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18 Abstract

19 In coastal areas, sea level rise (SLR) and changing wave climates are expected to be 

20 the main oceanic drivers of shoreline adjustments. These drivers have been shown to 

21 vary on a wide spectrum of spatial and temporal scales. Nonetheless, a general rule 

22 about how this variability impacts global shorelines remains to be articulated. Here, we 

23 discussed the impacts of wave climate changes and SLR on the evolution of a barrier-

24 spit – inlet system over the last 250 years. The distal end of the Cap Ferret barrier-spit, 

25 SW France, has undergone large-scale oscillations that were well correlated with 

26 variations of the decadal average of the winter North Atlantic Oscillation (NAO) index. 

27 The local wave climate hindcast supports that increased alongshore wave energy fluxes 

28 associated with the positive phase of the NAO were responsible for the updrift retreat of 

29 the spit. In another case, the spit has elongated downdrift when waves were less 

30 energetic and more shore normal, as during the negative phase of the NAO. In addition, 

31 lower rates of SLR appeared necessary for the spit to develop, as higher rates of SLR 

32 very likely forced the adjacent inlet to enlarge, at the expense of the spit. These results 

33 should help to predict and detect coastal adjustments driven by climate change and 

34 variability.

35
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36 Introduction

37 Slower eustatic sea level rise (SLR) over the last 6 ka has allowed the formation of 

38 barrier spits at the entrance of many of the world’s estuaries and bays (Davis, 2013). 

39 Growing barriers would then create bar-built estuaries or coastal lagoons where rich 

40 ecosystems have developed. Provided that such sheltered areas remained open to the 

41 sea, they have become attractive for human activities. This has added an economic 

42 dimension to their ecological value and role (Newton et al., 2014). Such factors are 

43 among the many reasons that continue to motivate multidisciplinary studies to improve 

44 our understanding of barrier spit dynamics and their interactions with estuary and 

45 lagoon entrances.

46 Where sediments are abundant, it is recognised that sort of a competition between 

47 wave-driven alongshore sediment transport (LST) and estuarine (fresh and saltwater) 

48 flows, controls the existence of spits as it does for inlets (FitzGerald et al., 2015; Hayes, 

49 1979; Nichols and Allen, 1981). From the spit perspective, LST generally plays a 

50 constructive role while flows favour inlets (Kraus, 1998; Kraus and Seabergh, 2002). 

51 Inlet (cross-section) stability can be rated as good, fair or poor based on the ratio of the 

52 spring tidal prism by the total littoral drift (Bruun, 1978). Larger freshwater inputs 

53 ultimately favour inlet stability as confirmed by numerical modelling (Zhou et al., 2014). 

54 These forces vary as waves, sea level and rainfalls change with seasons and climate 

55 shifts. In mixed-energy environments (Hayes, 1979), such variability can lead to 

56 noticeable changes of local morphology. Such changes may occur fortnightly, as it does 

57 for small systems (Fortunato et al., 2014), and at any larger timescale at which driving 

58 forces may change. For instance, if most barrier spits were able to build during periods 
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59 with relatively low rates of sea-level rise (SLR), questions remain about how they would 

60 respond to predicted higher rates of SLR and changing wave climate for the coming 

61 decades (Cazenave and Le Cozannet, 2014; Semedo et al., 2013).

62 There is indeed a persistent and immediate need to improve the prediction of climate 

63 change impacts on coastal systems worldwide (Wong et al., 2014). Main drivers include 

64 SLR, the alteration of rainfall and runoff and changing wave climates which are crucial 

65 for spits and inlets’ evolution (Ranasinghe et al., 2012). In most coastal embayments, 

66 SLR leads to larger values of tidal prisms that force inlets to increase their cross-section 

67 (FitzGerald et al., 2008). In places with low continental sediment inputs, SLR would also 

68 create accommodation space in embayments that may become sediment sinks for the 

69 adjacent coasts (Ranasinghe et al., 2012). Where freshwater runoff contributes to 

70 maintain inlets, it may also cause adjacent spit retreat or progradation as rainfall 

71 respectively increases or diminishes (Ranasinghe et al., 2012). Finally, changing storm 

72 tracks, storm intensity and frequency are likely to modify coastal resilience (Masselink et 

73 al., 2016) and have a direct impact on the wave driven LST (Chowdhury and Behera, 

74 2017; Splinter et al., 2012).

75 Along with natural climate variability, these drivers have already varied over a wide 

76 range of temporal and spatial scales. At inter-annual to decadal timescales, 

77 atmospheric teleconnection patterns, such as the North Atlantic Oscillation (NAO), and 

78 climatic cycles such as the El Niño Southern Oscillation (ENSO) over oceanic basins 

79 have remote effects on coastal environments (Barnard et al., 2011; Masselink et al., 

80 2014; Wiggins et al., 2017). On longer timescales, the stratigraphic records of coastal 

81 barrier spits have also revealed the control exerted by sea level changes (Clemmensen 
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82 et al., 2001; Fruergaard et al., 2015) and major storm events (Fruergaard et al., 2013). 

