. Despite the
absence of archaeocyaths, several outcrops exhibit typical

plano-convex exposures andmicrobial framebuilding textures
(e.g., Gorges de la Fou in the Vallespir-Roc de Frausa area,
and isolated bioherms close to Valcebollère village; Fig. 8.3
a–d) characteristic of reefal complexes. In the Aspres area, the
Courbis Limestone of the Valcebollère Formation has yielded
the acritarch Archaeodiscina cf. umbonulata Volkova, 1968.
A. umbonulata is a cosmopolitan species ranging approxi-
mately from Cambrian Age 3 to early Cambrian Age 4
(Laumonier et al. 2015; T. Palacios, pers.com. 2016). Asso-
ciated with the Courbis Limestone, some centimetric layers of
grainy phosphorites have been identified, for the first time,
marking the topmost part of the Valcebollère Formation.

The Serdinya Formation consists of a roughly 1500 m
thick rhythmic alternation of shale and sandstone beds.
Layers are 1 mm to several cm thick, change in colour from
grey to characteristic light green or light brown grey to
greenish, and exhibit sedimentary structures representative
of tidal-to-storm influence (Fig. 8.4a). Sandstones up to 1 m
thick occur at the top of the formation, exhibiting graded
bedding, load casts and cross bedding (Fontfrède Member)
(Fig. 8.4b). The Serdinya Formation conformably overlies
the Valcebollère Formation (in some areas sealing
hydrothermally induced karstic features, such as in the
Roques Blanques section along the road N260; Fig. 8.3e–g)
and is topped by the Sardic unconformity (Fig. 8.4c).
Acritarchs recovered from the uppermost part of the Serdi-
nya Formation in the southern Canigó massif has yielded a
broad Furongian-Early Ordovician microphytoplancton
assemblage (Casas and Palacios 2012). Ichnoassemblages
recorded in the La Molina area, although not chronostrati-
graphically diagnostic, show a low-to-moderate ichnodiver-
sity (Gámez et al. 2012). A maximum depositional age of ca.
475 Ma can be proposed for the quartzites of the Fonfrède
Member in the La Rabassa dome, on the basis on the
youngest detrital zircon population (Margalef et al. 2016).

Considering a Cambrian Fortunian age for the base of the
Err Fomation, and a Furongian-Early Ordovician age for the
top of the Serdinya Formation (Fig. 8.2), a broad
Cambrian-earliest Ordovician age can be envisaged for the
entire Jujols Group. As discussed below, it should be noted
that Middle Ordovician sedimentary rocks have not yet been
described in the Pyrenees.

8.3 Upper Ordovician Succession

J. J. Álvaro, J. M. Casas, C. Puddu

The Upper Ordovician succession of the Central and Eastern
Pyrenees, well known after the works of Cavet (1957) and
Hartevelt (1970), constitutes a broad fining-upward
megasequence bearing a key limestone-marlstone interbed
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and marked thickness variations, ranging between 100 and
1000 m. Hartevelt (1970) defined five formations, which can
be recognized with some lithologic variations all across most

part of the cordillera (Fig. 8.2). Furthermore, various vol-
canic and volcanosedimentary complexes crop out in dif-
ferent areas (Robert and Thiébaut 1976), although

Fig. 8.2 Stratigraphic comparison of the Cambro-Ordovician succes-
sions from the Occitan Domain (Montagne Noire and Mouthoumet),
Eastern Pyrenees and Sardinia. So: Somail orthogneiss (471 ± 4 Ma,
Cocherie et al. 2005); SE: Saint Eutrope gneiss (455 ± 2 Ma, Pitra
et al. 2012); GH: Gorges d’Heric orthogneiss (450 ± 6 Ma, Roger
et al. 2004); Pl: Pont de Larn orthogneiss (456 ± 3 Ma, Roger et al.
2004); Ri: Ribes granophyre (458 ± 3 Ma, Martínez et al. 2011); Ca:
Campelles ignimbrites (ca. 455 Ma, Martí et al. 2014); Cs: Casemí

gneiss (446 ± 5, 452 ± 5 Ma, Casas et al. 2010); Cd: Cadí gneiss
(456 ± 5 Ma, Casas et al. 2010); Ma: Marialles microdiorite
(453 ± 4 Ma, Casas et al. 2010); Nu: Núria gneiss (457 ± 4 Ma,
Martínez et al. 2011); Qb: Queralbs gneiss (457 ± 5 Ma, Martínez
et al. 2011); Co: Cortalets metabasite (460 ± 3 Ma, Navidad et al.
submitted); Cg: Canigó gneiss (472–462 Ma, Cocherie et al. 2005,
Navidad et al. 2018); Rf: Roc de Frausa gneiss (477 ± 4, 476 ± 5 Ma,
Cocherie et al. 2005; Castiñeiras et al. 2008)
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Fig. 8.3 a Field aspect of a hectometre-size, microbial bioherm of the
Valcebollère Formation cropping out in the vicinity of the homony-
mous village; co: core, f: flank. b Detail of boxed area in a showing the
intertonguing contact (arrowed) of the core (white) and flank (grey).
c Detail of boxed area in a illustrating the distant core/flank contact.
d Biohermal flank composed of elongated marble clasts embedded in a
silty (brownish) matrix; scale = 4 cm. e Contact (arrowed) of massive
marbles (Valcebollère Fm) and bedded sandy shales (Serdinya Fm)

marked by ferrigenous crusts. f Photomicrograph of the contact marked
in e showing a fissure network of hydrothermal veins infilled with
hematite, goethite and ankerite sealed (top) by a clean sparry mosaic of
calcite (marble); scale = 2 mm. g Valcebollère/Serdinya transition
characterized by the presence of unselected marble nodules “floating”
in a shaly matrix (facies named “schistes troués” in France and “facies
rizada” in Spain)
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radiometric ages are necessary to distinguish between
Sardic-related and post-Sardic (Upper Ordovician) vol-
canogenic events.

Unconformably overlying the Sardic-related palaeotopog-
raphy, the Rabassa Conglomerate Formation is made up of
reddish-purple, unfossiliferous conglomerates with sharp lat-
eral thickness variations, from zero to 200 m. Conglomerates
are composed of subrounded to well-rounded clasts rich in
slates, quartzites and vein quartz, up to 50 cm in diameter,
embedded in a green-purple granule-sized matrix (Fig. 8.4d).
Their massive-to-channelized sets are interpreted as
alluvial-to-fluvial deposits (Hartevelt 1970). Due to its strati-
graphic position, this author attributed the Rabassa con-
glomerates to the Sandbian-Early Katian (former Caradoc).

The overlying Cava Formation, 100–800 m thick, which
either cover the Sardic unconformity or the Rabassa Con-
glomerate Formation, is made up of feldspathic conglomer-
ates and sandstones in the lower part, grading upwards into
variegated shales and fine-grained sandstones, with strongly
burrowed quartzites in the uppermost part (Belaustegui et al.
2016). A contemporaneous volcanic influence is distinct in
the southwestern part of the Canigó massif, where ash levels,
andesites and metavolcanic rocks are embedded (e.g., in
Ribes de Freser; Muñoz 1985). Brachiopods, bryozoans and
echinoderms are locally abundant, concentrated in
fine-grained sandstones of the middle part of the formation,
based on which, Gil-Peña et al. (2004) attributed a Katian
(former late Caradoc-early Asghill) age to this formation.

The Estana Formation, which lies above the Cava For-
mation, consists of limestones and marly limestones, up to
10 m thick. The unit constitutes a good stratigraphic marker
bed, the so-called “schistes troués”, “Grauwacke à Orthis”
and “Caradoc limestones” of French and Dutch geologists.
Conodonts, brachiopods, bryozoans and echinoderms are
abundant, yielding a Katian (former mid Ashgill; Gil-Peña
et al. 2004) age for the development of echinoderm-bryozoan
meadows on shelly, offshore-dominated substrates.

The “Ansovell” Formation (Ansobell sensu Hartevelt 1970)
unconformably overlies the Estana limestone and consists of
blackish shales with common slumping and convoluted layers
close to the base and minor quartzite interlayers in the upper-
most part. Where the Estana Formation tapers off, the Ansovell
shales directly overlie the Cava sandstones. Finally, the Bar
Quartzite Formation marks the top of the Upper Ordovician as
a quartzitic layer, 5–10 m thick. AnHirnantian age (former late

Ashgill) was proposed for the Ansovell and Bar formations by
Hartevelt (1970), and confirmed by Roqué et al. (2017).
Westward, in the Orri, Pallaresa and Garona domes, Gil-Peña
et al. (2000, 2004) reported a calcareous conglomerate, up to
8 m thick, directly capping the erosive unconformity that
marks the Estana/Ansovell contact, and attributed it to a Hir-
nantian glacial event.

Thickness of the Upper Ordovician succession diminishes
northward, across the Massana anticline and the Aston and
Ospitalet domes. In these areas, the Rabassa conglomerates
are absent, whereas the Estana limestone attains its maxi-
mum thickness, about 70 m (Margalef 2015).

In the Ribes de Freser area (south of the Canigó massif,
Eastern Pyrenees), an Upper Ordovician succession, differ-
ent from the above-mentioned one, is located. There, several
Alpine structural units form an antiformal stack bounded to
the north by the out-of-sequence Ribes-Camprodon thrust. In
this antiformal stack, three Alpine units (named Ribes de
Freser, El Baell and Bruguera) exhibit a characteristic Upper
Ordovician succession (Fig. 8.5). Restoration of the Alpine
deformation allows us to situate the Bruguera unit in a
pre-Alpine northernmost position, the El Baell unit in an
intermediate setting, and the Ribes de Freser unit would lie
originally in a southernmost one.

