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Abstract

In the present paper, a numerical chain aimed at predicting wave-induced runup

on an embayed sandy beach is validated by means of measurements derived

from a video-monitoring station, recently installed in Southern Italy, during two

storm events in 2016. The numerical approach employs the MeteOcean fore-

casted waves within SWAN and SWASH models (both in 2-d and 1-d mode).

The combination of multibeam and d-RTK surveys with Unmanned Aerial Ve-

hicle (UAV) imagery provides high resolution depth grid (0.015 m), particularly

required in shallow waters, where wave hydrodynamics is highly influenced by

the bottom. The results show a good agreement between video measurements

and 2-d predictions of runup. A sensitivity analysis of the Manning's roughness

factor is needed in 1-d simulations. The accuracy of the empirical formulas in

predicting wave runup in an embayed beach is also investigated, showing mainly

overestimation of the observations.

Keywords: Wave runup; Video monitoring; UAV; SWASH ; Runup empirical

formulas.
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1. Introduction

1.1. Background

Storm surges represent one of the most significant processes in coastal risk

assessment models. They greatly influence exposure of coasts to flooding and

erosion, recently intensified by climate changes. In swash zone the in-depth5

knowledge of storm-induced interactions between morphodynamics and hydro-

dynamics is needed, since sediment transport highly depends on wave up-rush

and back-wash, including groundwater behaviour (e.g., Elfrink and Baldock,

2002; Brocchini and Baldock, 2008; Saponieri and Damiani, 2015). In coastal

applications, flooding extent is determined by predicting wave runup, which de-10

termines the overwash areas. In such a dynamic coastal environment, despite

storm surge can be easily deduced from gauge measurements, wave-induced

runup estimation is not so feasible. Available approaches for meeting data col-

lection challenges in such a dynamic coastal environment could be based on the

use of remote ground-based observations, numerical modelling and empirical for-15

mulas. Numerical models allow to accurately simulate wave propagation from

deep-water to swash zone, but they need to be appropriately calibrated under

site-specific conditions. In such a context, high-resolution mapping of topogra-

phy plays a crucial role, since both wave propagation and energy dissipation are

strongly influenced by the bottom.20

The traditional techniques useful for representing the foreshore Digital Sur-

face Model (DSM), such as Light Detection and Ranging (LiDAR) and Terres-

trial Laser Scanner (TLS), provide wide coverage and good accurate topography.

However, they involve high costs, long processing time and are often limited by

logistic constraints. The use of Unmmanned Aerial Vehicles (UAVs) represents25

a new approach to survey relatively large areas in less time and with lower op-

erational costs than standard methods, without affecting the accuracy level in

digital land mapping (e.g., Harwin and Lucieer, 2012; Gonçalves and Henriques,

2015; Turner et al., 2016). UAVs make beach recognition more feasible for nu-

merical studies, allowing coastal topography to be easily surveyed before and30
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after a storm event with fewer economic and technical limitations. Only few op-

erational constraints still remain, related to environmental conditions (i.e. wind

speed) and the difficulty of placing validating artificial GCPs on such irregular

areas.

The availability of detailed topography and field data aimed at calibrating35

numerical models is not always possible. Over the last half century, different

field and laboratory studies focused at collecting wave runup data in several

conditions, including sandy beaches as well as structures, by providing a com-

prehensive dataset for runup parametrization and a practical predictive tool.

Most of the empirical formulations relate the wave runup process to deep-water40

significant wave height, peak period and foreshore beach slope (e.g., Hunt, 1959;

Holman, 1986; Mase, 1989; Nielsen and Hanslow, 1991). Efforts have been par-

ticularly directed towards quantifying the influence of beach slope on runup

estimation, mainly based on the use of an average beach gradient able to approx-

imate the foreshore slope, greatly influenced by morphological changes during45

storms (e.g., Ruggiero et al., 2001; Stockdon et al., 2006; Bouvier et al., 2017) .

Nonetheless, the embayment system, featuring the field area here investigated,

differs from the beaches where large part of the parametrisations and were built

and validated (e.g., Vousdoukas et al., 2009; Soldini et al., 2012).

1.2. Objectives and Outline50

The present work plans to examine the influence of the beach morphology

implementation, at an embayed sandy beach, on wave runup predictions dur-

ing storm events, characterised by rough hydrodynamic conditions. Methods

based on both numerical and empirical modelling are implemented. In addi-

tion, the aim is to draw up instruments for coastal and maritime management55

and planning.

The study area is presented in Section 2. Measurements from video system

and topographic field surveys are used as benchmarks, as described in Sec-

tion 3 and Section 4. Wave-induced runup is estimated by means of a numerical

chain (Section 5), by one-way coupling the spectral 2-d SWAN with the non-60
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hydrostatic 2-d SWASH model, forced offshore with MeteOcean waves forecast

data. The nearshore topography derives from a proper combination of Multi-

beam and d-RTK surveys with a Digital Surface Model reconstructed using UAV

imagery (Section 3), providing a high-resolution two-dimensional grid. The ac-

curacy of the numerical predictions is then evaluated using the obtained results65

with measurements derived from the video system and described in Subs. 6.1.

Then, the measurements are used to test the empirical formulas in Subs. 6.3.

Besides the formulas most used in practice, the models of Mayer and Kriebel

(1994) and Mather et al. (2011) are also considered in the present study, due to

their peculiar approaches implemented for runup estimation, mainly based on70

different evaluations of beach slopes and wave parameters. In order to assess

the accuracy of runup predictions in 1-d mode, a sensitivity analysis is reported

which involved varying the Manning's roughness coefficient, ranging from 0.009

to 0.046 s/m1/3, according to the most typical relevant field values for fine-

medium sandy beaches (see Subs. 7.1). The main discussions and conclusions75

are highlighted in Sections 7 and 8.