83 This climate-driven variability can overlay the system internal cyclicity and play a part in 

84 rhythmic behaviours that are common along barrier coasts (Allard et al., 2008; 

85 Ridderinkhof et al., 2016). These cycles have substantial effects on shoreline dynamics. 

86 Nonetheless, due to limited number of detailed geomorphological datasets, on the 

87 longer term it is often unclear whether cyclicity is driven by the system intrinsic nature 

88 (i.e., autocyclic) or by external (climatic) factors (i.e., allocyclic).

89 On the other hand, global knowledge on climate variability and its effects is constantly 

90 growing. Coupled ocean-atmosphere numerical models help to describe processes 

91 underlying relationships between parameters of different nature as, for instance, sea 

92 level pressure, anomalous coldness and storm tracks (van der Schrier and Barkmeijer, 

93 2005), solar irradiance and teleconnection patterns (Ineson et al., 2011) or 

94 teleconnection patterns and sea level (Calafat et al., 2012). Going back to interactions 

95 between barrier spits and inlets, recent studies address the impact of climate change 

96 through the application of process-based morphodynamic models to tidal embayments 

97 (Bruneau et al., 2011; Dissanayake et al., 2012; van Maanen et al., 2013; van der 

98 Wegen, 2013). Those studies primarily discuss the effects of SLR and describe the 

99 evolution of the sediment source-to-sink nature of inlets over time. Such growing 

100 understanding of both the dynamic nature of climate and of the processes changing the 

101 coastal landscape widens the spectrum of possibilities for interpreting documented 

102 coastal evolutions.

103 This study thrives on these possibilities to discuss the coherence between large-scale 

104 coastal changes and variable environmental conditions. The next section presents a 
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105 dataset with outstanding temporal coverage and resolution. It covers the morphological 

106 evolution of the Cap Ferret sand spit (SW France, Atlantic coast) over the last 250 years 

107 and contemporaneous environmental conditions. Then section 3 investigates the 

108 synchronisation of the apparent cyclical dynamic of the spit distal end with climatic shifts 

109 and sea level variations. Potential mechanisms underlying this synchronisation are 

110 subsequently discussed based on current understanding of barrier spits and tidal inlets 

111 morphodynamics, allowing to identify the dominant climatic drivers (section 4).

112

113 Materials and methods

114 Study area

115 The Cap Ferret is a baymouth spit bordered by the Bay of Biscay (Figure 1). It lies at 

116 the southern end of a 110 km long uninterrupted sandy beach bounded by the Gironde 

117 estuary to the north (Aubié and Tastet, 2000; Castelle et al., 2018; Figure 1b). The 

118 subaerial fraction of the spit accounts for the beach last twenty kilometres and is built 

119 upon a subtidal platform that dips into the Bay of Arcachon tidal inlet (Figure 1c). This 

120 inlet connects a 160 km2 coastal lagoon to the Atlantic Ocean, the lagoon – inlet system 

121 being the vestige of the Leyre River estuary (Féniès and Lericolais, 2005). Around 3 ka 

122 ago the Cap Ferret started to build up on the estuary northern margin (Féniès et al., 

123 2010), pushing the river mouth southward until it semi-enclosed the Bay of Arcachon.

124 At present, water circulation between the lagoon and the ocean constricts the spit 

125 progradation. Twice a day between 260 and 490 Mm3 of water flow in and out through 

126 the inlet, confirming that at any time tidal exchanges largely take over on freshwater 

127 inputs (Plus et al., 2009). Such high values of tidal prism (P) largely overcome the total 
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128 LST (M), estimated at 0.661 Mm3 (Idier et al., 2013), so that this opening falls into the 

129 “good stability” category (P/M >> 150) of (Bruun, 1978) classification. Nonetheless, 

130 northwesterly dominant waves have deviated the estuary mouth some thirty kilometres 

131 downdrift in the past 3 ka (Féniès et al., 2010). Annual mean significant wave height is 

132 of 1.77 m (in 50 m water depth, according to Charles et al., 2012) and mean tidal range 

133 is of 2.7 m (twice the semidiurnal tidal component amplitude, measured on the ebb-

134 delta’s shield, by Senechal et al., 2013). This mixed-energy environment, as defined by 

135 Hayes (1979), has moulded an inlet with a transitional morphology (Hubbard et al., 

136 1979). The inlet ebb-tidal delta is more developed than the flood-tidal shoals (Figure 

137 1c). This disequilibrium reflects the ebb dominance confirmed by morphodynamic 

138 modelling (Cayocca, 2001). Model results further showed the role of the ebb-dominant 

139 tide in the breaching of new channels across the spit platform. Indeed, historical charts 

140 report various occurrences of the formation of a new channel across the platform. Over 

141 the last 300 years, newly opened channels have migrated southward and the detached 

142 shoals ultimately reached and merged to the inlet southern margin, in a movement that 

143 resembles the spit-platform breaching model of sediment by-passing of FitzGerald et al. 

144 (2001). The apparent cyclical nature of this process has led to the hypothesis of an 80-

145 year autocyclic behaviour. According to charts, the inlet has been alternatively 

146 composed of one or two channels and Michel and Howa (1997) further interpreted the 

147 retreat of the subaerial fraction of the spit as a feedback from the breaching of new 

148 (secondary) channels. However, a thorough discussion of the role of variable 

149 environmental conditions is still lacking. The premises of such a discussion were given 

150 by Nahon et al. (2015). In this first analysis, it was noted that the autocyclic model fails 
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151 to predict a major spit progradation event. Instead, spit elongation was found 

152 synchronous with periods dominated by the negative phase of the NAO.