The Ribes de Freser unit is predominantly made up of
volcanic and volcanosedimentary rocks (Fig. 8.5) (Robert and
Thiébaut 1976; Ayora 1980; Robert 1980;Muñoz 1985;Martí
et al. 1986), with a variable thickness ranging from 600 to
1200 m. Its lower part consists of dioritic bodies and vol-
canosedimentary rocks, whereas rhyolitic lava flows and
ignimbrites predominate in the central part, and ash levels,
ignimbrites and volcaniclastic rocks form its upper
part. A granophyric body, dated as 458 ± 3 Ma (Martínez
et al. 2011), intruded into the lower part of the succession. The
volcanic activity wasmainly explosive and had a calc-alkaline
affinity reflecting crustal melting (Martí et al. 1986).

The El Baell unit, in turn, comprises a 300 m-thick suc-
cession entirely composed of limestones, marly limestones
(“schistes troués”) and shales (Robert 1980; Muñoz 1985).
Three limestone-dominated thickening-upward sequences, up
to 30 m thick, can be distinguished. Conodonts and crinoids
allowed Robert (1980) to attribute an early Katian (former
Caradoc) age to the beds forming this unit (Fig. 8.4h, i).

The Bruguera unit lies on the top of the El Baell unit and
is composed of a 200 m-thick undated slate-dominated

b Fig. 8.4 a Convoluted alternations of centimetre-thick sandstones and
shales showing amalgamation of migrating bars and storm-induced
processes; Serdinya Formation at La Molina. b Burrowing surfaces of
soft-bodied metazoan suspensivores marking low-sedimentation events;
Font Frède Member at Camporells. c Angular discordance separating
the Serdinya Formation (left) and the Rabassa conglomerates (right) at
Talltendre. d Alluvial-to-fluvial trough cross-stratified conglomerates
and sandstones of the Rabassa Formation at Talltendre. e,

f Hydrothermal dykes infilled with quartz marking the outlines of the
half-grabens infilled with the Rabassa conglomerates at La Molina.
g Field aspect of the Rabassa conglomerate rich in subangular
hydrothermal quartz clasts; La Molina. h Top of the Katian El Baell
Formation at its stratotype unconformably overlain by the Hirnantian
Ansovell Formation. i Detail of the El Baell limestones showing
echinoderm-rich packstones with scattered, partially articulated
columns
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succession, pre-Variscan (Cambrian-Ordovician?) in age,
overlain by a volcanic complex (Muñoz 1985). The latter
consists of rhyolitic ignimbrites and andesitic lava flows,
recently dated at ca. 455 Ma (Martí et al. 2014), an age
similar to that of the Ribes granophyre cropping out in the
Ribes de Freser unit.

After Santanach’s (1972a) work, it is widely accepted that
the Upper Ordovician succession lies unconformably over
either the Jujols or Canaveilles groups (García-Sansegundo
and Alonso 1989; Den Brok 1989; Kriegsman et al. 1989;
Poblet 1991; Muñoz and Casas 1996; García-Sansegundo

et al. 2004; Casas and Fernández 2007). However, the origin
of this unconformity has been object of several interpreta-
tions. Santanach (1972a) in the Canigó massif and García--
Sansegundo et al. (2004) in the Garona dome attributed the
Sardic unconformity to basement tilting, related to of a Late
Ordovician faulting episode and subsequent erosion. In the
Lys-Caillaouas massif, Den Brok (1989) and Kriegsman
et al. (1989) proposed the existence of a pre-Variscan
deformation event. A pre-Upper Ordovician folding episode
has been also suggested as related to the unconformity on the
southern Canigó massif (Casas 2010; Casas et al. 2012).

Fig. 8.5 Cross-section of the Freser river antiformal stack with the Ribes de Freser (RF), El Baell (EB) and Bruguera (B) units. After Muñoz
(1985) modified. See location on Fig. 8.1
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However, the meaning of this deformation episode is
unclear: it is related neither to metamorphism nor cleavage
development, although it seems related to uplift, widespread
emersion and considerable erosion before the onset of Upper
Ordovician deposition. As a result, the Upper Ordovician
rocks directly onlap different formations of the pre-Sardic
succession, ranging from the upper Neoproterozoic to the
Lower Ordovician in the Central and Eastern Pyrenees
(Santanach 1972a; Laumonier and Guitard 1986; Cirés et al.
1994).

Based on the above-reported maximum depositional age
of the Jujols Group (ca. 475 Ma) and the ca. 455 Ma U–Pb
age for the Upper Ordovician volcanic rocks directly over-
lying the Sardic unconformity in the Bruguera unit (Martí
et al. 2014), a time gap of about 20 m.y. can be estimated for
the Sardic Phase. Similar gaps are found in SW Sardinia (ca.
18 m.y.), the type area where the original unconformity was
described, where the discontinuity is constrained by
well-dated Upper Ordovician metasediments overlying
upper Tremadoc-lower Floian(?) strata (Barca et al. 1987;
Pillola et al. 2008).

The Sardic uplift (whatever its origin) was necessarily
followed by a succession of Late Ordovician extensional
pulsations, which preceded and were contemporaneous with
the opening of grabens and half-grabens infilled with the
alluvial-to-fluvial Rabassa Conglomerate Formation. At
outcrop scale, a synsedimentary hydrotermal activity is
associated with the onset of decametre-sized normal faults
lined with quartz veins and dykes, which subsequently feed
the Rabassa conglomerates as vein quartz pebbles (Fig. 8.4
e–g). At cartographic scale, a detailed geological map of the
La Cerdanya area reveals a set of normal faults sharply
affecting the thickness of the Rabassa and Cava formations
(Fig. 8.6) (Casas and Fernández 2007; Casas 2010; Puddu

and Casas 2011). The faults are steep and currently exhibit
broad N-S to NNE-SSW trending. In most cases, their
hangingwall is the eastern block despite the presence of
some antithetic faults; maximum throws of about
0.2–0.9 km can be recognized. Displacement progressively
diminishes upward and fades out in the Cava rocks
(Fig. 8.6). Based on these orientations, an E-W extension (in
present day coordinates) can be proposed. The original ori-
entation of the faults cannot be pinpointed owing to subse-
quent deformation events, although an original N-S
orientation can be proposed. This orientation probably pre-
vented the faults from being inverted during subsequent
Variscan and Alpine deformation events, although the faults
probably suffered rotations on horizontal E-W axes during
these deformation episodes. On the other hand, sharp vari-
ations in the thickness of the Upper Ordovician succession
have been reported by several authors (Llopis Lladó 1965;
Hartevelt 1970; Speksnijder 1986). Hartevelt (1970) docu-
mented variations from 200 to more than 850 m in the
thickness of the Cava Formation: e.g., eastward from La Seu
d’Urgell, the thickness of the Rabassa and Cava formations
attain more than 800 m before sharply diminishing to some
tens of metres within a few kilometres (Casas and Fernández
2007). There, the maximum observed thickness occurs
associated with the maximum grain size of the conglomer-
ates (pebbles exceeding 50 cm in diameter are common).
Variations in thickness and grain size can be attributed to
palaeorelief formation controlled by fault activity and sub-
sequent erosion of uplifted palaeotopographies, with subse-
quent infill controlled by alluvial fan and fluvial deposition.

A set of roughly E-W oriented normal faults originally
limited the Ribes de Freser, El Baell and Bruguera units,
nucleated the contemporaneous active volcanism reported in
the Ribes de Freser and Bruguera units, and the high patterns

Fig. 8.6 Geological map of the Talltendre area, north of Bellver de Cerdanya; modified from Puddu and Casas (2011). See location on Fig. 8.1
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of Katian carbonate productivity on an unstable epeiric
platform, now preserved in the El Baell unit. These E-W
oriented faults seemingly coexisted with the aforementioned
N-S normal faults. The former faults were probably inverted
during subsequent Variscan and Alpine tectonics, whereas
the latter ones, because of their unfavourable orientation, are
preserved and currently recognizable.

8.4 Ordovician Magmatism

J. J. Álvaro, J. M. Casas, C. Puddu, T. Sánchez-García,
M. Navidad, P. Castiñeiras, M. Liesa

Successive Ordovician magmatic pulsations are well docu-
mented in the pre-Variscan basement of the Pyrenees
(Fig. 8.1). According to radiometric data, magmatism lasted
about 30 m.y., from ca. 477 to 446 Ma. Although the
magmatic activity seems to be continuous, two peaks can be
distinguished at 473–472 Ma and 457 Ma (Fig. 8.7). Based
on geochronological and geochemical data, two different
magmatic complexes can be distinguished: latest Early-Mid
Ordovician and Late Ordovician in age.

(i) Latest Early and Mid Ordovician magmatism

During Early to Mid Ordovician times, the magmatic
activity gave rise to the intrusion of voluminous aluminous
granites, about 500–3000 m in size and emplaced into the
Canaveilles and Jujols strata. They constitute the protoliths
of the large laccolithe-shaped, orthogneissic bodies that crop
out at the core of the domal massifs that punctuate the

backbone of the Pyrenees. These are, from west to east, the
Aston (470 ± 6 Ma, Denèle et al. 2009; 467 ±2 Ma,
Mezger and Gerdes 2016), Hospitalet (472 ± 2 Ma, Denèle
et al. 2009), Canigó (472 ± 6 to 467 ± 7 Ma, Cocherie
et al. 2005), Roc de Frausa (477 ± 4 Ma, Cocherie et al.
2005; 476 ± 5 Ma, Castiñeiras et al. 2008) and Albera
(470 ± 3 Ma, Liesa et al. 2011) massifs (Fig. 8.8), which
exhibit a dominant Floian-Dapingian age. It should be noted
that only a minor representation of basic coeval magmatic
rocks are exposed (e.g., Cortalet metabasite). The acidic
volcanic equivalents have been reported in the Albera
massif, where subvolcanic rhyolitic porphyroid rocks yiel-
ded similar ages than those of the main gneissic bodies:
465 ± 4, 472 ± 3, 473 ± 2 and 474 ± 3 Ma (Liesa et al.
2011; Liesa unpubl.). Other acidic products are represented
by the rhyolitic sills of Pierrefite (Calvet et al. 1988)
(Fig. 8.8). Granites are medium to coarse grained and
exhibit porphyritic textures with rapakiwi K-feldspars.