2. Study area

The study area is located in the South of Italy, in the centre of the embayed

beach at Torre Lapillo, hamlet of Porto Cesareo (Lecce). The Marine Area of

Porto Cesareo is constituted by the typical sub-environment of low-lying coasts,80

with calcarenitic rocky and sandy beaches. The latter are characterized by a

mean diameter D50 equal to 0.47mm and a D95 of 1.38mm. The embayed

beach of Torre Lapillo has an asymmetric planform, characterized by a quite

strongly curved zone to the NW, a gently curved centre and a relative straight

section to the SE (see Figures 1a and 1b).85

This coastal stretch has been densely urbanized, since the early 1960's, with

remarkable damages to the emerged beach, where the dune was almost totally

dismantled, leading to significant erosion. Moreover, in the period 2009–2011

an increase in the mean sea level (by about 13 cm) was estimated (Bruno et al.,
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2014), contributing to shoreline retreat. In particular, the shoreline erosion hot-90

spots are located in the south-east, where surveys deployed in 2013-2015 showed

an average reduction of the emerged beach width of about 10 m, with respect

to 2009.

Most of the time (49.7 %) waves approach from the SSE direction, while

for 34.8 % they come from SW. The wave climate is moderate to low, with a95

significant wave height of less than 0.75m for 44 % of observations in 2006-2013,

compared to 12.17 % for 0.75< Hs< 1.75m and only 0.66 % with Hs ≥ 3.0m.

The peak period Tp ranging from 3 to 5 s represents the most frequent (about

31.9 %). Due to the diurnal microtidal regime along the Ionian Sea, the tidal

range is less than 0.3 m.100

In December 2015, a new video coastal monitoring system was deployed

and integrated into the Apulian Region Monitoring Network, managed by the

local Basin Authority (AdBP), in order to study both morphodynamic and

hydrodynamic processes (Valentini et al., 2017a,b). It consists of two visi-

ble cameras, framing an area of about 1 km2. A new Shoreline Detection105

Model (SDM) for image processing was developed, aimed at extracting shore-

line from Timex oblique images, mainly based on the recognition of sea/sand

contours from automatic segmented areas (Valentini et al., 2017c). Images are

automatically processed and results shared in quasi real-time on a web-portal

(http://91.121.30.84/). The SDM was calibrated and tested with successful110

results, making the system suitable for further investigations such as wave runup

monitoring, by extracting from videos the leading edge of the wave up-rush on

the beach face through semi-automated routines, with a minimum of human

guidance.

3. Topographical surveys115

Both the emerged and submerged beach in the nearshore zone were surveyed

by means of different techniques, to obtain a high resolution DSM of the study

area. Transect surveys using differential GPS solutions (d-RTK) on the Global
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Navigation Satellite System (GNSS) of Apulia region were carried out just before

the two storms considered, i.e. on 1st March 2016 and 9th May 2016. Cross-120

shore beach profiles were surveyed up to a depth of around 0.9–1m, on 12

and 16 transects, spaced 10 m apart, in the area framed by the two cameras.

Dataset quality was evaluated in terms of both horizontal and vertical accuracy

overall the sampled points, with a Root Mean Square Error (RMSE) of 0.0067 m

and 0.013 m, respectively. The nearshore submerged beach was derived from a125

survey using MultiBeam EchoSounder technology (R2 Sonic 2022), conducted

by the management consortium of the Protected Marine Area of Porto Cesareo,

under flat wave conditions.

The emerged area framed by one camera (≈ 10, 000m2) was also surveyed

by means of an Aeromax 300 multicopter (Microgeo S.r.l., Florence, Italy). The130

aircraft was equipped with a Sony α5000 camera, featuring an Exmor�APS HD,

20.1 Mp CMOS sensor. The acquisition at 30m above the ground level and the

camera focal length set equal to 16mm, gave images with a spatial resolution

of 0.44 cm.

The UAV imagery was processed by using Structure from Motion (SfM)135

methodology (e.g., Westoby et al., 2012), which generally proves to be very

suitable for environments where a great variability of contrast and prevalent

histogram bands occur. Nevertheless, on beaches facing the Ionian Sea, the char-

acteristic features of low vegetated dunes, small-sized ripples and algal blooms

makes UAV surveys challenging.140

The SfM algorithm is included in several software packages, coded in different

forms, typically based on up-to-date routines of computer vision. The friendly

and useful interface of Agisoft Photoscan software (v.1.2.4, build 2399) was

chosen for the analyses, due to its suitability for UAV image post-processing.

In the present study, a mean of 13 overlapping images, taking into account the145

recommendations of Fonstad et al. (2013), enabled an accurate topographical

reconstruction. After the image manipulation process (SfM), bundle adjustment

was performed for the dense point cloud reconstruction. The residual errors of

the transformation, computed on the GCPs, resulted in RMSE of 0.017m in

6



the East, 0.018m in the North and 0.011m in the vertical direction. The overall150

total error (3D) was calculated equal to 0.027m, corresponding in the pixel space

in an average value of 0.3 pixel error, with a single outlier of 1.4 pixel. A dense

point cloud was produced, by using the high quality parameter and aggressive

depth filtering option and then interpolated by the Inverse Distance Weight

interpolation method (IDW), to obtain the DSM (Figure 2). The pixel spacing155

was chosen on the basis of software estimated resolution (0.0152m), derived

from the averaged distance between points within denser areas. Figure 1a shows

the emerged study area, marked with a black dashed line, the Ground Control

Points (GPCs), the Validation Points (VPs) used for geo-referencing images and

validating the DSM, respectively, and the final DSM.160

To assess the vertical accuracy of the UAV-derived DSM, the arithmetic aver-

age and the Root Mean Square of Differences (RMSD) were calculated, based on

the difference between the orthometric heights measured by RTK/GNSS (VPs)

and the elevations derived from the DSM at the same horizontal coordinates.