153 The present study builds upon Nahon et al. (2015) data to further infer on the role that 

154 climate and SLR may have played in inlet – spit interactions. Cap Ferret is well suited 

155 for this study because of 3 reasons: 1) updrift sandy beaches prevent from any 

156 sediment deficit; 2) it is backed up by a mature estuary where an elevated level of 

157 infilling makes tidal prism sensitive to mean sea level variations; 3) the first 

158 quantitatively valuable chart dates from 1768 and the evolution of the spit-inlet system 

159 can be reconstructed over the last 2.5 centuries.

160

161 Shoreline data

162 The geomorphological record encompasses the entire 19th and 20th centuries and 

163 consists of nautical charts and aerial photographs of the Bay of Arcachon’s tidal inlet 

164 (Figures 2 to 4).

165 Charts were retrieved from Caspari (1872), Lapeyre (1925) and Bordeaux harbour 

166 authorities (PAB, 1985). All made appear 3 reference positions on charts (Figure 2): the 

167 still existing Cap Ferret’s lighthouse and the church Notre-Dame d’Arcachon, both 

168 located north of the spit distal end, and a former semaphore on the southern margin. 

169 This later position was retrieved from the map of the Gironde department in 1888 

170 (Figure 2a). These positions were used for georeferencing.

171 Clear and stable features along the spit were used to estimate the error on the charts 

172 before 1900. Preserved former spit-end positions and small bights on the lagoon side of 

173 the spit, indicate a distance error well below 200 m. Therefore, a +/- 200 m error bars 
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174 marks off the results to avoid any misinterpretation. Early 20th century charts also 

175 indicate a (still existing) semaphore located 1 km north of the 2014 shoreline. The root 

176 mean square error for the semaphore positions is 55 m and results are also shown with 

177 +/- 100 m error bars to account for possible shoreline misinterpretation at the time of the 

178 survey. The spit terminus was then defined as the southernmost position of the 

179 coastline represented on charts (Figure 3). These positions were orthogonally projected 

180 onto the axis defined by 2 of the reference positions used for georeferencing nautical 

181 charts (Figure 3).

182 Positions measured on charts from 1932 and 1936 presented a very good match with 

183 those on photographs from 1934 and 1946 respectively (Figure 4). Between 1934 and 

184 2000, aerial photographs were used. They were georeferenced using the current road 

185 and pathway network and, at some point, World War II bunkers on top of the dunes. 

186 After 2000, 7 high resolution orthophotomaps were used. Georeferencing errors are 

187 lower than the shoreline photo-interpretation error that was estimated well below +/- 50 

188 m. On photographs, the southernmost position of the interpreted shoreline (i.e. berm 

189 crest when perceptible, high-tide wrack line otherwise) was taken to measure the spit 

190 extension. Overall, 50 positions of the Cap Ferret distal end were retrieved since 1768 

191 (24 on charts from 1768 to 1936, Figure 3; 26 on photographs from 1934 to 2014, 

192 Figure 4). These positions were used to trace the path of the spit distal-end. In the 

193 following, periods over which the spit advanced across the inlet were identified from this 

194 path. Still, it is a limited indicator of erosion or accretion patterns as it does not consider 

195 the behaviour of the spit in the direction perpendicular to the reference axis.

196
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197 Bathymetric data

198 Shoreline data document north-south oscillations of the spit distal end, the last large-

199 scale oscillation occurring between 1950 and 2014 (Figure 4). Over this period, 

200 bathymetric evolution of the adjacent inlet throat was quantified using soundings from 

201 years 1949, 1969, 1979, 2001 and 2014.

202 Over the years, along transect resolution increased from 100 m to 1 m and transect 

203 positioning and spacing (~200m) remained constant (Figure 5a). For each survey, 

204 transects have been interpolated into digital elevation models (DEMs); 50 m x 50 m 

205 surfaces were created using a nearest-neighbour interpolation (Figure 5b). Bottom 

206 elevation and volumetric changes were computed over a 12.74 km2 overlapping surface 

207 between all 5 DEMs. Figure 5d presents the erosion-deposition patterns over the 65 

208 years.

209 A distinction was made between shoals and channels using the -7 m NGF contour 

210 (NGF is the French vertical datum; locally Mean Sea Level is currently around +0.40 m 

211 NGF). This contour match well with shoals visible on contemporary Landsat 8 image 

212 (Figure 5c). For each date, 4 quantities were computed. The first 3 are the mean 

213 elevation and the shoal and channel volumes which are respectively the sand volume 

214 above -7 m NGF and water volume below -7 m NGF. As little to none information exists 

215 to estimate errors due the instrumental bias or vertical datum changes over time (others 

216 than the known and corrected ones), a fourth quantity, defined as the inlet throat 

217 morphological amplitude was calculated. It corresponds to the equal volumes of sand 

218 and water, respectively above and below the mean elevation of each DEM. In this way, 

219 this later quantity is free of any artificial variations. Results are summarised in Table 1. 
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220 Figure 5 (e-h) further presents the variation of the computed quantities with the 

221 identified periods of elongation and retreat of the spit-end.