The rocks selected for geochemical analysis have suffered
from variable degrees of metamorphism and hydrothermal-
ism, so only the most inmobiles elements have been taken
into account. We have differentiated three geochemical
assemblages: the Cortalets metabasite, the Volcanic
Assemblage A and the Gneissic Assemblage A. Some of the
differentiated assemblages are based on very few samples
and further sampling could modify the geochemical signa-
ture documented below.

The Cortalets metabasite (Metabas A in Fig. 8.9) shows
low silica content (43.22%) and high FeOt (10.05), MgO
(9.43%) and CaO (12.16%) values. It is metaluminous
(A/CNK = 0.64) and subalkaline in the Pearce’s diagram
(1996) (Fig. 8.9a). REE patterns present slightly more frac-
tionated values for LREE (Lan/Smn = 1.54) than HREE
(Gdn/Ybn = 1.19), without Eu anomalies and an almost flat
arrangement for HREE (Fig. 8.10a). This suggests the lack of
plagioclase fractionation and garnet in the melt. Nb, Sr and Ti
positive anomalies are distinct in the spider-diagram of Palme
and O’Neil (2004) (Fig. 8.10b) reflecting the possible influ-
ence of mantle-derived magmas lacking plagioclase and
magnetite in the melt. The metabasite exhibits average values
of La/Nb, (average = 0.54), Th/Nb (0.06), Th/La (0.12),
Nb/Y (0.60), Zr/Nb (5.89) and Nb/Yb (5.81) close to the
Lower Continental Crust parameters of Rudnick and Gao
(2004), and Th/Yb (average = 0.37) values close to the Ocean
Island Basalt of Sun and McDonough (1989) (Fig. 8.11a). In
the Wood’s (1980) tectonic discrimination diagram, the
analysis plots in the arc-basalt domain (Fig. 8.12a), while the
Pearce’s (2008) diagram informs about crustal contamination
(Fig. 8.12b). The TiO2/Yb versus Nb/Yb diagram
(Fig. 8.12c) shows E-MORB character. All geochemical
characteres may reflect primitive mantle-derived melts with
crustal contamination at their origin. Further samples are
necessary to confirm this interpretation.

Fig. 8.7 Relative probability plot of the geochronological ages of the
Ordovician magmatism of the Pyrenees. Data after Deloule et al.
(2002); Cocherie et al. (2005); Castiñeiras et al. (2008); Denèle et al.
(2009); Casas et al. (2010); Liesa et al. (2011); Martínez et al. (2011);
Mezger and Gerdes (2016); Navidad et al. (2018) and Liesa et al.
(unpublsh.). n = 25
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The Volcanic Assemblage A includes 6 samples from the
Albera (Liesa et al. 2011) and Pierrefite (Calvet et al. 1988)
massifs. They show a narrow range of SiO2 content
(70.09 < SiO2 < 74.87) and peraluminous (A/CNK =
2.03 − 1.12) and subalkaline features, with an average con-
tent of Nb/Y = 0.32 (Fig. 8.9a). REE patterns present more
fractionated values for LREE (Lan/Smn = 2.63) than HREE
(Gdn/Ybn = 1.32) being (La/Yb)n = 5.88. The average Eu
anomalies show moderate negative values (0.68) reflecting
plagioclase crystallization (Fig. 8.10c). It should be noted
that this assemblage presents two subsets, one with a distinct
enrichment in HREE and a flat slope, and another with a
moderate slope in HREE. This suggests different magmatic

sources for both subsets. In the spider-diagram of Palme and
O’Neil (2004), they show negative anomalies of Nb, Sr and
Ti (Fig. 8.10d). The overall chondrite-normalized pattern is
close to the values of the Upper Continental Crust of Rudnick
and Gao (2004), and display slight enrichments in Th/Nb
(average = 1.13) and Th/La (average = 0.56), and depletion
in La/Nb (average = 2.43), Th/Yb (average = 3.50) and
Nb/Yb (average = 3.06) ratios close to EMORB values (3.5
values of Sun and McDonough 1989) (Fig. 8.11b). In the
tectonic diagram of Pearce et al. (1984), the samples plot in
the volcanic arc-I type field (Fig. 8.13a). In the Zr versus
TiO2 diagram of Syme (1998), they plot in the arc association
(Fig. 8.13b). No eNd values are yet available for this

Fig. 8.8 Synthetic stratigraphic logs of the pre-Upper Ordovician
rocks from the Aston-Hospitalet, Canigó, Roc de Frausa and Albera
massifs with the location of the geochronological data of the protoliths
of the Ordovician gneisses: (1) Cocherie et al. (2005); (2) Castiñeiras
et al. (2008); (3) Denèle et al. (2009); (4) Casas et al. (2010);

(5) Martínez et al. (2011); (6) Liesa et al. (2011); (7) Mezger and
Gerdes (2016) and (8) Navidad et al. (2018). Stratigraphic data from
Guitard (1970), Santanach (1972b), Ayora and Casas (1986), Liesa and
Carreras (1989) and Liesa et al. (2011)
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assemblage. All these geochemical data suggest a
calc-alkaline magmatic source from active margin environ-
ments related to the first stages of extension, as pointed out by
Calvet et al. (1988).

The Gneissic Assemblage A includes 4 samples of the
Roc de Frausa (Castiñeiras et al. 2008), Albera (Liesa et al.
2011) and Canigó (Navidad et al. 2018) massifs. They show
SiO2 contents ranging between 67.17 and 73.62%. They are
peraluminous (A/CNK = 1.20 − 1.10) and subalkaline, with
an average content of Nb/Y = 0.37 (Fig. 8.9a). REE patterns
present more fractionated values for LREE (Lan/Smn =
3.13) than for HREE (Gdn/Ybn = 1.43) being
(La/Yb)n = 6.52. The average Eu anomalies show moderate
negative values (0.39) reflecting plagioclase crystallization
(Fig. 8.10c). In the spider-diagram of Palme and O’Neil
(2004), they show negative anomalies of Nb reflecting
crustal magmas, Sr and Ti (Fig. 8.10d) suggesting fraction-
ation of plagioclase and Fe–Ti oxides, respectively. The
overall chondrite-normalized pattern is close to the values of
the Upper Continental Crust of Rudnick and Gao (2004),
with slight enrichment in the Th/Nb (average = 1.13) and
Th/La (average = 0.56) ratios, and depletion in the La/Nb

(average = 2.43), Th/Yb (average = 3.50) and Nb/Yb (av-
erage = 3.06) ratios close to EMORB values (3.5 values of
Sun and McDonough 1989) (Fig. 8.11b). In the tectonic
diagram of Pearce et al. (1984), the samples plot in the
volcanic arc-I type field (Fig. 8.13a), whereas in the Zr
versus TiO2 diagram of Syme (1998) they plot in the arc
association (Fig. 8.13b). No eNd values are available for this
assemblage. All the geochemical characters outlined above
indicate that they are similar to the above-reported volcanic
assemblage, so these rocks were mainly derived from a
continental crustal source. Navidad et al. (2010) suggested
that crustal recycling would account for the volcanic arc
signature of these samples. This signature was probably
inherited by melting of a pre-existing Neoproterozoic-Lower
Palaeozoic calc-alkaline crust.

(ii) Late Ordovician magmatism

A Late Ordovician magmatic pulse yielded a varied suite of
magmatic rocks. Small granitic bodies are emplaced in the
Canaveilles and Jujols strata of the Canigó massif and
constitute the protoliths of the Cadí, Casemí and Núria

Fig. 8.9 Zr/Ti versus Nb/Y diagram (Pearce 1996). a Uppermost Lower-Middle Ordovician rocks; b Upper Ordovician rocks (data after Robert
and Thiébaut 1976; Calvet et al. 1988; Castiñeiras et al. 2008; Navidad et al. 2010; Liesa et al. 2011; Navidad et al. 2018)
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Fig. 8.10 Geochemical features; a chondrite-normalized REE patterns
for basic Middle and Upper Ordovician rocks; b spider-diagram for
basic Middle and Upper Ordovician rocks; c chondrite-normalized REE
patterns for acid and intermediate Middle Ordovician rocks; d spi-
der-diagram for acid and intermediate Middle Ordovician rocks

e chondrite-normalized REE patterns for acid and intermediate Upper
Ordovician rocks; f spider-diagram for acid and intermediate Upper
Ordovician rocks. (Chondrite normalizing values of Sun and McDo-
nough 1989 and Primitive Mantle normalizing values of Palme and
O’Neil 2004)
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gneisses. The Cadí gneiss (Guitard 1970), dated at
456 ± 5 Ma by Casas et al. (2010), is an aluminous meta-
granite body with petrographic characteristics similar to
those of the Canigó gneiss; it represents the lowest structural
unit recognized in the Canigó massif (Fig. 8.8). The Casemí
gneiss (Guitard 1970) is a tabular body up to 1000 m thick
mainly made up of fine-grained biotitic and amphibolic
granitic gneisses. Geochronological data indicate a Late
Ordovician age for the protolith of this orthogneiss (446 ± 5
and 452 ± 5 Ma Ma, SHRIMP U–Pb in zircon, Casas et al.
2010). In the southern Canigó massif, the protoliths of the
Núria granitic gneiss and the homonymous augen gneiss
(Santanach 1972b) also yield Late Ordovician ages
(457 ± 4 and 457 ± 5 Ma, respectively, Martínez et al.
2011). Moreover, metre-scale thick bodies of metadiorite are
interlayered in the micaschists of the Balaig series, which
has also yielded a Late Ordovician age for the formation of
its protolith (453 ± 4 Ma, SHRIMP U–Pb in zircon, Casas
et al. 2010) (Fig. 8.8).