The average difference of 0.033m, is comparable with the absolute vertical accu-165

racy of the GNSS points (0.013m) and in good agreement with previous studies

(e.g., Lee et al., 2013; Mancini et al., 2013; Long et al., 2016). Figure 3a shows

the comparison between the elevation of VPs (zDGPS) and the corresponding

points extracted from the DSM (zUAV ). The regression line shows agreement

between measurements, with a fitted line slope close to 1 and R2 equal to 0.995.170

In Figure 3b the frequency histogram of the differences ∆z = zUAV −zDGPS

is reported. The RMSD (0.044m) is almost equal to the mean value, with

a narrow amplitude of the variation, with only one significant outlier, at ap-

proximately 0.12m. These validation procedures show average discrepancies at

the centimetre order, due to a combination of factors: (i) ground control and175

validation points were surveyed with d-RTK using reference stations, with their

own vertical accuracy (0.013m); (ii) target points located with care using a

plane base under the GPS pole can introduce errors due to movement of the

sand; (iii) the interpolation procedure for DSM reconstruction often results in

artefacts (i.e. ripples of a few centimetres) in a highly-corrugated sandy en-180
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(a)

(b)

Figure 1: (a) DSM obtained from UAV survey. Elevations above sea level measured in m.

Highlighted the GCPs location; (b) bottom grid derived from Robust Kriging interpolation

with nested grids G150 (blue contour) and G80 (light green contour); tide gauge (green dot)

and MeteOcean boundaries locations (red spots). The inset map highlights the field study

area representation. (colour image)
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Figure 2: Photogrammetric process at the Torre Lapillo beach; top: creation of sparse point

cloud; middle: dense point cloud; bottom: model texture (the reference number on the left

bottom of each 3-d sketch defines the KeyPoints and faces/vertices). (colour image)

vironment; (iv) the different techniques employed for both surveys are based

on remote imagery and intrusive rod acquisitions. Despite these differences, the

survey successfully met the requirements for topographic monitoring of common

sandy beaches.
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Figure 3: (a) Comparison between the elevation of VPs GNSS data and corresponding points

extracted from the UAV DSM. Linear fitting plotted and regression parameters highlighted;

(b) frequency histogram for classes of 2 cm and bulk statistic parameters of differences. (b/w

image)

4. Runup measurement from video recordings185

Timestack images for wave runup measurements (e.g., Holman and Stanley,

2007; Salmon et al., 2007) were generated in correspondence of two significant

storm events, occurred in March and May 2016. Each video had a duration of

30min with a frame-rate frequency of 5Hz. The image geo-rectification took

place, after a lens distortion correction, by applying a 3×4 perspective transfor-190

mation matrix, using homogeneous coordinates (Vousdoukas et al., 2014). The

pixel intensities were extracted along the selected cross-shore transects from

each frame during video progressions with Python scripting and OpenCV li-

braries. Timestack pre-processing is crucial before implementing routines for

swash oscillations recognition, also due to the presence of objects on the beach195

in the camera’s Field of View (FoV) (e.g., geo-textile sand bags, algae, flags,

etc.), resulting in dirty or altered images. Moreover, while the wave up-rush on

the beach face can be easily identified as a clear feature and easily extracted

through semi-automated routines, the backwash phase is less distinguishable,

do to the saturation of the sand . The edge identification approaches, colour200

or texture-based, could instead tend to discern the upper envelope of swash

motions, particularly for beaches featured by mild to high foreshore slope.
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The pre-processing procedure dealt with the masking of the fixed objects

visible in the camera FoV, by manually sampling the first frame and applying

an automatic inpainting of the following ones, before creating the timestack.205

Furthermore, a combination of filters was applied in the following order: back-

ground subtraction (Gaussian Mixture-based); Bi-Exponential Edge-Preserving

Smoother (BEEPS, Thévenaz et al. (2012)); variance filter on the grey-coded

channel.

The processing of the timestack edges (wave-by-wave) was then performed210

using MATLAB-based open-source software, GUI-timestack (https://sourceforge.

net/projects/guitimestack/), in order to extract and process the swash time

series (Vousdoukas et al., 2012), based on modified Otsu's thresholding method

(Otsu, 1979). Final timestack images, re-sampled at 2.5Hz for easier post-

processing, had a cross-shore resolution in the range of 2–15 cm, derived from215

the minimum pixel footprint values along each transect. Figure 4 reports an

example of the cross-shore transect location for the calculation of video-derived

runup (a) and the relative timestack (b) with the time-variation of the swash

leading edge (red line) and the swash extremes.

Cross-shore coordinates of swash extremes were then converted into water-

level elevations time series using topographical information derived from the

surveys, by assuming negligible morphological changes between video acquisi-

tion and d-RTK GPS surveys, performed 2 days before the storm events. The

estimated elevations represent the total runup, ηtot(t), defined as follows:

ηtot(t) = ηtide + ηsu + ηs + Ssw(t) (1)

where ηtide and ηsu are the tidal and surge heights, respectively, ηs is the

maximum wave setup and Ssw(t) is the swash-induced water-level fluctuation

(Stockdon et al., 2006; Vousdoukas et al., 2009). The wave runup R was derived

from the peaks of water level fluctuations ηwl(t) time series with respect to the

still water level (Eq. (2)):

ηwl(t) = ηs + Ssw(t) (2)
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(a)

(b)

Figure 4: (a) Example of cross-shore transect for runup measurement (red dashed line); (b)

processed timestack, x-axis and y-axis indicating time and cross-shore distance. (colour image)

In the present study, given the relatively small distance between the tide220

gauge and the study area (∼ 2Km), tidal and surge heights were assumed to be

known since they were directly measured. The runup statistics were calculated

for both events, by considering the maximum value of the time series (Rmax

and the 2% exceedance values derived from the cumulative probability density

of runup maxima elevations (R2%).225
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5. The numerical chain