222

223 Sea level data

224 To infer on the role of sea level variations in the evolutions depicted by cartographic and 

225 bathymetric data, the annual mean sea level (MSL) record from Brest tidal gauge 

226 (Figure 1) was retrieved from the permanent mean sea level observatory (Holgate et al., 

227 2013); it is the nearest tidal gauge with an appropriate temporal coverage (Wöppelmann 

228 et al., 2008). Over the entire period the data is fitted to a 2nd order polynomial function 

229 which reveals the lowering of MSL during the first third of the 19th century (Figure 6, 

230 upper panel). Then over the 20th century, the data is both averaged and fitted to a 

231 polynomial function. The running mean over an 11-year-centred window is used to 

232 emphasise the significant decadal variability of the regional MSL. Then, fitting the record 

233 with 5th order polynomial function allows identifying a period of slower SLR around the 

234 second third of the 20th century (Figure 6, lower panel).

235 Table 2 further indicates average SLR rates over identified periods of spit growth and 

236 decay. Rates are computed as the linear trend in the overlapping sea level data. The 

237 overlap is defined by adding sea level data until preceding and following spit-end 

238 positions to the actual identified period (excepted for 1909 because of the important 20-

239 year interval between positions). This lengthens the periods over which the trend is 

240 computed. When computed over the exact (shorter) intervals, differences between 

241 successive periods of growth and decay are more pronounced.

242
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243 Wave climate data

244 To assess the impact from variations of wave-driven forces, the local wave climate 

245 during the last oscillation of the spit-end was characterized by means of a hindcast 

246 simulation, performed with the storm surge modelling system of Bertin et al. (2015). The 

247 model was extended to the whole North Atlantic Ocean and forced with wind fields 

248 originating from the NCEP/NCAR reanalysis (Kalnay et al., 1996), over the period 1949-

249 2014. Hindcasted wave parameters were validated against measurements from a 

250 directional wave buoy moored in 54 m water depth, and located 15 km offshore the 

251 study site (CETMEF, n.d.). Between 2007 and 2014, 92602 measurements, 

252 representative of 5.3 years in record length, were compared to interpolated modelled 

253 parameters. For both modelled and measured parameters, the wave power (WP) is 

254 approximated with the linear wave theory (Svendsen, 2006; Eq. 1-2), as the wave 

255 energy (E) times the wave group velocity (cg), after computing the phase velocity (c) 

256 using an iterative method to solve the dispersion relationship for calculating (in 

257 intermediate water depth) the wave number (k) associated with the peak angular 

258 frequency (ω).

259

260 Eq. 1: 𝑊𝑃 = 𝐸𝑐𝑔

261 Eq. 2: 𝐸 =  
1
8𝜌𝑔 𝐻𝑠2; 𝑐𝑔 =  𝑐 ∗  

1
2 (1 +

2𝑘ℎ
sinh 2𝑘ℎ); 𝑐 =  

𝜔
𝑘 

262

263 The WP is then decomposed into cross-shore (WPx) and alongshore (WPy) energy flux, 

264 positive when landward and northward respectively. Table 3 summarizes the 

265 comparison outcomes for the significant wave height (Hs), the WP and mean wave 
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266 energy direction (wDir), computed with mean WPx and WPy. Modelled and observed 

267 parameters are in good agreements. Pearson linear correlation coefficient are equal to 

268 0.93 and 0.80 for respectively WP and WPy and the modelled wave field only slightly 

269 underestimating the total WP by 2.4%. In terms of direction, wDir has an initial bias of 

270 3.8º. After removing the bias, correlation between modelled and observed WPy is 

271 improved to 0.81 and the error on averaged WPy is minimal (1.7%). Low-pass filtered 

272 WP and WPy on Figure 7 further reveal the good performance of the model, as 

273 correlation coefficients grow to 0.99 and 0.95 for WP and WPy respectively.

274

275 North Atlantic Oscillation (NAO)

276 Over the entire period covered by geomorphological data, winter indices of the North 

277 Atlantic Oscillation (NAO) provide additional information about the environmental 

278 forcing. The NAO is the main atmospheric mode of variability over the North Atlantic 

279 basin in winter (Hurrell and Deser, 2009), and from December to March, its negative 

280 and positive phases have a demonstrated influence on ocean waves and sea level 

281 anomalies on Western Europe coastlines (Calafat et al., 2012; Dodet et al., 2010). 

282 Therefore, 3 different NAO indices were used as proxy for these environmental drivers.

283 Indices of the winter NAO in the literature are either reconstructions based on a 

284 combination of instrumental and proxy data (Cook et al., 2002; Glueck and Stockton, 

285 2001; Luterbacher et al., 1999; Ortega et al., 2015), indices computed from the 

286 difference of normalized sea level pressure between the Azores High and the Icelandic 

287 Low (Hurrell, 1995; Jones et al., 1997), or indices based on a principal component 

288 analysis of reconstructed sea level pressure fields over the North Atlantic Ocean 
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289 (Barnston and Livezey, 1987; Hurrell, 2019). This study used the station-based index of 

290 Hurrell (2015) which provides empirical evidence until 1864. This record is extended 

291 back to 1768, with two proxy-based reconstructions selected for their robustness 

292 against this instrumental data (Luterbacher et al., 2001; DJFM index,  accessed from 

293 https://www.ncdc.noaa.gov/paleo-search/study/6275) and their novelty (Ortega et al., 

294 2015; DFJ index, accessed from https://www.ncdc.noaa.gov/paleo-search/study/18935).