Coeval calc-alkaline volcanic rocks (ignimbrites, ande-
sites and volcaniclastic rocks) are interbedded in the Upper
Ordovician of the Ribes de Freser and Bruguera units. The
lower part of the Ribes de Freser unit is made up of dioritic
bodies and volcaniclastic rocks, whereas rhyolitic lava flows
and ignimbrites predominate in the central part, and ash
levels, ignimbrites and volcaniclastic rocks constitute its
upper part. The Ribes granophyric body, dated at
458 ± 3 Ma by Martínez et al. (2011), crops out at the base
of the Upper Ordovician. On the other hand, the rhyolitic
ignimbrites and andesitic lavas of the Bruguera unit have
been recently dated at ca. 455 Ma by Martí et al. (2014).
This volcanism was mainly explosive and displays a
calc-alkaline affinity (Martí et al. 1986). Based on their
geochemical data, we have differentiated four
Upper-Ordovician magmatic assemblages: the metabasites
B, the Volcanic Assemblage B and the Gneissic Assem-
blages B and C.

The metabasites B include 5 samples of the Marialles
diorite (Navidad et al. 2010) and the alkali-pillow basalts of
the Pierrefite massif (Calvet et al. 1988). They are under-
saturated with SiO2, whose content ranges from 47.3 to 52.4
wt%. Most of them are metaluminous (average A/CNK
ratio = 0.98), although a sample (25-1) from the Pierrefite
massif presents a value of 1.47. In the Pearce’s diagram
(1996), the assemblage plots in the subalkaline field
(Fig. 8.9b), whereas the Pierrefite samples are alkaline in the
Shervais (1982) diagram with Ti/V values = 100 to 50.
The REE patterns present more fractionated values for LREE
(Lan/Smn = 2.62) than HREE (Gdn/Ybn = 1.47), without Eu
anomalies and higher slopes that the Cortalets metabasites
(Fig. 8.10e) suggesting little plagioclase fractionation. Most
of them show Nb, Sr and Ti negative anomalies in the spider
diagram of Palme and O’Neil (2004) (Fig. 8.10b). This

Fig. 8.11 Chondrite-normalized isotope ratios patterns (Sun and
McDonough 1989). a mafic Middle and Upper Ordovician rocks;
b acid and intermediate Middle Ordovician rocks; c acid and
intermediate Upper Ordovician rocks. Blue area: Continental crust
values of Rudnick and Gao (2004)
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assemblage displays a different behaviour in the La/Nb,
Th/Nb, Th/La, Zr/Nb (depleted) and Nb/Y (enriched) ratios
that the Cortalet metabasite. The Th/La, Zr/Nb and Th/Yb
values are close to the Ocean Island basalts of Sun and
McDonough (1989), while the Nb/Y value is close to the
Upper Continental Crust of Rudnick and Gao (2004), and the
Th/Nb ratio is close to the NMORB values of Sun and
McDonough (1989) (Fig. 8.11a). In the tectonic discrimina-
tion diagram of Wood (1980), this assemblage plots in the
Ocean Island Basalts domain (Fig. 8.12a), in the Pearce’s
(2008) diagram in the MORB array (Fig. 8.12b), and in the
TiO2/Yb versus Nb/Yb diagram (Fig. 8.12c) the dataset
shows a distinct E-MORB character. The Sm–Nd isotopic
data obtained from the Marialles sample are given in
Table 8.1 and plotted in Fig. 8.14. The reference age con-
sidered for the emplacement of the Marialles diorite is
453 Ma (Navidad et al. 2010). The analysed sample shows a
147Sm/144Nd ratio of 0.1474, slightly negative eNd values
(−0.8) and a TDM age of 1.18 Ga. This value could indicate
that their protoliths were derived from mantle melts with
heterogeneous crustal contamination (Navidad et al. 2010).
In summary, the geochemical data discussed above could
reflect a more primitive origin mantle-derived but with
crustal contamination at their origin.

The Volcanic Assemblage B includes 14 samples from
the Els Metges volcanic tuffs, Les Gavarres epiclastic ash
(Navidad et al. 2010) and the Ribes de Freser rhyolitic lavas
(Robert and Thiébaut 1976). Although no geochemical data
are available, we suggest including in this assemblage the
Bruguera volcanic rocks due to their similar field charac-
teristics. This assemblage shows a SiO2 content ranging
between 86.06 and 62.98%. They are peraluminous
(A/CNK = 3.63 − 1.04) and subalkaline, with an average
content of Nb/Y = 0.44 (Fig. 8.9b). REE patterns present
more fractionated values for LREE (Lan/Smn = 3.40) than
HREE (Gdn/Ybn = 1.75) being (La/Yb)n = 8.75. The aver-
age Eu anomalies show negative values (0.64) reflecting
plagioclase crystallization (Fig. 8.10e). In the spider-
diagram of Palme and O’Neil (2004), they show negative
anomalies of Nb, Sr and Ti (Fig. 8.10f). Overall
chondrite-normalized pattern are close to the values of the
Upper Continental Crust of Rudnick and Gao (2004), with
slight enrichment in the La/Nb (average = 3.05) and Zr/Nb
(average = 17.6) ratios, and depletion in the Th/Nb (aver-
age = 0.81), Th/La (average = 0.29), Nb/Y (average =
0.44), Th/Yb (average = 3.46) and Nb/Yb (average = 4.61)
ratios (Fig. 8.11c). In the tectonic diagram of Pearce et al.
(1984), most of samples plot in the volcanic arc-I type field
and the anomalous rift field (Fig. 8.13c). In the Zr versus
TiO2 diagram of Syme (1998), most of samples plot in the
arc association (Fig. 8.13d). The volcanic tuffs of Les
Gavarres show an 147Sm/144Nd isotope ratio ranging

between 0.1410 and 0.1372 and eNd between −5.1 and
−4.8, indicating a crustal origin (Navidad et al. 2010).
Similar isotopic values have been obtained by Martínez et al.
(2011) for the Ribes granophyre (eNd −2.6) indicating also a
crustal origin.

The Gneissic Assemblage B includes 11 samples from the
Canigó and Cadí gneisses, (Canigó massif, Navidad et al.
2010; Navidad et al. 2018). Although no geochemical data are
available, we suggest including here the Núria gneisses. The
assemblage shows a SiO2 content between 76.42 and 56.47%.
The samples are peraluminous (A/CNK = 1.24 − 0.64) and
subalkaline, with an average content of Nb/Y = 0.34
(Fig. 8.9b). REE patterns present more fractionated values for
LREE (Lan/Smn = 3.13) than HREE (Gdn/Ybn = 1.43) being
(La/Yb)n = 6.38. The average Eu anomalies show moderate
negative values (0.36) reflecting plagioclase crystallization
(Fig. 8.10e). In this assemblage, two subsets can be distin-
guished, one with flat slope and another with negative slope.
This could indicate two different magmatic sources. In the
spider-diagram of Palme and O’Neil (2004), they show
negative anomalies of Nb, Sr and Ti (Fig. 8.10f). The overall
chondrite-normalized pattern is close to the values of the
Upper Continental Crust of Rudnick and Gao (2004), with a
slight enrichment in the Th/Nb (average = 1.15), Th/La (av-
erage = 0.51) and Zr/Nb (average = 16.7) ratios and deple-
tion in the La/Nb (average = 2.29) and Th/Yb
(average = 4.58) values. The Nb/Y (average = 0.34) value is
close to the Lower Continental Crust of Rudnick and Gao
(2004) (Fig. 8.11c). In the tectonic diagram of Pearce et al.
(1984), the samples plot in the volcanic arc-I type field and the
anomalous rift field (Fig. 8.13c). In the Zr versus TiO2 dia-
gram of Syme (1998), the samples plot both in the arc asso-
ciation (Fig. 8.13d) and the extensional field. The Cadí
orthogneisses show a Nd isotope ratio (0.5118) similar to the
most differentiated assemblage (Casemí, Gneissic Assem-
blage C; see below) and a higher negative isotopic signature
with eNd negative values (−4.2 to −5.2) (Fig. 8.14) than
these gneisses (Gneissic Assemblage C) suggesting a crustal
origin (Navidad et al. 2010). Similar isotopic values have
been obtained by Martínez et al. (2011) for the Núria gneisses
(eNd between −3.0 and −4.7). All the geochemical characters
outlined above indicate that this assemblage was mainly
derived from different magmas of continental crustal source.

The Gneissic Assemblage C includes 5 samples from the
Casemí and Canigó gneisses (Canigó massif, Navidad et al.
2010). They present more silica and alkalis and less Al, Fe
and Mg than the Gnesissic Assemblage B. They show a
narrow range of composition (73.62% < SiO2 < 75.02%)
and are peraluminous (A/CNK = 1.24 − 0.64) and subal-
kaline, with an average content of Nb/Y = 0.22 (Fig. 8.9b).
The REE pattern is similar to the subset with flat slope of
HREE in the Gneissic Assemblage B, with more fractionated
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Fig. 8.12 Tectonic discriminating diagram of basic rocks. a Wood (1980); b Th/Yb versus Nb/Yb of Pearce (2008); c TiO2/ Yb versus Nb/Yb of
Pearce (2008)
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values for LREE (Lan/Smn = 3.13) than HREE (Gdn/
Ybn = 1.43), being (La/Yb)n = 6.38. The average Eu
anomalies show moderate negative values (0.36) reflecting
plagioclase crystallization (Fig. 8.10e). In the spider-
diagram of Palme and O’Neil (2004), they show negative

anomalies of Nb, Sr and Ti (Fig. 8.10f). Overall chondrite-
normalized pattern close to the values of the Upper Conti-
nental Crust of Rudnick and Gao (2004) values with slight
enrichment in the Th/Nb (average = 1.15), Th/La (aver-
age = 0.51) and Zr/Nb (average = 16.7) and depletion in the

Fig. 8.13 Tectonic discriminating diagram of acid and intermediate rocks. a and c Y versus Nb diagram (Pearce et al. 1984); b and d Zr versus
TiO2 diagram (Syme 1998)