The numerical approach deals with computing waves approaching the nearshore

including the surf zone using the SWAN model (Booij et al., 1996). Initial

and boundary conditions were derived from the MeteOcean forecast reanaly-

sis database (Mentaschi et al., 2015), for both storm events considered. The230

non-hydrostatic SWASH model (Zijlema et al., 2011) was then applied to solve

the NSWE until the shoreline for evaluating swash processes. The proposed

strategy of one-way nesting MeteOcean forecasted waves into the SWAN model

rather than directly into SWASH, allows a good representation of the wave pro-

cesses to be achieved on meso/fine-scales. The capability of SWAN to produce235

very accurate shallow water spectral wave conditions, ideal for SWASH imple-

mentation, is indeed extensively known and tested. SWASH was chosen since in

the literature it is revealed to be numerically more straightforward than similar

phase resolving models, in terms of numerical robustness (De Roo et al., 2015),

ease of implementation and open source orientation (Celli et al., 2018). Shallow240

water equations were firstly solved on both 1-d and 2-d domains, for the storm

event Ev2, recorded by camera PCvs2 thanks to the availability of the UAV

survey, in order to assess the sensitivity of the model to the spatial domain di-

mension. Then 1-d SWASH simulations were performed for both storm events

(Ev1, Ev2), to test the influence of roughness coefficient on numerical results.245

5.1. SWAN model

SWAN model set-up includes spectral waves modelling in non-stationary

mode, by using two nested regular grids (Table 1). The coarser offshore grid,

16.2 km long and 17.4 km wide, started at a depth of around 90m. From a depth

of approximately 35m until the shoreline, wave transformations were analysed250

on a nested finer regular grid, 4.5 km long and 5.1 km wide (Figure 1b). The

bottom grid was derived from a Robust Kriging interpolation of the offshore

bathymetry and the Multibeam Echosounder survey of the nearshore, with a

final resolution of 20m.
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Table 1: Computational SWAN grid features (Cartesian coordinates).

GRID RESOLUTION xo yo DIRx mx ∗my

G150 150 m 728722.8 4451961.1 338◦ 115 ∗ 107

G80 80 m 739010.1 4460207.1 338◦ 63 ∗ 56

Wave boundary conditions were derived at 7 points from the MeteOcean255

forecast wave database, resulting from the WaveWatchIII model applied in the

Mediterranean Sea. The model, developed and maintained by the DICCA De-

partment of Genoa University (Italy, http://www.dicca.unige.it/meteocean/)

is characterized by a high accuracy level in wave forecasting. The dataset in-

cludes the wind speed and direction as well as the main bulk spectral parameters260

in terms of significant wave height (Hs), peak period (Tp) and mean wave prop-

agation direction at the peak period (Dirp). A time step of 30min was used,

with wave boundary condition data included every hour, for a total computa-

tional time of 20hr, around the time of observations. Tidal data refer to water

levels measured at the nearest Porto Cesareo tide gauge.265

Figure 5 reports an example of the boundary bulk spectral parameters and

the sea levels, at point N. 5 on the SW boundary (Figure 2). In all graphs,

vertical dotted red lines indicate the time of runup measurements.

The spectral space was computed at 24 equally spaced propagation direc-

tions (∆θ = 15◦) and 24 logarithmically spaced frequencies between 0.04Hz270

and 0.6Hz. For the physics, the default parameters are used (breaking con-

stant, JONSWAP formulation of friction, setup, diffraction and triad inter-

actions included, without considering the quadruplet interactions parameter).

Wind forcing was not considered, because of the quite small geographic size of

the computational domain.275

5.1.1. SWASH model

Event Ev2 was simulated by SWASH in two-dimensional non-hydrostatic

mode, over a curvilinear grid (205×1346 grid points). Stationary conditions

14
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Figure 5: Boundary bulk spectral parameters from the MeteOcean model, computed at the

point N. 5, and the relative sea level measured by the PC tide gauge for the two storm events.

(colour image)

were assumed (Guimarães et al., 2015). The bottom was generated by merg-

ing the Multibeam dataset, with the d-RTK surveyed cross-shore transects and280

the UAV-derived Digital Surface Model, with a resolution of 0.1m. The com-

putational domain spanned 203m along-shore and 750m cross-shore, with a

computational grid resolution equal to 1m and 0.13–1 m, respectively (Fig-

ure 6).

Wave spectral conditions were set at each open boundary from the time de-285

pendent energy peak derived from SWAN spectral results and the mean water

level condition imposed from PC tide gauge measurements. The simulation time

was 35min with a spin-up time of 5min and a time step of 0.008 s. Runup tem-

poral statistics (R2% and Rmax) were derived by tracking the wet/dry interface,

obtaining the cross-shore temporal variation of water levels at a single longshore290

location.

Figure 7 shows an example of the spatial variability of SWASH water-level
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Figure 6: SWASH 2-d model boundary (black rectangle) and 1-d transects (black). The

contours of the bathymetry Kr20 and the raster of Kr01 are represented. (colour image)

computed after 6min of simulation and the corresponding timestack. For flood-

ing calculations SWASH considers a time-varying moving shoreline, influenced

by the friction coefficient (e.g., Svendsen, 2006; Antuono et al., 2012). In the295

present work, the Manning's formulation was used for bottom friction with its

default value (cf =0.019).

In order to investigate 1-d SWASH predictive accuracy, the swash zone hy-

drodynamics were simulated for the two storm events at 16 cross-shore transects

(Figure 6), by assuming along-shore uniformity. Computational 1-d grids were300

derived from RTK-GPS surveys and nearshore Multibeam bathymetry, with a

16



Figure 7: Top: Plan view showing the spatial variability of SWASH water-level computed

at 6 min time step (Ev1); bottom: the timestack shows a portion of temporal cross-shore

variation of SWASH water levels at Transect N. 2 (Origin of reference Coordinate system:

[x,y]=[7.435838e+05,4.4624715e+06]). (colour image)

mean length of 700m and a grid step of 0.13m and 0.05m for transects within

the field of view of the first and the second cameras, respectively. The simu-

lation time for each transect test case was set to 35min with a time step of

0.014 s. The outputs, after a spin-up time of 5min, were requested every 0.4 s,305

consistent with the timestack time discretization. The default minimum and

maximum Courant numbers were kept at 0.4 and 0.8, respectively, as in the 2-d

case. During each simulation the mean water level condition was imposed by
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considering the water level measured by the PC tide gauge. Wave spectral con-

ditions were set at the open boundary points of the computational grid domains,310

derived from the time dependent energy peak of the SWAN spectral results.