295 In the following, these indices are either showed in their cumulative form or as decadal 

296 averages. To highlight the dominance of either the negative or positive phase of the 

297 NAO in winter, cumulative indices were computed. After Mazzarella and Scafetta 

298 (2012), the cumulative value of each index for a given year is taken as the inclusive sum 

299 of values for all previous years. Then over the 20th century onward, more frequent spit-

300 end positions are compared to the station-based index, averaged over the 10 years 

301 preceding each observation. This averaging procedure was needed because of the 

302 irregularly sampled observations; the10-year window was found to fit well with this 

303 irregular resolution and the inertia of the system compared to the high interannual 

304 variability of the NAO (Hurrell, 1995).

305

306 Results and basis for discussion

307 Three periods of spit lengthening

308 Upper panel in Figure 8 represents the path of the Cap Ferret spit-end from 1768 to 

309 2014; lower panels show cumulated NAO indices. The spit-end path reveals 3 periods 

310 over which the spit has dominantly grown across the inlet. These periods, over 40 years 

311 each, are delimited by local extrema of the spit-end position, on maps and photos of 
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312 1768-1826, 1865-1909 and 1932-1972. The 1st and 3rd periods are found when the 

313 negative phase of the NAO has dominated (Figure 8, lower panels). Likewise, according 

314 to the station-based index (Hurrell, 2015), the negative phase of the NAO has 

315 dominated during most of the 2nd period, until 1902, or 7 years before the map of 1909. 

316

317 The Dalton Minimum

318 The 1st period of spit lengthening, characterized by a 3.5 km lengthening of the spit 

319 between 1805 and 1826, was also contemporaneous with the Dalton Minimum (DM, 

320 1780-1830) climate anomaly. Figure 9 details this record lengthening and the 

321 subsequent retreat. The spit has grown while the tidal inlet had 2 well defined channels. 

322 Both northern and southern channels were preserved as the spit grew, but the inlet 

323 minimal width was divided by 3 in 1826 compared to that of 1768. Then between 1826 

324 and 1865, the spit has retreated while the inlet width regained a width comparable to its 

325 1768 level. In 1865 the southern channel was buried by the main inlet shoal that have 

326 steadily migrated southward since 1768 attached to the inlet’s southern margin. 

327 Therefore, during a century, the spit has advanced against a double channelled inlet 

328 and has retreated when the inlet’s southern channel closed. In terms of climate, this 

329 century encompassed the Dalton Minimum which was a period of anomalous coldness 

330 (van der Schrier and Barkmeijer (2005) and references therein).

331 DM is explained as a conjunction of low solar activity and major volcanic eruptions and 

332 has culminated in Europe with “the year without a summer” in 1816 (van der Schrier and 

333 Barkmeijer, 2005). Using a global circulation model, van der Schrier and Barkmeijer 

334 (2005) have pointed out the “higher occurrence probability at the European mid-
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335 latitudes of the strongest cyclone under DM atmospheric conditions”. Their results recall 

336 those from Shindell (2001) and Ineson et al. (2011), who showed that periods, or years, 

337 with low solar activity produce NAO negative like atmospheric configurations. Indeed, 

338 during the negative phase of the NAO low pressure systems are deviated southward 

339 (Hurrell and Deser, 2009). Furthermore, there is converging evidence of enhanced mid-

340 latitude storminess during such cold periods, as recorded by the dune fields north and 

341 south of Cap Ferret (Clarke et al., 2002).

342 The dominance of the negative phase of the NAO during DM is also suggested by the 

343 cumulative NAO winter-index of Luterbacher et al. (2001), that decreased until 1830 

344 (Figure 8, mid panel). However, as recalled by Poirier et al. (2017), NAO reconstruction 

345 tend to diverge in this period. For instance, the data from Ortega et al. (2015) only 

346 confirm Luterbacher’s data until 1810 when, according to the more recent 

347 reconstruction, the positive phase begins to dominate again. On the other hand, when 

348 compared to the station-based index computed by (Hurrell, 2015) from the instrumental 

349 record, Luterbacher’s reconstruction performs better. Indeed, Luterbacher’s (DJFM) 

350 reconstruction is well correlated with the station-based index from 1864 onward (Figure 

351 8 mid panel), while the correlation between Ortega’s (DJF) reconstruction and 

352 instrumental data between 1864 and 1969 is weaker (Figure 8 lower panel); Pearson 

353 linear correlation coefficient (r) equal to 0.89 (p-value < 10-47) in the first case, against a 

354 correlation coefficient of 0.47 (p-value < 10-6) in the second case.

355

356 Correlation with NAO winter-indices
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357 After the DM, the other 2 periods of spit growth happened while the negative phase of 

358 the NAO have dominated in winter, as supported by Hurrell's (2015) station-based index 

359 (Figure 8, middle panel). By opposition, periods of spit retreat systematically took place 

360 in periods dominated by the positive phase of the winter NAO; on Figure 8, periods 

361 delimited by the local extrema of the spit-end position, on maps and photos of 1826-

362 1865, 1909-1932 and 1972-2014.