246 J. M. Casas et al.

josetomas.oliveira@gmail.com



La/Nb (average = 2.29) and Th/Yb (average = 4.58) ratios.
The Nb/Y (average = 0.34) value is close to the Lower
Continental Crust of Rudnick and Gao (2004) (Fig. 8.11c).
This suggests a certain degree of crustal contamination and
recycling of materials. In the tectonic diagram of Pearce
et al. (1984), the samples plot in the volcanic arc-I type field
and the anomalous rift (Fig. 8.13c). In the Zr versus TiO2

diagram of Syme (1998), the data plot in the extensional
field (Fig. 8.13d). The initial Nd isotope ratio of the Casemí
gneiss (147Sm/144Nd between 0.1480 and 0.1359 and eNd
between −1.9 and −1.3) indicates that their protoliths were
derived from mantle melts with heterogeneous crustal con-
tamination (Navidad et al. 2010). Castiñeiras et al. (2011)
reached similar conclusions on the basis of zircon compo-
sition. Despite their different age, the zircons from the Cadí
orthogneiss and the Albera gneiss exhibit similar character-
istics. The zircon composition suggests that this mineral
grew in a melt formed by anatexis of continental crust. In
contrast, zircons from the Casemí gneiss and the metadiorite
point out that the mantle was involved in the origin of these
rocks. Extrapolations of eNd data back to the depleted
mantle curve yield TDM values varying between 1.3 and
1.5 Ga (Navidad et al. 2010; Martínez et al. 2011; Fig. 8.14,
Table 8.1). The absence of inherited zircons from these ages
led the authors to interpret these values as the result of the
melting of a Neoproterozoic source mixed with Palaeopro-
terozoic components.

All geochemical characteristics broadly suggest crustal
sources in their parental magmas. According to Navidad
et al. (2010), the whole-rock geochemistry shows that the
Upper Ordovician orthogneiss of the Canigó massif are
compositionally uniform. As fractionation processes cannot
be recognized, crustal contamination of mantle melts is the
most probable process accounting for the formation of the

various geochemical datasets (Casemí biotite and amphibole
orthogneisses, and metadiorite).

It should be noted that the latest Early-Mid Ordovician
magmatism is coincident with the pre-Late Ordovician epi-
sode of uplift and erosion that led to the formation of the
Sardic unconformity. Uplift was followed by an extensional
pulse that developed normal faults, directly affecting the
onset of the basal unconformity and controlling deposition
of the (post-Sardic) Upper Ordovician strata and coeval Late
Ordovician magmatic activity.

Early and Late Ordovician ages have also been obtained
in magmatic bodies from the French Massif Central, such as
in the Axial Zone of the Montagne Noire (Somail orthog-
neiss: 471 ± 4 Ma, Cocherie et al. 2005; Pont de Larn and
Gorges d’Heric orthogneisses: 456 ± 3 Ma and
450 ± 6 Ma, Roger et al. 2004; Saint Eutrope gneiss:
455 ± 2 Ma, Pitra et al. 2012). As in the Pyrenees, the
emplacement of Late Ordovician felsic granitic bodies is
coeval in the Montagne Noire with a tholeiitic volcanic
activity originated by melting of mantle and crustal litho-
sphere and infilling of rifting branches preserved on the
southern Montagne Noire (Álvaro et al. 2016). These
authors also describe a similar Late Ordovician volcanism in
the Mouthoumet massif and relate it to the end of the Sardic
Phase and the opening of rift branches linked to those
developed on the southern Montagne Noire.

8.5 Correlation with Surrounding Areas
and Other Northern Gondwanan
Domains

J. J. Álvaro, J. M. Casas, S. Clausen, M. Padel, C. Puddu

To the west of the Canigó massif, the Jujols Group extends
as far as the Noguera Pallaresa and Ribagorçana rivers,
where the Serdinya Formation may be correlated with the
Seo Formation defined by Hartevelt (1970) in the Orri
Dome. In the La Pallaresa dome, the La Massana antiform
and the western slopes of the Aston and Hospitalet domes, a
siliciclastic-dominated succession, more than 4000 m thick,
was subdivided into three formations by Laumonier et al.
(1996), from bottom to top: the Alós d’Isil, Lleret-Bayau and
Alins formations. The Alós d’Isil and Alins formations are
dominated by shales, locally alternating with thin- to
medium-grained sandstones, and are separated by the
metasandstones and marbles of the Lleret-Bayau Formation.
Despite the lack of any geochronologic or biostratigraphic
control, we suggest that the Pallaressa succession should be
correlated with the Jujols Group, being the Alós d’Isil,
Lleret-Bayau and Alins triad equivalent to the Err, Val-
cebollère and Serdinya formations, respectively (Fig. 8.9).
In the same way, the Jujols Group may be correlated with

Fig. 8.14 eNd versus age diagram (DePaolo and Wasserburg 1976;
DePaolo 1981) for the Upper Ordovician magmatic rocks of the
Pyrenees (data after Navidad et al. 2010; Martínez et al. 2011).
Depleted mantle evolution calculated according to DePaolo (1981)
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the pre-Sardic rocks of the Garona Dome, which have been
subdivided into three terms by García-Sansegundo and
Alonso (1989), from bottom to top: the Urets beds, the
Bantaillou limestone and the Orlà beds. Again, these terms
may be equivalent to the Err, Valcebollère and Serdinya
formations, respectively.

In contrast, the Jujols Group cannot be easily recognized in
the easternmost Cap de Creus, where some geochronological
ages of Cadomian magmatic rocks constrain the depositional
ages of the pre-Sardic succession from ca. 570 to 542 Ma. In
the Albera massif, alternating layers of metapelites and
metapsamites form the uppermost part of a metasedimentary
succession that is crosscut by a network of acidic subvolcanic
porphyritic dykes, which constrain its minimum depositional
age to 465–472 Ma (Liesa et al. 2011). This uppermost part
can be tentatively correlated with the Jujols Group, although
coarse-grained terms (sandstone and conglomerate) are
locally abundant in the Albera massif.

The only Cambrian shelly fossils reported until present in
the Pyrenees occur in an Alpine thrust sheet of the Terrades
area. Abad (1988) described the presence of archaeocyathan
patch reefs, alternating with green to brownish shales in an
up to 50 m thick succession, and assigned the sponges to the
Cambrian Age 3. A complete taxonomic study by Perejón
et al. (1994) confirmed a late Cambrian Age 3. The detailed
preservation of pristine microfacies and microbial textures in
these limestone strata, contrasting with the traditional marble
aspect of any carbonate bed of Cambrian age, is in accor-
dance with the allochthonous provenance of this Alpine
thrust slice: the Cambrian limestones of the Salut slice thrust
Eocene strata and are, in turn, unconformably overlain by
Eocene strata (Pujadas et al. 1989). Biogeographic affinities
of the archaeocyaths point to strong similarities with similar
assemblages from SW Sardinia (Matoppa Formation of the
Nebida Group) (Perejón et al. 1994). A pre-Alpine north-
ward setting, in a lateral prolongation of the archaeocyath-
bearing carbonates cropping now in SW Sardinia and
southern Montagne Noire, may be envisaged.

Since the pioneer work of Cavet (1957), the
Ediacaran-Lower Ordovician succession of the Pyrenees has
been traditionally compared to fossiliferous successions
from the neighbouring southern Montagne Noire. These
lithostratigraphic correlations between both Variscan massifs
have remained, up to recently, the main way to interpolate
the age of the Canaveilles and Jujols groups (Cavet 1957;
Laumonier et al. 1996, 2004). The stratigraphic framework
of the Montagne Noire has recently been updated (Álvaro
et al. 1998, 2014) and better constrained based on recent
chronostratigraphic (Devaere et al. 2013, 2014) and
geochronologic studies (Roger et al. 2004; Pitra et al. 2012;
Padel et al. 2017). As a result, the Valcebollère Formation
and, as suggested above, the Lleret Bayau Formation and the
Bentaillou limestone from the Central Pyrenees, can be

confidently considered as representative of the characteristic
Cambrian Age 3–4 episode of subtropical carbonate pro-
duction highlighted by the Pardailhan and Lastours forma-
tions in the Montagne Noire (Álvaro et al. 2010; Devaere
et al. 2014) (Fig. 8.2). The upper part of the Valcebollère
Formation (limestone/shale alternations and monotonous
shales bearing carbonate centimetre-thick nodules) is litho-
logically equivalent to the La Tanque-Coulouma transition.
A distinct lithological difference between the Eastern Pyre-
nees and the Montagne Noire is marked by the absence, in
the former, of the Guzhangian (regional Languedocian)
regression represented by the onset of the Ferrals Formation
(Álvaro et al. 2007). This sandstone-dominated formation,
representative of prograding shoal complexes, is absent in
the Eastern Pyrenees (Fig. 8.2). The regression recorded by
the input of sandstones marking the uppermost part of the
Serdinya Formation (Font Frède Member) may represent the
onset of the early Tremadocian regression marked, in the
Montagne Noire, by the La Dentelle Formation.

In SW Sardinia, the 1500–3000 m thick Cambrian-Lower
Ordovician succession is subdivided into the Nebida, Gon-
nesa and Iglesias groups (Pillola 1990). The lower silici-
clastic deposits of the Sa Tuvara Member (Matoppa
Formation, Nebida Group) should represent a lateral equiv-
alent of the Err (Eastern Pyrenees) and Marcory (Montagne
Noire) formations (Fig. 8.2). The upper carbonate and silt-
stone alternations of the Matoppa Formation have yielded a
Cambrian Age 3–4 fauna (Pillola 1990) which was corre-
lated with the Pardailhan Formation of Montagne Noire
(Álvaro et al. 2010). The Matoppa Formation is conformably
overlain by the Punta Manna Formation, the uppermost
heterolithic unit of the Nebida Group. The following Gon-
nesa Group, mainly composed of massive archaeocyathan-
bearing carbonates, is correlatable with the Pardailhan and
Lastours formations (Álvaro et al. 2010). The upper part of
the Matoppa Formation, the Punta Manna Formation and the
Gonnesa Group were deposited during the Cambrian Epoch
2 and are interpreted as lateral equivalents of the Val-
cebollère Formation and the La Salut thrust slice (Fig. 8.2).
The carbonate sequence of the Gonnesa Group is overlain by
the Iglesias Group, which begins with the carbonate-shale
alternations and/or nodular limestones of the Campo Pisano
Formation that can be considered as a lateral equivalent of
the Coulouma Formation (Álvaro et al. 2010) and the upper
part of the Valcebollère Formation. The Campo Pisano
Formation (Cambrian Series 2–3 transition; Pillola 1990) is
conformably overlain by the terrigenous rocks of the Cam-
brian Series 3-Lower Ordovician Cabitza Formation, corre-
lated herein with the Serdinya Formation.