6. Results

6.1. 1-d and 2-d SWASH modelling

Figure 8 shows the comparison between predicted and measured 2% ex-

ceedance and maximum wave runup in correspondence with cross-shore tran-315

sects where numerical and video-measurements outputs were both valid, in the

2-d as well as the 1-d approach, for the storm event Ev2. The accuracy of the

model is evaluated by the the Root Mean Square Error (RMSE, Eq. (3)), the

bias (Eq. (4)) and the percent error, (Perc Err, Eq. (5)), defined as follows:

RMSE(x) =

√√√√ 1

N

n∑
i=1

(xi,predicted − xi,measured)2 (3)

bias(x) =
1

N

n∑
i=1

(xi,predicted − xi,measured) (4)

Perc Err =
xi,predicted − xi,measured

xi,measured
× 100 (5)

The comparison of the predicted 2-d values with respect to the correspond-320

ing observations shows a mean Perc Err of R2% (Rmax) equal to −10.9 %

(−13.3 %), a maximum of 32.3 % (38.4 %) and a minimum of −4.3 % (−8.2 %).

In general, the R2% was better predicted than the Rmax with an RMSE equal to

0.084m. The numerical results show a small tendency to underestimate mea-

surements, as confirmed by the negative value of BIAS (−0.056m). Greater325

differences can be observed in the computation of Rmax with an RMSE equal

to 0.156 m. Differently from the R2%, for which the differences between mea-

sured and predicted values are quite the same overall the selected transects,

the Rmax was particularly underestimated for the central cross-shore transects.

Such a general trend must be partially motivated by the vertical accuracy of the330
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Figure 8: Predicted and measured R2% and Rmax for both 1-d and 2-d spatial domains over

9 transects, in the area framed by camera PCvs2. (colour image)

UAV-derived DSM, where systematic discrepancies with respect to ground-truth

GNSS data, are about 0.03m.

With regard to 1-d modelling, the same Figure 8 highlights the comparison

between 1-d model predictions of runup with respect to the actual video mea-

surements. Since the along-shore components of bathymetry, wave groups, and335

swash oscillations are not fully resolved, 1-d swash levels higher than 2-d ones

are to be expected (Stockdon et al., 2014).

In general, the mean difference, in terms of Perc Err, was equal to 30.21 %

for R2% and 34.1 % for Rmax, while the maximum difference of R2% (Rmax) was

equal to 74 % (73.6 %), and the minimum was 25 % (0.5 %). Considering the340

transects investigated, the variance of these differences was actually low, hence

relevant alongshore variability was negligible.

6.2. The influence of the Manning’s friction

A sensitivity analysis of the SWASH model capability in predicting nearshore

hydrodynamics was performed by varying the Manning's roughness factor from345
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0.009 to 0.046 s/m1/3, according to the most typical relevant field values (Ben-

son and Dalrymple, 1967). Figures 9 and 10 show the predicted R2% and Rmax,

respectively, adimensionalized by the offshore significant wave height, as a func-

tion of the bottom friction coefficient (a), with the relative mean differences and

RMSE (b) over all the selected transects.350

(a)

(b)

Figure 9: (a) Predicted and measured R2% for transects analysed, both quantities are nor-

malized to the significant wave height at relative boundary; (b) sensitivity of computed R2%

to bottom friction coefficients. (colour image)

Specifically, the values n=0.043 s/m1/3 and n=0.04 s/m1/3 reveal the best
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(a)

(b)

Figure 10: (a) Predicted against measured Rmax for transects analysed, both quantities are

normalized to the significant wave height at relative boundary; (b) sensitivity of computed

Rmax to bottom friction coefficients. (colour image)

fit in predicting the timestack measurements, with respect to R2% calculation

and to Rmax, respectively. For the first variable the RMSE ∼= 0.05m and the

bias ∼= 0.018m, while for Rmax, RMSE ∼= 0.075m, and bias ∼= 0.01m. With

respect to the 2-d simulation, where the model achieves optimal performance355

in runup prediction with the default friction coefficient, the 1-d results are sat-

isfying only with an ad-hoc calibration. In fact, the infragravity component of
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the overall spectral wave energy has been previously reported to be often over-

estimated by the SWASH model (1-d), particularly in the surf zone (Zijlema

et al., 2011; Conde-Frias et al., 2017). This overestimation mainly depends on360

the standing-wave component caused by reflection of infragravity waves close to

the shoreline (Zijlema and Stelling, 2008), together with errors associated with

the bottom friction estimate, which acts as a primary mechanism by which the

longer waves lose energy (Smit et al., 2014), and finally on the not fully solved

alongshore components of the hydrodynamic processes, which affect dissipation365

processes in the swash zone.

6.3. Empirical runup

This subsection contains the results of the empirical runup formulations for

the storms considered, when reliable corresponding measurements were avail-

able. A total of 8 models, well described in literature (Atkinson et al., 2017;

Vousdoukas et al., 2012) are tested and discussed. The models used have been

found to be the most accurate for the data sets upon which they were built

(Atkinson et al., 2017) and they can be considered the most useful in prac-

tice for most applications in coastal engineering. Among them, the model from

Mather et al. (2011) has been applied, which highlighted the importance of using

not only the foreshore slope, but also the bathymetric profile until the closure

depth, Eq. (6):

Rmax = CH0S
2/3 (6)

where S acts as a representative nearshore slope and C is a dimensionless coeffi-

cient which takes into account the beach morphology. Their model is supported

with C = 10 for open beaches, while it required an adjustment of the coefficient370

for large (C = 9) and small (C = 6) embayments. Moreover, an analytical so-

lution for wave runup over non-uniform beach profiles, discussed in Mayer and

Kriebel (1994), is tested, Eq. (7):

R =
βf
2

(Xb −
√
HoLo)

[
−1 +

√
1 +

4hb
√
H0L0

βf (Xb −
√
H0L0)2

]
(7)

22



where the mean runup is derived from a formulation of the average slope

between the incipient breakpoint and the runup limit, defined by Eq. (8):375

tanβfb =
R+ hb
XR +Xb

(8)

Table 2 summarizes the mean values of R2% and Rmax over the reliable

transects analysed (n.16), representative of the gently curved centre of the large

embayed beach of Porto Cesareo. Both quantities refer to the offshore spectral

wave parameters (e.g., Hs, L0p, Tp), derived from averaging the MeteOcean

model inputs on points N. 4, 5, 6 and 7 in Figure 1b located at the SW boundary380

of SWAN grid G150.