363 Over the 20th century, sharp movements of the spit-end like those around 1915 and 

364 1972 were also synchronous with remarkable shifts of the NAO (Figure 10, upper 

365 panel): between 1909 and 2000, the spit-end path is significantly correlated with the 

366 decadal average of the NAO winter-index (r = -0.67, p-value < 10-4).

367 Locally, the positive phase of NAO is known to produce higher and more oblique 

368 (clockwise shift) winter waves (Charles et al., 2012). The hindcast used in this study 

369 agrees with this and further shows how decadal averages of the winter NAO index and 

370 the alongshore wave power are well correlated (Figure 10, lower panel; r = 0.86, p-value 

371 < 10-16). Correlation is greater than for the total wave power (WP), which has a 

372 correlation coefficient of 0.76 (p-value < 10-11). This highlights the impact of the NAO on 

373 the local wave direction as well. Consequently, according to wave climate between 

374 1949 and 2014, decades dominated by the positive phase of the NAO may produce an 

375 average alongshore wave power up to 30% greater than when the negative phase 

376 dominates (figure 10, lower panel).

377 Nonetheless, although winter wave power and NAO index remain correlated until 2014, 

378 their apparent relationship with the spit-end track is less clear at the beginning of the 
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379 21st century. Since 2000, averaged wave power and NAO index have regained a more 

380 neutral value while the spit have continued to retreat.

381

382 Sea level and inlet width variations

383 The ongoing erosion and retreat of the spit-end comes after the last significant 

384 lengthening which has culminated in 1972 (Figures 4 & 10). In addition to a dominant 

385 negative phase of the NAO in winter (Figures 8 & 10), the spit has then advanced 

386 across the inlet while, since the 1930s, sea level was rising at a relative slow pace (1.26 

387 mm.y-1) compared to that of the beginning and end of the 20th century (above 2.4 mm.y-

388 1; see Table 2 and Figure 6 lower panel). During this period, the inlet channel volume 

389 and the morphological amplitude of the inlet throat were also relatively stable or slightly 

390 decreased (Figure 5).

391 Around 1972, the spit-end growth was sharply interrupted. In the same time the 

392 morphological amplitude of the inlet throat remained stable until 1979. Instead, as the 

393 winter NAO abruptly shifts towards the dominance of the positive phase, the decadal 

394 averaged of the alongshore wave power increased and reached its highest level 

395 between 1970 and 1990. It is only after 1979 that the inlet channel volume has begun to 

396 increase, synchronous with an acceleration of sea level rise (Figure 6). Since then 

397 channel volume has increased over 25%, while the wave energy remains at an average 

398 level.

399 The increase in channel volume recalls the dramatic expansion of the inlet observed 

400 after 1826 (Figure 9). This first breathing then occurred as sea level has successively 

401 fallen and risen (Table 2). In the absence of detailed analysis of the evolution of the 
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402 inlet’s dimensions over the second period of spit lengthening, linear trends presented in 

403 Table 2 reveal that for all 3 periods of spit lengthening, sea level has either fallen or has 

404 risen slower than during preceding and following periods.
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405 Discussion

406 The auto-cyclic hypothesis

407 From the 1960s to until recently (2014), the present set of maps and photos has been 

408 gathered and analysed numerous times by several authors, mainly for engineering 

409 purposes (see Nahon, 2018, for references). The main idea which raised is that Cap 

410 Ferret’s spit-end north-south oscillations could be an auto-cyclic response to the 

411 apparent cyclicity of the inlet channel configuration (with one or two channels). Michel 

412 and Howa (1997) detailed the cyclical nature of the inlet channels and conceptualized 

413 its impacts on the inlet’s northern and southern margins. Among other impacts, their 

414 conceptual model predicts that the Cap Ferret spit extends southward when a single 

415 channel exists and by opposition retreats when two channels split the inlet. This 

416 feedback interaction was derived from approximately the same cartographic data 

417 presented in here. However, such hypothesis is far less than evident during over a third 

418 of the data coverage. Indeed, as shown in Figure 9, let’s recall here that between 1769 

419 and 1825, the spit has elongated while the inlet had two channels and that from 1825 to 

420 1865, the spit has retreated when the southern channel was progressively buried. On 

421 the other hand, there is an apparent relationship between the spit-end behaviour and 

422 the North Atlantic climate over the entire study period.

423

424 Wave climate influence

425 Links between the NAO and the local wave climate could be part of the explanation to 

426 the spit – climate apparent relationship. Indeed, it appears that the spit grows across the 

427 inlet when NAO-negative ocean waves are more shore normal and/or the alongshore 
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428 wave power is below average. By opposition, the spit-end retreats when the alongshore 

429 wave power is stronger than average, and as so when the wave-driven alongshore 

430 sediment transport (LST) is more intense. Aagaard et al. (2004) have observed a similar 

431 relationship along the western Danish coast in northern Europe. Based on wind data 

432 from the first and last 30 years of the 20th century, they have pointed out the contribution 

433 of increased wind-wave driven LST, to the updrift erosion of the spit-end towards the 

434 end of the century. More recently, Aagaard and Sørensen (2013) have suggested the 

435 increase of the LST surpasses all terms in the sediment imbalanced equation, including 

436 sea-level rise. Underlying physical processes are yet to be identified, however they 

437 could either lie within LST – inlet flow interactions (Bertin et al., 2009), or within wave 

438 orientation – spit-growth relationship (Ashton et al., 2016).