In SW Sardinia, according to Loi et al. (1995), a
regressive trend culminating with local coarse-grained
sandstones, is recognized in the middle member of the
Cabitza Formation (sensu Gandin and Pillola 1985; Pillola
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1989), biostratigraphically represented by the so-called
CAB-4 fossil assemblage, correlatable with the late
Languedocian. This sandy-dominant level might represent
the Ferrals regression, but somewhat delayed in time. The
Acerocare Regressive Event is proposed close to the
Cambrian-Ordovician boundary, which lies at the so-called
Cabitza “tubi” part and is directly overlain by the first
occurrence of Tremadocian graptolites (CAB-6; Loi et al.
1995). Therefore, the lack of the Guzhangian Ferrals For-
mation regression in the Eastern Pyrennes, present in the
Iberian Peninsula, the Montagne Noire and somewhat dia-
chronous in SW Sardinia, might be related to peneplanation
of source areas, unable to yield coarse-grained sediments.

The Sardic unconformity recognized in Sardinia and the
Pyrenees could be considered as a correlation element for
both areas. Such as the Sardic unconformity, the Upper
Ordovician successions that follow this unconformity are
broadly comparable. In Sardinia, two post-Sardic sequences
have been recognized, reported at the SW and SE of the
island. The SW Sardinian sequence starts with a
conglomerate-to-sandstone, fining-upward package, fol-
lowed by a sandy-siltstone succession characterized by two
late Katian key-levels: the fossiliferous Portixeddu Forma-
tion and the carbonate-dominated Domusnovas Formation.
The SE Sardinian sequence starts with conglomeratic
deposits and volcanic products of Mid Ordovician age,
topped by a terrigenous and volcanoclastic complex char-
acterized by a fossiliferous lower Katian level (Punta Ser-
peddì Formation), and an upper-Katian key carbonate level,
the Tuviois Formation (Fig. 8.2). Based on their lithology,
fossil record and age, the SW Sardinian sequence is com-
parable to the Hartevelt’s (1970) sequence of the Eastern
Pyrenees, where the Rabassa Conglomerate Formation is the
corresponding of the Monte Argentu Formation (Sandbian),
the Cava Formation (Katian) represents the Monte Orri
(Early Katian) and Portixeddu formations (Late Katian),
while the Estana Formation (Late Katian) is the lateral
equivalent of the Domusnovas Formation (Late Katian). The
Ansovell and Bar formations broadly represent the Rio San
Marco counterpart (Hirnantian).

The SE Sardinian sequence could be comparable to that
cropping out in the Ribes de Freser area. In the Bruguera
unit, the Upper Ordovician volcanites that overlie the Sardic
unconformity are similar to the volcanic products that
overlie the Sardic unconformity in the SE Sardinian
sequence. The basal tuffs of the Ribes de Freser unit may
correspond to the volcanites of SE Sardinia that overlie the
Sardic unconformity, while the Katian sediments that cover
the former tuffs represent the Punta Serpeddì Formation
(lower Katian) followed by limestones comparable to the
Tuviois Formation. The thickness, facies and fossil record of
the limestones in the El Baell unit are different from the two
above-reported Sardinian sequences. These limestones could

be comparable only in age with the Estana Formation
(Eastern Pyrenees), the Domusnovas Formation (SW Sar-
dinia) or the Tuviois Formation (SE Sardinia) (Fig. 8.2).

The south-north, proximal-distal palaeogeographic trend
recorded in the Lower Palaeozoic of the eastern Pyrenees is
repeated across the Mouthoumet and Axial
Zone-southern-northern (proximal-to-distal) Montagne
Noire transect. Moreover, the biogeographic affinity dis-
played by the archaeocyaths of the Alpine Salut thrust sheet,
and the comparative analysis of zircon provenance (Padel
2016) point to closer palaeogeographic affinities between the
Pyrenees and Sardinia than between the Pyrenees and the
Montagne Noire. As a result, in addition to the estimated
150–160 km accumulated in a south-north Alpine dis-
placement of the Pyrenean thrust sheets, other pre-Alpine
movements may be envisaged to solve the present-day
relationship between the Pyrenees and the Occitan Domain
(sensu Álvaro et al. 2016). Dextral shearing along the
southern branch of the South Armorican Shear Zone,
between 315 and 305 Ma (Martínez Catalán 2012 and ref-
erences therein), may account for an original westernmost
position of the Montagne Noire and the French Central
Massif in pre-Variscan, Early Palaeozoic times.

The inner peri-Gondwanan massifs that form the eastern
branch of the Variscan Ibero-Armorican Arc (Southern
Armorican, Pyrenean and Occitan Domains and lateral
prolongation into Corsica and Sardinia) offer a common
geodynamic framework during Early Palaeozoic times. They
differ from the Iberian Massif (western branch of the same
arc) by the absence of Cadomian deformation, the record of
Cadomian felsic-dominated volcanic activity crossing the
Ediacaran-Cambrian boundary interval, a significant episode
of carbonate productivity capping the top of palaeohorsts
and volcanosedimentary edifices during Terreneuvian times,
the lack of the Toledanian phase (marking the rift/drift
transition in parts of the Iberian Peninsula) and the common
record of the Sardic phase. The latter is characterized by
intrusion of granites in the Pyrenees and the Axial Zone of
the Montagne Noire, contemporaneously with the opening
of Katian rifting branches and the record of a
basaltic-dominated, tholeiitic magmatism in the Mouthou-
met and Cabrières klippes (southern Montagne Noire). The
palaeorelief generated as a result of the Sardic uplift was
succeeded by extensional pulses, tilting, discontinuous ero-
sion of the pre-Sardic basement, and infill of the new
palaeorelief with alluvial-to-fluvial deposits, volcanosedi-
mentary complexes and final sealing of the whole
palaeotopography during Silurian to Early Devonian times.

The interpretation of the Sardic phase as (i) the onset of a
Mid Ordovician arc that developed in North Gondwana as a
consequence of subduction of oceanic crust under continental
crust (Andean-type convergence; see Di Pisa et al. 1992;
Carmignani et al. 2001; Stampfli et al. 2002; Buzzi et al. 2007;
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Funedda and Oggiano 2009), (ii) a change from symmetric to
asymmetric opening conditions of the Rheic Ocean leading to
local crustal fusion, or (iii) the onset of a rift/drift unconfor-
mity similar to the Toledanian one recorded in the Iberian
massif, is still open to future discussion.

8.6 Silurian, Devonian and pre-Variscan
Carboniferous

J. Sanz-López

The Pyrenean successions show a great spatial variation on
the distribution of sedimentary facies, particularly during the
Devonian, where a plethora of local lithostratigraphic units
have been differentiated (Fig. 8.15). Consequently, detailed
description and reference to the original studies are here
avoided, since it overpasses the subject of this synthesis. It
may be found in extended and recent publications (Dégardin
1988; Sanz-López 1995, 2002a, b, 2004; Dégardin et al.
1996; Delvolvé et al. 1996; García-López et al. 1996;
Majesté-Menjoulas et al. 1996; García-Alcalde et al. 2002).
Sanz-López (2002a, 2004) described several sedimentary
domains modifying the previous Devonian facies-area
defined in the Pyrenean Axial zone (Mirouse 1966; Mey
1967, 1968; Boersma 1973; Zwart 1979) and the Basque
massifs (Heddebaut 1975) (Fig. 8.16). The western margin
of the preserved basin is characterized by the occurrence of a
sedimentary hiatus between the Ordovician and Upper
Devonian rocks (Basque Cinco Villas domain, CVd;
Fig. 8.15). The southern margin is interpreted since
shallow-water carbonate platforms are located in a southern
belt (Fig. 8.16), and siliciclastic systems were fed from the
current south (the Cantabro-Ebroan massif after Mey 1967;
Llopis Lladó et al. 1968; Requadt 1974; Carls 1988). An
intra-Devonian, or Devonian-late Tournaisian hiatus, is
usually recognized in the southernmost successions (Mir-
ouse 1966). Subsidence rates were decreasing and, in par-
allel, deep-water conditions were increasing along the
marginal southern belt from west to east; from the southern
Alduides-Mendibeltza to the Sallent, Baliera, Sierra Negra
and el Comte domains (AMd, Sd, Bd, SNd and ECd;
Fig. 8.16). The norhern belt represents a deep-water epi-
continental basin where a condensed carbonate sedimenta-
tion prevailed (Northern and Eastern domains, Nd and Ed),
although shallow-water facies with sedimentary hiatus also
occur in the westernmost part (Ferrières domain, Fd).
Among the southern and northern belts, an asymmetric
central trough (Central domain, Cd) differentiated from the
Eifelian to the Tournaisian (Fig. 8.15). The highest subsi-
dence was located at the southern margin probably in rela-
tion to fault activity, mainly in the early Frasnian, when the
occurrence of extensional listric faults bounding some

blocks was interpreted (Majesté-Menjoulas et al. 1991). The
siliciclastic supplies filling this trough came from the west
highly subsiding area (AMd). Siliciclastic input piled up in
the southern part of the trough and disappeared toward the
east and the north.