Table 2: Summary of the runup predictions derived from empirical formulations, as mean

values over n.16 transects, for the two storm events Ev1 and Ev2 investigated.

Ev1 Ev2 MeanErrorPerc.

R2%(m)

Timestack 0.49 0.48 -

Holman (1986) 0.92 1.13 109.6 %

Nielsen & Hanslow (1991) 0.88 0.8 71.7 %

Mayer & Kriebel (1994) 0.52 0.56 10.4 %

Ruggiero et al. (2001) 0.93 0.79 75.8 %

Stockdon et al. (2006) 0.97 0.88 89.1 %

Atkinson et al. (2017) 0.94 0.85 83.0 %

Rmax(m)

Timestack 0.6 0.59 -

Douglas (1992) 1.23 1.17 101.6 %

Mather et al. (2010) 0.57 0.69 5.8 %

Most of the models investigated greatly overestimate the observed wave

runup, both R2% and Rmax%, with a mean percentage error of more than 70 %.

The models showing the best performance at this embayed system are from
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Mayer and Kriebel (1994) and Mather et al. (2011). As also suggested in Stock-385

don et al. (2006), this bears witness to the fact that runup prediction using deep

water buoy measurements may result in significantly higher results than those

obtained using a wave height measured at a local buoy (closer to the shore),

where nearshore wave processes can be properly taken into account.

7. Discussion390

7.1. 1-d and 2-d SWASH modelling

The differences in runup for the two dimensional spaces can be explained

by several physical/numerical factors. In order to retrieve reasonable causes for

this behaviour some concepts need to be highlighted. It must be noted that

the same radiation boundary condition was imposed within the investigated395

area to simulate entering waves without reflections. The significant wave height

modelled in 1-d (red line) and 2-d (blue line) domains are reported in Figure 11,

for a representative transect (n.9). Moreover, the wave power spectral density

at the representative boundary, breaking and surf representative sections are

reported.400

The two implementations do not show any substantial difference until the

breaking zone, even if the 2-d signal shows higher oscillations which increase

approaching the breaking zone. Within the surf zone, greater attenuation is

highlighted for the 2-d model, with respect to the 1-d, with consequent differ-

ences in runup calculations, due to discrepancies in wave energy propagation405

modelling.

The SWASH breaking mechanism, here applied, is based on Hydrostatic

Front Approximation (HFA) algorithm (Smit et al., 2014), automatically ac-

tivated when a low number of layers is implemented in the model. The HFA

approach is used in both spatial domains. In both domains, before incipient410

wave breaking, an increase in wave energy occurs. In 2-d domain the energy

is mostly concentrated at the peak frequency, wave directionality tends to re-

duce the forcing waves in the infragravity frequencies (Herbers et al., 1994). In
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Figure 11: Cross-shore variability of Hs between SWASH 1-d and 2-d and spectral transfor-

mation of water levels output comparison for the two spatial domains, at three representative

sections (Transect N.9). (colour image)

the 1-d model, instead, the spectrum shows wave energy components at low-

frequencies and a reduction of the energy at the peak frequency. In the surf415

zone, 2-d model spectra mainly highlight the breaking-induced dissipation. In

the 1-d spectra infragravity waves are assumed to dissipate by transferring their

energy back to higher frequencies, by infragravity-wave breaking (Henderson

et al., 2006) and by bottom friction (secondary importance). The higher wave

energy content simulated in 2-d induces a seaward shift of the first breaking420

section, with respect to the 1-d domain, with a consequent broadening of the

surf zone.

For this reason, a preliminary analysis using a cross spectral analysis via

magnitude-square coherence of runup and surf zone water levels was conducted.

A standing-wave component in the infragravity frequencies can be observed in425

1-d runs with respect to the 2-d domain. This factor most probably led to such

results and is associated with the different highlighted simulated contributions

of alongshore dissipation mechanisms of swash via non-linear and frictional pro-

cesses.
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By comparing both the 1-d and 2-d numerical models with the runup mea-

surement derived from video analysis, the results show that the 1-d model sys-

tematically overpredicts the timestack results. The influence of the seabed fric-

tion, for NLSW equation models, in wave runup prediction and overtopping due

to a global damping of the flow, is well-known (e.g., Tuan and Oumeraci, 2010;

Suzuki et al., 2011; Antuono et al., 2012). Different formulations are imple-

mented in SWASH for the dimensionless friction coefficient calculation cf . In

the present study, the formula based on Manning's roughness coefficient n is

used, Eq. (9):

cf =
n2g

h1/3
(9)