439 On the one hand, Bertin et al. (2009) have shown with a process-based morphodynamic 

440 model, that sediment retention within tidal inlets could increase when waves approach 

441 the coast at a lower angle of incidence; therefore when, to all other parameters equal, 

442 LST is reduced. Locally, this is quite meaningful because the nonlinear superimposition 

443 of the southward LST induced waves and tidal residuals increase alongshore gradients 

444 in sediment transport (Cayocca, 2001).

445 On the other hand, simulations with coastal evolution models (CEM) suggest that the 

446 sole relationships between spit growth and wave orientation may also be at play 

447 (Ashton et al., 2016): less oblique waves (and a decreased LST) leads to the erosion of 

448 the spit on the updrift side of the fulcrum point and to the lengthening of spit distal end 

449 (Figure 11a), whereas increasing the wave incidence and the LST induces sediment 

450 retention updrift of the fulcrum point while the spit-end loses sediment and retreats 
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451 (Figure 11b). This apparent oscillation of the sediment budget around the fulcrum point 

452 recalls the behaviour of the Cap Ferret between 1826 and 1865 (Figures 9 & 11c).

453 These examples provide some insights on the physics underlying the apparent 

454 relationship between local geomorphology and local waves. Increased LST and more 

455 oblique waves during the positive phase of the NAO may well have forced the spit-end 

456 to retreat, while the spit can advance across the inlet when the negative phase of the 

457 NAO produce waves with a reduced angle of incidence and lower rates of LST.

458 From a regional perspective, this behaviour differs from that of the Arçay sandspit (less 

459 than 250 km north of Cap Ferret). Allard et al. (2008) first suggested the rhythmic 

460 growth of Arçay sandspit was boosted by LST, and Poirier et al. (2017) further put into 

461 evidence the hierarchical control of the NAO and the East Atlantic–West Russia pattern. 

462 In the case of Arçay, higher rates of LST during the positive phase of the NAO are 

463 found to be responsible for the enhanced spit growth. Here we found it is the opposite at 

464 Cap Ferret. Therefore, the attempt by Poirier et al. (2017) to, in a second time, 

465 associate both spits behaviour is questionable. The reason may be the important 

466 difference of their back-barrier lagoon dimensions, which in the case of Arçay is a lot 

467 smaller. In the case of Cap Ferret, the large lagoon of the Bay of Arcachon engenders a 

468 large tidal prism that has shaped large inlet shoals. Then, the repartition of wave-driven 

469 sediment inputs, between the spit and the shoals, become more complex (Hoan et al., 

470 2011; Kraus, 2000; Larson et al., 2007). This is particularly true when relative sea levels 

471 are subject to rise, ultimately turning shoals into sediment sinks because their 

472 equilibrium volume increases with the larger value of tidal prism engendered by higher 

473 sea level (Walton, Jr. and Adams, 1976). Also, wave climate variations alone may not 
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474 fully explain inlet constrictions and expansions such as those observed during and after 

475 the Dalton Minimum (Figure 2c-d), or the ongoing inlet throat expansion since 1979 

476 (Figure 5).

477 Sea level influence

478 A tidal inlet’s cross-section increases with tidal prism (O’Brien, 1931) and, to a lower 

479 degree, decreases with wave energy (Jarrett, 1976; Nahon et al., 2012). Tidal prism 

480 variations could then have contributed to observed changes in inlet dimensions. For 

481 instance, in 1990s when the wave energy is maximal (Figure 10, lower panel), only an 

482 increase of the tidal prism could have caused the inlet to enlarge (Figure 5e). In 

483 addition, the magnitude of the inlet’s narrowing and widening in the first half of the 19th 

484 century (Figure 9) suggests that changes in the tidal prism have certainly added to the 

485 effects of variations of the wave climate associated with the Dalton Minimum. Over the 

486 study period, the Bay of Arcachon’s contours remained stable. Instead, variations of the 

487 sea level must have modulated tidal prism.

488 Tidal flats and salt marshes occupy about 75 % of the Bay of Arcachon (Féniès and 

489 Faugères, 1998; Nahon, 2018), so that the tidal prism is mostly controlled by the relative 

490 elevation of those. Due to low sediment input from freshwater streams, the 

491 sedimentation rate above these tidal flats is expected to respond, at most, with a 

492 temporal lag to changes in the rate of sea level variations (Kirwan and Murray, 2008). 

493 So that when sea level starts to increase or when sea level rise (SLR) accelerates, tidal 

494 flats’ relative elevation decreases temporarily, leading to a greater tidal prism that 

495 ultimately forces the inlet to enlarge. On the contrary, inlets may narrow in response to 

496 falling sea level or stable to decelerating SLR.
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497 Part of the explanation would also be related to the ongoing morphological evolution 

498 whole barrier system. Indeed, the large tidal flats of the lagoon and the relatively high 

499 tidal range promote the ebb dominance of the system (Fortunato and Oliveira, 2005; 

500 Friedrichs and Aubrey, 1988). The overall negative sediment budget of the lagoon 

501 between charts of 1865 and 2001 (Allard et al., 2009) confirmed this characteristic. 