The Silurian sedimentation was onlapping and trans-
gressive, covering the Late Ordovician rifting basins
throughout the Pyrenees. Deposition of black carbonaceous
shales (Lower Graptolitic Shales after Schmidt 1931 in
Fig. 8.15; 70–180 m thick) on a poorly oxygenated bottom
sea characterized the Pyrenees as other Variscan areas of
southern Europe and northern Africa (García-López et al.
1996). Late Rhuddanian to Aeronian (Llandovery) grapto-
lites are traditionally the lowermost described in black shales
of many Pyrenean sections (Dégardin 1988). Late Hirnantian
(latest Ordovician) and basal Llandovery graptolites are
known in a single locality (Roqué Bernal et al. 2017). The
early Llandovery may be recorded by sandy shales without
graptolites or by shallow-water deltaic sandstones of the Bar
Formation in the southern part of the Central and Eastern
Pyrenees. The drowning of this sandy platform seems to
have been diachronous, because Aeronian-Telychian grap-
tolites and Llandovery conodonts were described from the
transition interval (Llopis Lladó 1969; Sanz-López and
Sarmiento 1995). Furthermore, black shales are usually a
common detachment horizon.

Condensed carbonate and/or reworking beds with mainly
mollusks recorded occasional oxygenation events in the
deep basin (Orthoceras Limestone after Dalloni 1913). It
may constitute a composite horizon, 5–15 m thick, with
Gorstian-Lutfordian (Ludlow) conodonts, although upper
Wenlock to lower Prídolí beds are also known (García-Ló-
pez et al. 1996; Sanz-López et al. 2002c). Locally, con-
densed crinoidal limestones with corals were interpreted as
an early Wenlock sedimentary high in the central Pyrenees
(Marxant Limestone after Sanz-López and Palau 2000). In
the southern, central Pyrenees, ochre condensed and bio-
turbated carbonates of type Ockerkalk replaced to the
Orthoceras Limestone between the early Ludlow and the
latest Prídoli (Llessui Formation and Toloriu Limestone; see
Sanz-López et al. 2002c). This Ockerkalk facies was
deposited on swells or ridges areas and could be in the
subsurface of the Ebro basin, because it crops out in the
Catalan Coastal Range and is known in the External Nappe
zone of Sardinia.

The carbonate deposition and oxygenation of the
sea-bottom in the Axial zone coincided with the arrival of
distal siliciclastic deposits from the Ludlow in the higher
subsiding Basque AMd (Arnéguy Formation; Requadt
1974). There, a shoaling interval is recognized trough Prídolí
and early Lockhovian shallow-water faunas (Heddebaut
1975; Requadt 1974). At this time, it corresponds with the
east extension of the distal siliciclastic sedimentation
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Fig. 8.15 Correlation chart among the Silurian to Middle Pennsylvanian lithostratigraphic units described in the different sedimentary domains.
Explanation of units is in the text

Fig. 8.16 Geological sketch of the Paleozoic rocks in the Pyrenees (Basque massifs, Axial zone and North Pyrenean massifs-north of the North
Pyrenean Fault zone, NPFZ) showing the sedimentary domains differentiated for the Silurian to Middle Pennsylvanian rocks
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eastward in the Axial zone (Serre Llongue Shale in the Sd,
Aneto Formation in the Bd; 40–80 m thick), although black
shale and limestone (Upper Graptolitic Shales; 20–40 m)
were restricted to the oxygen depleted basin (Sd, SNd and
ECd) and condensed crinoidal limestone deposited on sedi-
mentary highs (ECd). Prídolí to early Lochkovian con-
odonts, graptolites, chitinozoans and a varied of invertebrate
fauna are known (Dégardin 1988; Sanz-López et al. 1999).

A highstand sea-level interval ended the prevalent strat-
ified water and black shale deposition in the Pyrenean Basin.
It is recorded in the Torres Member of the ECd (Rueda
Formation; 10–20 m thick) or the equivalent units locally
described in the Bd, Nd and Ed. It consists of condensed
carbonate hemipelagic sedimentation with bioturbated
sea-bottom and occasional hardground development. A high
resolution conodont zonation spans the mid to late
Lochkovian (Valenzuela-Ríos et al. 2015). In the western
part of the basin (AMd), shallow water sedimentation cor-
responds to crinoidal limestones and shales with bra-
chiopods (200 m thick; Klarr 1974).

Siliciclastic input and high subsidence occurred in the
AMd during the Pragian (200–700 m of sandstones, shales
and quartzites of the Ondarelle and Aldudes formations) in
coincidence with a change from extremely hot Lochkovian
to hot and humid Pragian climate conditions according to
Slavík et al. (2016), and a worldwide sea level lowering
(Johnson et al. 1985). A well-oxygenated basin recorded the
development of a vast extended Pragian ramp with a distal
siliciclastic component (limestones and shales of the
Mandilar, Gelada and Rueda formations, 50–120 m thick).

The Aldudes siliciclastic system was retrograding during
the late Pragian-early Emsian in the western AMd, and was
replaced by 100–200 m of “Brachiopod Shale” (Klarr 1974).
In most parts of the Pyrenees, a carbonate ramp with mod-
erate subsidence was onset (Basibé, Castanesa and Pacino
formations; 30–60 m thick). In the Central Pyrenees, a late
Pragian siliciclastic wedge prograded northward (San Sil-
vestre Member of the Basibé Formation in the Bd). The
carbonate platform shows early Emsian local coralline
growth developed on sedimentary highs (ECd; Sanz-López
1995).

An important deepening of the sedimentation occurred
during the early Emsian, but it was subdivided into several
pulses (from the Middle P. excavatus to the Upper
P. nothorperbonus conodont Zones; Sanz-López 2002a, b;
Martínez-Pérez and Valenzuela-Ríos 2014). Shallow-water
mixed siliciclastic-carbonate sedimentation was located in
the AMd (Quinto and Urepel formations, 500–600 m thick),
while shaly input extended in the Central Pyrenees (Formi-
gal Formation in the Sd, Fonchanina Formation in the Bd
and SNd, Aulà Shales in the Nd; Fig. 8.15). Shale sedi-
mentation was replaced by condensed limestone with
dacrioconarids in the ECd (less than 30 m thick of the

Castells Beds). In the late Emsian, a prevailing carbonate
sedimentation with reefal development occurred in the AMd
(Urquiaga Formation; 500 m). The reduction of mud supply
into the southern Pyrenees is related to hemipelagic car-
bonate sedimentation with deep-water dacrioconarids,
ostracods and ammonoids in the Bd and SNd (Mañanet
Formation; 280 m thick; García-López et al. 1990). More
condensed and carbonate deposition is recorded by the
Villech Formation in the distal Eastern Pyrenees (ECd; 35–
70 m thick). Local changes among successions were related
to the location in the basin and slopes of sedimentary highs
where limestone with coral biostromes may occur (Dalloni
1930; Cavet 1957). A drowning event was recognized at the
top of the Villech Fomation (upper Emsian) and followed by
the progradation of resedimented carbonate of the Coma-
bella Formation in the ECd (Sanz-López 1995; Montesinos
and Sanz López 1999). Late Emsian to basal Eifelian distal
siliciclastic wedges arrived to the Western Pyrenees (Socotor
and Acherito Beds in the Sd and Fd) and limestone beds
yielded brachiopods from the Emsian-Eifelian interval
(Requadt 1974; Juch and Schafer 1974; García-Alcalde et al.
2002). Distal siliciclastic deposits were sedimented in the
deepest and subsiding areas of the Central Pyrenees (Vilaller
Formation in the Bd and SNd; Boneu and Entecada forma-
tions in the Cd).

The early Eifelian corresponds to a new episode of sili-
ciclastic progradation characterized by sandstones rich in
iron oxides in the southern part of AMd (Eznazu Formation,
about 200 m in thickness). Thick successions of shales
extended along the Central Pyrenees (Vilaller, Boneu and
Entecada formations) as a wedge of condensed shales and
marls with abundant dacriconarids in the deep-water nodular
limestones of the Comabella Formation deposited in the Ed
and the ECd (Taús Beds in Montesinos and Sanz López
1999).

High subsidence and growth of shallow-water reefal
limestone is recorded during the latest Eifelian to early
Givetian in the Sd and Fd, the Coral Limestone (150–500 m
thick; Mirouse 1966; Joseph and Tsien 1975; Joseph et al.
1980, 1984). It seems to be equivalent to the Iturrumburu
Limestone in the southernmost part of the AMd (Ches-
terikoff 1964; Wirth 1967). The prograding of outer car-
bonate platform above shales is also recorded from the latest
Eifelian in the Bd (Renanué Formation in the central Pyre-
nees). Slope-apron carbonate bodies were prograding above
hemipelagic carbonates derived from reefal biostromes in the
ECd.

The mid-Givetian to early Frasnian interval corresponds
to the decreasing in the distal siliciclastic sources and
highstand sea level. Reefal growth extended to the southern
margin of the Cd (Sant Esteve Limestone) and deep-water
carbonate sedimentation (dacrioconarid limestone) occurred
in the central trough, the Northern and Eastern Pyrenees
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(Bandolers, Gabiedou and Pic de Larrue limestones; Perret
et al. 1972; Bodin 1988; Palau and Sanz 1989; García-López
et al. 1991). The shale sedimentation was confined to the
western highly subsiding margin of the basin in the AMd
(Argus Shale, 800–1000 m thick).