The default value for this parameter in SWASH was set to 0.019 s/m1/3.430

Currently, there are not unequivocal results or suggestions available in the lit-

erature about its optimal variability. Among several parameters under coastal

regime, n mainly varies with grain diameter (e.g., Reis and Gama, 2010). For

instance, previous studies (e.g., Suzuki et al., 2011) suggest that the behaviour

of smooth materials in the laboratory could be well represented by using a435

value of approximately 0.01 s/m1/3, while a Manning's coefficient equal to about

0.02 s/m1/3 is suggested for sandy materials with a diameter close to 1mm, as

in the present field case. Due to such a range of variability of the coefficient

and the difficulties between field and laboratory measurements, it represents a

useful and straightforward parameter for numerical model calibration.440

Figure 12 shows an example of the spatial variation of significant wave height

derived from the zero-order moment of the spectrum (Hm0, Figure 12a) and

wave setup (ηs, Figure 12b) for transect N. 6, modelled by SWASH in a 1-d

spatial domain, with different bottom friction values. Seaward from the first

breaking point, where significant wave height and the setup show their max and445

min values, neither quantity is very sensitive to bottom friction. This behaviour

was observed for all sections analysed. On the contrary within the surf zone

area, both wave setup and significant wave height become more sensitive to n

because of the increasing bottom effects on propagating waves. No influence of
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the friction factor on the wave peak period was observed.450

(a)

(b)

Figure 12: Sensitivity of significant wave height Hm0 (a) and wave setup ηs (b) for varying

Manning's coefficient. (colour image)

One source of error in SWASH predictions is due to the changes in beach

morphology, which are not straightforward to estimate, since submerged and

emerged beach were surveyed in different periods. Geoprocessing surveys show

that in the zone straddling both GPS and Multibeam, at approximately 1m

depth, the gap over the whole investigated area was less than 5 cm. DEM is,455
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indeed, obtained by neglecting any substantial modification of the submerged

morphology. However the seasonal and interannual variability of hydrodynam-

ics may change short-term morphodynamics, by introducing errors in the wave

runup propagation and calculation. Despite such limitations, which are very

common in practice, the model shows acceptable responses for the events con-460

sidered, with respect to the video observations.

7.2. Insights on runup formula

Runup studies, upon which most of available empirical parametrisations have

been based, have been mainly carried out on open sandy beaches, approached by

oceanic swell, extreme storm waves and tide waves even if the formulations are465

often used in several different morphologies and broad wave climate conditions,

providing a wide scatter of results. Few runup studies have been performed on

such embayments (Vousdoukas et al., 2009). Predictive models of wave runup,

and specifically those investigated in the present work, traditionally focus on

the beach foreshore slope βf as the key determinant of R2%, under both regu-470

lar (Hunt, 1959; Mase, 1989) and irregular waves (Holman, 1986; Nielsen and

Hanslow, 1991; Ruggiero et al., 2001; Stockdon et al., 2006). Whereas, Douglass

(1992) argued that the maximum runup is not influenced by the beach-face slope,

the model of Nielsen and Hanslow (1991) assumes no dependence on beach slope

only for tanβf ≤ 0.1, as is the case for the majority of the analysed transects,475

with two exceptions.

As observed during laboratory experiments described in Blenkinsopp et al.

(2016), empirical formulas better predict wave-induced runup under controlled

boundary conditions since waves are perpendicular to the shore and not affected

by wave direction. Moreover, the inundation process on a tideless embayed480

beach has been demonstrated to be better captured by using the breaking wave

height (Sancho et al., 2012). On the other hand, as highlighted in Stockdon

et al. (2014), such parametrisations generally suffer from systematic errors, due

to site-specific characteristics that are not included in the models. The excep-

tion are empirical models whose different and well-fitted performance is largely485
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explained by the approaches used for the calculation.

As the time of writing, the R2% evaluated by the analytical solution of Mayer

and Kriebel (1994) best agrees with the video measurements for both events,

most probably due to the use of the so-called effective slope in the runup cal-

culation. The effective slope derives from Saville's method (Thorndike Saville,490

1957) which introduces, over arbitrary geometries, an appropriate average slope

for predicting runup on a composite-slope, and allows the entire active surf zone

to be taken into account, between the wave break point and the runup limit,

Eq. (8). The R2%, Eq. (7), is then calculated with reference to the distance

Xb(t) and the corresponding time series of hb(t) are taken from 2-d SWASH495

simulations.

The formulation which best predicts the Rmax is that of Mather et al. (2011)

who correlates the maximum wave runup height with the shape of the offshore

profile as well as the foreshore slope. Such an offshore limit is defined until a

specified point on the sea bed at a certain distance xh and depth h seaward of500

the surf zone, according to the following relationship:

Rmax

H0
=

(
xh
h

)p

(10)

where p is comparable with the coefficient of power law in Bruun's equi-

librium profile (Bruun, 1954). The dimensionless coefficient C in Eq. (6) is

assumed to be derived from large embayment condition (= 9), while S is re-

ferred to a representative nearshore slope, calculated until the closure depth,505

estimated from the formula from (Birkemeier, 1985), at a depth of 5.4m.

8. Conclusions

The capability of predicting wave-induced runup on an embayed sandy beach

by using different approaches has been evaluated in the present work. Video ob-

servations are compared with numerical results derived from one-way coupling510

of opportunely nested SWAN and SWASH models, forced by the MeteOcean

29



forecast wave data. A non-standard computer vision−photogrammetric tech-

nique demonstrated the potential of UAV imagery for deriving a high-resolution,

accurate and reliable topographical input, which is particularly useful for fragile

and complex coastal areas.515

The comparison between 2-d runup predictions and video observations demon-

strates an overall good representation of swash zone hydrodynamics, based on

the data of the storm available. The bias in R2% calculation is equal to 0.056m

with RMSE of 0.084m. Higher swash levels in 1-d SWASH runs lead to over-

estimating the video measurements. Since poorly constrained model-parameter520

assumptions in the default configuration often lead to drawbacks in numerical

models results, for the present work a sensitivity analysis of the Manning's fric-

tion coefficient on swash prediction, was conducted in the 1-d spatial domain.

Results suggest that when the SWASH model is used for estimating real-world

hazards, users should think carefully about choosing an appropriate roughness,525

by conducting sensitivity analysis and calibrating the model.