Differential subsidence increased probably in relation with
extensional tectonics and an early Frasnian compartmented
palaeogeography has been suggested (Raymond 1987;
Sanz-López 1995). The proximal siliciclastic deep sea-fan
deposits occurred in the southern margin of the high sub-
siding trough in the Cd (Les Bordes Sandstone; Kleinsmiede
1960). The input should be located at the west, concretely in
the AMd, where early Frasnian 800–1500 m of shallow-
water sandstones and shales deposited as deltaic systems
(Irurita Group; de Boer et al. 1974). The trough is not rec-
ognizable eastwards, in the Tor–Casamanya syncline, where
Givetian to Frasnian nodular limestones and shales were
recently described (Clariana 2015). The siliciclastic supplies
decreased in the middle Frasnian, but high subsidence con-
tinued as shale deposition in the AMd (500 m thick of the
Artesiaga Shale). In this line, the Givetian coralline reefal
development in the southern belt was retrograding south-
wards from the Middle-Middle M. asymmetricus conodont
zones (Sd, Bd and southern ECd), may be in relation to the
tilting of the southern basin margin. Siliciclastic facies and
carbonates resedimented beds deposited in the outer platform
(Lazerque and Lariste series, Ferreturas Formation, Sahún
Shale) and arrived to the southern part of the Cd (La Tuca
Shale and limestone), whereas distal deep sea fans deposits
filled the central and northern parts of the central trough (Riu
Nere Sandstone and shale, Tourmalet unit). Condensed and
deep-water hemipelagic limestone deposited laterally in the
epicontinental basin of the Nd, Ed and ECd. Frasnian
intraformational breccias, slope deposits and local reefal
growth suggest the occurrence of swollen areas probably
bounded by faults in the ECd (Sanz-López 1995, 2002b).
Shallow-water sandstones and bioclastic limestones with
brachiopods and corals (Arbartán and Picuda formations;
60–120 m thick) suggest a late Frasnian shoaling in the AMd.

The uppermost Frasnian deepening pulse is characterized
by poorly oxygenated shale sedimentation, which included
tempestite limestone beds in the lower Famennian of the
AMd (Belate Beds, 30 m thick). It is not differentiated in the
outer platform deposits of the Sd and in the distal siliciclastic
turbidites of the Cd. A deepening horizon corresponding to
shales with carbonate nodules and ammonoids was descri-
bed in the hemipelagic north and east carbonate sedimen-
tation, and deep-water nodular limestone buried coralline
limestone in successions of the Comabella Formation (ECd;
Sanz-López 2002b).

The Frasnian/Famennian boundary was correlated with a
condensed shale horizon in the Comabella Formation, where
a sharp change in the conodont and ostracod faunas occurred

in relation to the global Kellwasser Event (Sánchez de
Posada et al. 2008). In the Cadí nappe, the Frasnian/
Famennian boundary is located at the base of the La Mena
Formation, red limestone with brachiopod shoals and
derived tempestistes deposited on sedimentary highs
(Sanz-López 2002b). The succession shows a lower–middle
Famennian deepening sequence, where cephalopod “Gri-
otte” limestone deposited on the slope and basin. The La
Mena Formation is a condensed, reddish, nodular limestone
with cephalopods (12–30 m thick) deposited in the basinal
area of the ECd, Ed and part of the Nd (Bouquet and Stoppel
1975; Cygan 1979). At time, anoxic deep-water black shale
sedimentation with resedimented limestone beds deposited
in the central trough (Campalias Shale) and in the AMd
(Belate Beds), whereas siliciclastic beds of the Ferreturas
Formation seems to be the lateral equivalent in the southern
Pyrenean belt.

The Barousse Formation consists of nodular cephalopod-
bearing limestones (25–70 m thick) deposited during the
mid Famennian to the early Tournaisian. It formed a
deep-water, starved, carbonate ramp extending along mostly
of the Pyrenees, including the CVd (where it is above
Ordovician rocks). This formation marks the beginning of
the onlap on the Cantabro-Ebroian block and predated its
burial in the upper Tournaisian. The Barousse Formation
lacks or is locally preserved, as bioclastic or crinoidal
limestone, in the southern part of the Sd. The upper part of
the Barousse Formation includes ash and cherts beds in the
Sd and AMd (Soques Chert after Perret 1993). At the top,
the Boyer et al. (1974)’s horizon B is a continuous shale less
than 1 m in thickness (2 m in the deep basin of the Cd) and
equivalent to the Rhenish Hangenberg Shale. It is associated
with the latest Famennian, global, cooling event and the life
extinction crisis (Walliser 1996). The base of the Boyer et al.
(1974)’s limestone C of the Barousse Formation (about 2 m
thick) corresponds to a worldwide eustatic rise post-glacial
horizon close to the lower boundary of the Carboniferous
according to conodont faunas (Boyer et al. 1974;
Sanz-López 1995, 2002c; Kaiser et al. 2008). The top of this
limestone provided mid Tournaisian conodonts (Siphon-
odella cooperi or S. crenulata zones).

Above, the Saubette Chert consists of black radiolarian
cherts and shales with horizons of phosphatic nodules (Perret
1993). A mid to late Tournaisian age is derived from radio-
larians, crustaceans and ammonoids in coincidence with the
conodonts obtained in the limestone above and below the
chert unit (Delépine 1935; Goumerlon 1987). These poorly
oxygenated sediments extended throughout the Pyrenees in
coincidence with the worldwide Lower Alum Shale event or
Mid-Tournaisian event described by Walliser (1996). It lacks
on the southern marginal area and on the sedimentary highs
in relation to the tilting of the southern Devonian platform
and to extensional tectonics in the Sd and Fd. These areas
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were drowned by condensed sandy transgressive bioclastic
limestones (lowest part of the Aspe-Brousset Formation) with
late Tournaisian and reworked Devonian conodonts (Perret
1993; Perret and Weyant 1994). Consequently, the onlap of
the marginal area was contemporaneous with the deposition
of the upper part of the Saubette Chert in the basin. Tour-
naisian cherts or limestones are directly overlying different
Cambrian to Upper Devonian rocks in the adjacent Palaeo-
zoic outcrops of the current western Mediterranean Sea
(Aiguafreda Formation of the Catalonian Coastal Range,
cherts and siliceous shales in the Minorque Island and the
lower member of the Falcoña Formation in the Betic Chains)
indicating a subdivided basin maybe in relation to exten-
sional faults (Raymond and Lethiers 1990). An intra-
Tournaisian hiatus and erosion has also been recognized in
the Cantabrian zone (Sanz-López and Blanco-Ferrera 2012).
The mid–late Tournaisian starved basins recorded episodic
high planktonic productivity and poorly oxygenated
bottom-sea, far of siliciclastic supplies and locally related to
submarine volcanism. In the southern Catalonian Coastal
Range, lava flows derived from alkali basalts solidified in
shallow-waters marine setting in an intraplate extensional
context (Melgarejo and Martí 1989; Melgarejo 1992).

Complete deep-water sedimentation above sedimentary
highs had a maximum flooding event at the late Tournaisian
(Scaliognathus anchoralis Conodont Zone). Sedimentation
of condensed, nodular to massive, cephalopod limestones
(Aspe-Brousset Formation; 25–30 m thick) recorded an
increase in the oxygen content of the sea-bottom respect to
the mid Tournaisian (Perret 1976; Sanz-López 2002b).
A similar episode is known in the Cabrières klippes (Mon-
tagne Noire), the Valls unit (Catalonian Coastal Range) and
the Cantabrian Mountains, and corresponds to the Avins
Event in the Dinant Basin (Poty 2007). Sedimentation of
cherts and siliceous shales with inter-bedded graded tuff
layers (Louron Member) deposited above the Saubette Chert
in the deep part of the Pyrenean basin, including the CVd,
eastern AMd, Cd and locally the Nd and ECd (Krylatov
1963; Crilat 1983; Sanz-López 1995). The lower-middle
Viséan cherts are replaced by condensed cephalopod lime-
stone on the swollen areas in a similar line to the described in
the Cantabrian Mountains and the Montagne Noire (cherts of
the Lavandera Member in the Alba Formation; Colonnes
Formation, respectively). The basinal, starved, Tournaisian to
lower Viséan chert sedimentation in known in other adjacent
Palaeozoic outcrops of the current western Mediterranean
Sea—region (Catalonian Coastal Range, Minorque Island,
Betic Chains and the Palentine nappes of the Cantabrian
Mountains). In all these areas, centimetre-thick fine-grained
tuffaceous clayey horizons occurred and suggest volcanism
in relation with a faulted, subdivided basin.

Condensed nodular carbonate sedimentation of the
Aspe-Brousset Formation extended in the Pyrenees and the

western Mediterranean area from the mid to late Viséan (G.
praebilineatus to G. bilineatus conodont zones). A deeper
sedimentation corresponds to the limestone and siliceous shales
(Larbont facies of Clin 1959) in the northeastern part of the
Pyrenees (ECd, Cd and Nd). There, the top of the
Aspe-Brousset Formation provided conodonts and ammonoid
considered late Viséan or early Serpukhovian. This
limestone-shale sedimentation was described in the Catalonian
Coastal Range (el Papiol Formation; 10–12 m thick) and in
Minorque (Bourrouilh 1983; Martínez Chacón et al. 2003).
Rich endemic trilobite, brachiopods and coral faunas adapted to
quiet water conditions in soft, muddy sea bottom muddy bot-
toms are known (MartínezChacón et al. 2003; Plusquellec et al.
2007;Gandl et al. 2015). Shallow-water carbonate shelves grew
up north of the Pyrenees during the Viséan and the Serpukho-
vian. It is preserved in the Mouthoumet massif (“Calcaires à
algues et foraminifers” Formation in Bessière and Schulze
1984) and as deposits derived as calciturbidites and debrisflows
in the Montagne Noire (Colonnes Formation and Puech Capel
Formation in Korn and Feist 2007). The arrival of synorogenic
siliciclastic supplies of the Culm flysch ended the carbonate
sedimentation. It occurred in the late Serpukhovian drowning
episode recorded at the top of the Aspe-Brousset Formation in
the southern central and western Pyrenees (Sd, Bd and AMd).
Late Viséan to late Serpukhovian clasts and olistoliths from
shallow-water carbonate platforms were reworked in the syn-
orogenic flysch deposits of the Montagne Noire and Pyrenees
(Delvolvé et al. 1996; Vachard et al. 2016).
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