The reliability of the empirical formulations has been investigated, by com-

paring modelled with measured results. This study, although characterized by

a database at a single field site, emphasized that the empirical models mostly

overestimate the video-measurements as well as numerical predictions, probably530

due to the fact that most of the formulations do not properly take into account

the complex hydrodynamic processes occurring during wave propagation. Con-

versely, by opportunely integrating information on the overall nearshore or surf

zone slopes, the models of Mayer and Kriebel (1994) and Mather et al. (2011)

are capable of better capturing the runup phenomena, with low errors. However,535

for engineering purposes, the definition of the runup and, consequently, of the

potential flooded area on an embayed beach, the empirical formulations based

on deep-water wave measurements give overestimated results, corresponding to

a safe-side attitude.
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Tramandáı Beach, Rio Grande do Sul, Brazil. Coastal Engineering 95, 171–600

180.

Harwin, S., Lucieer, A., 2012. Assessing the accuracy of georeferenced point

clouds produced via multi-view stereopsis from unmanned aerial vehicle

(UAV) imagery. Remote Sensing 4, 1573–1599.

Henderson, S.M., Guza, R., Elgar, S., Herbers, T., Bowen, A., 2006. Nonlin-605

ear generation and loss of infragravity wave energy. Journal of Geophysical

Research: Oceans 111.

Herbers, T.H.C., Elgar, S., Guza, R.T., 1994. Infragravity-frequency (0.005–0.05

hz) motions on the shelf. part i: Forced waves. Journal of Physical Oceanogra-

phy 24, 917–927. https://doi.org/10.1175/1520-0485(1994)024<0917:610

IFHMOT>2.0.CO;2.

Holman, R.A., 1986. Extreme value statistics for wave run-up on a natural

beach. Coastal Engineering 9, 527–544.

Holman, R.A., Stanley, J., 2007. The history and technical capabilities of Argus.

Coastal Engineering 54, 477–491.615

Hunt, I.A., 1959. Design of sea-walls and breakwaters. Transactions of the

American Society of Civil Engineers 126, 542–570.

33

https://doi.org/10.1175/1520-0485(1994)024<0917:IFHMOT>2.0.CO;2
https://doi.org/10.1175/1520-0485(1994)024<0917:IFHMOT>2.0.CO;2
https://doi.org/10.1175/1520-0485(1994)024<0917:IFHMOT>2.0.CO;2


Lee, J., Park, J., Choi, J., 2013. Evaluation of sub-aerial topographic surveying

techniques using total station and RTK-GPS for applications in macrotidal

sand beach environment. Journal of Coastal Research .620

Long, N., Millescamps, B., Guillot, B., Pouget, F., Bertin, X., 2016. Monitor-

ing the Topography of a Dynamic Tidal Inlet Using UAV Imagery. Remote

Sensing 8, 387.

Mancini, F., Dubbini, M., Gattelli, M., Stecchi, F., Fabbri, S., Gabbianelli,

G., 2013. Using Unmanned Aerial Vehicles (UAV) for high-resolution re-625

construction of topography: The structure from motion approach on coastal

environments. Remote Sensing 5, 6880–6898.

Mase, H., 1989. Random wave runup height on gentle slope. Journal of Water-

way, Port, Coastal, and Ocean Engineering 115, 649–661.

Mather, A.A., Stretch, D., Garland, G., 2011. WAVE RUN UP ON NATURAL630

BEACHES. Coastal Engineering Proceedings 1, 45.

Mayer, R.H., Kriebel, D.L., 1994. Wave runup on composite-slope and concave

beaches. Coastal Engineering Proceedings 1.

Mentaschi, L., Besio, G., Cassola, F., Mazzino, A., 2015. Performance evaluation

of Wavewatch III in the Mediterranean Sea. Ocean Modelling 90, 82–94.635

Nielsen, P., Hanslow, D.J., 1991. Wave runup distributions on natural beaches.

Journal of Coastal Research , 1139–1152.

Otsu, N., 1979. A threshold selection method from Gray-level. IEEE Transac-

tions on Systems, Man, and Cybernetics SMC-9, 62–66.

Reis, A.H., Gama, C., 2010. Sand size versus beachface slope – An explanation640

based on the Constructal Law. Geomorphology 114, 276–283.

Ruggiero, P., Komar, P.D., McDougal, W.G., Marra, J.J., Beach, R.A., 2001.

Wave runup, extreme water levels and the erosion of properties backing

beaches. Journal of Coastal Research , 407–419.

34



Salmon, S.A., Bryan, K.R., Coco, G., 2007. The use of video systems to measure645

run-up on beaches. Journal of Coastal Research 50, 211–215.

Sancho, A., Guillén, J., Simarro, G., Medina, R., Cánovas, V., 2012. Beach

inundation prediction during storms using different wave heights as inputs.

Coastal Engineering Proceedings 1, 32.

Saponieri, A., Damiani, L., 2015. Numerical analysis of infiltration in a drained650

beach. International Journal of Sustainable Development and Planning 10,

467–486.

Smit, P., Janssen, T., Holthuijsen, L., Smith, J., 2014. Non-hydrostatic model-

ing of surf zone wave dynamics. Coastal Engineering 83, 36–48.

Soldini, L., Antuono, M., Brocchini, M., 2012. Numerical modeling of the655

influence of the beach profile on wave run-up. Journal of Waterway, Port,

Coastal, and Ocean Engineering 139, 61–71.

Stockdon, H.F., Holman, R.A., Howd, P.A., Sallenger Jr, A.H., 2006. Empirical

parameterization of setup, swash, and runup. Coastal Engineering 53, 573–

588.660

Stockdon, H.F., Thompson, D.M., Plant, N.G., Long, J.W., 2014. Evaluation

of wave runup predictions from numerical and parametric models. Coastal

Engineering 92, 1–11.

Suzuki, T., Verwaest, T., Hassan, W., Veale, W., Reyns, J., Trouw, K., Troch,

P., Zijlema, M., 2011. The applicability of swash model for wave transforma-665

tion and wave overtopping: a case study for the flemish coast, in: Proc. 5th

Int. Conf. Advanced Computational Methods Engineering (ACOMEN 2011),
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