502 Charts further revealed that sediment loss was due to headward erosion of its tidal 

503 channels which, according to process-based models, can be a response of an inlet – 

504 lagoon system to SLR (van Maanen et al., 2013). This similitude between simulated 

505 morphologies and the observed evolution of the lagoon, suggests the Bay of Arcachon 

506 is currently adapting to secular regional SLR (Jevrejeva et al., 2014). Van Maanen et al. 

507 (2013) numerical experiments further explain how, under progressive SLR, such 

508 systems can remain ebb-dominated and how the amount of exported sediment 

509 increases with the rate of SLR.

510 Therefore, multiple processes could explain how decadal to pluri-decadal variations in 

511 the rate of SLR (Jevrejeva et al., 2014), like those observed at Brest (Figure 6 and 

512 Table 2), must have impacted the inlet sediment budget, at temporal scales matching 

513 those of documented spit-end oscillations.

514

515 Other influences

516 In winter, the NAO also modifies effective rainfalls and wind regimes as well as sea 

517 level anomalies (Calafat et al., 2012). Locally, NAO-positive winters tends to be drier 

518 (Hurrell and Deser, 2009), so that freshwater inputs to the lagoon are expected to be 

519 further reduced. Therefore, it is very unlikely that the impact of the NAO on precipitation 
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520 could contribute to the observed inlet breathing and spit oscillation. However, the 

521 morphodynamic impact of positive sea level anomalies during NAO negative winters 

522 (Calafat et al., 2012) and how it may interact with longer term trends of SLR is an open 

523 question. As is the impact of the complex wind-induced circulation (Salles et al., 2015) 

524 on inlet morphodynamics. Nonetheless, these questions fall beyond the scope of the 

525 present work.

526

527 Synthesis

528 Despite these latter questions, a combination of processes exists that may well have 

529 contributed to the north-south oscillations of the spit-end observed on charts and aerial 

530 photographs, between 1768 and 2014.

531 Variations in the wave climate associated with North Atlantic atmospheric state, very 

532 likely modified sediment transport patterns near the spit-end; and trends in sea level 

533 variations have modulated inlet dimensions, ultimately forcing the spit-end to retreat 

534 when the inlet enlarged faster that it was migrating and allowing the spit-end to advance 

535 otherwise. These two drivers make it possible to explain the spit decays and growths 

536 over the entire study period and at the temporal scale resolved by that cartographic 

537 data. Identifying a dominant mechanism is tricky though.

538 On the one hand, since the turn of the 20th century, the spit has then been able to 

539 durably grow when the rate of SLR was moderate, as between 1930 and 1970. 

540 Otherwise, when sea level has risen faster, like before 1930 or since 1970, the spit-end 

541 has been unstable or has retreated. This indicates the existence of an upper limit to the 

542 rate of SLR (around 2 mm.y-1 according data in Table 2), above which spit growth is 
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543 annihilated. On the other hand, even though regional SLR remained moderate until the 

544 late 1970s, the intensification of the alongshore wave power alone have trigger the spit 

545 retreat in the early 1970s. The next step would then be to implement a numerical 

546 morphodynamic model to rigorously evaluate the respective and relative contribution of 

547 both forcing.

548 Finally, independently from the existence of a dominant mechanism, the exceptional 

549 evolution during the first half of the 19th century was certainly produced by in-phase 

550 destructive and constructive forces: from the spit point of view, it must have resulted 

551 from synchronous constructive forces, exacerbated by the Dalton Minimum, followed by 

552 synchronous destructive forces. This certainly agrees with the duality of wave climate 

553 and sea level relations in terms of geomorphological impacts. However, it does not 

554 answer the question of the interplay between these two drivers.

555

556 Conclusions

557 Detailed observations of the Cap Ferret spit-end over the last 250 years reveal 

558 geomorphological changes of a remarkable magnitude. Owing to the temporal 

559 coverage, it seems possible to explain the apparent cyclical nature of this dynamic by a 

560 combination of climatic shifts and sea-level variations, although without considering an 

561 eventual relationship between these two drivers.

562 First, all documented phases of spit growth were found during periods dominated by the 

563 negative phase of the North Atlantic Oscillation in winter. Inversely, the spit has 

564 retreated when the NAO shifted towards a positive-phase dominance. The relationship 

565 between NAO and local wave climate make the wave climate a good candidate to 
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566 explain this behaviour. During the positive phase of the NAO, higher ocean waves 

567 and/or clockwise shifts of the waves’ mean direction accelerate alongshore sediment 

568 transport (LST), which, counter intuitively and like it has been observed and modelled 

569 elsewhere, contribute the updrift erosion of the spit-end.

570 In the second place, spit-end retreats and instabilities were also in phase with periods of 

571 rapid or accelerating sea-level rise SLR. Synchronous expansions of the adjacent inlet 

572 pointed at the impact of SLR on tidal prism. Indeed, enhanced tidal prism under 

573 accelerating SLR may well exacerbate the ongoing adaptation of the whole Bay of 

574 Arcachon to secular SLR, ultimately forcing the spit-end to retreat when the inlet 

575 enlarges faster than in migrates downdrift.

576 Locally, these findings advocate a dominance of allocyclic mechanisms over the 

577 autocyclic behaviour proposed by Michel and Howa (1997). Somehow this goes along 

578 with the results of Allard et al. (2008) and Poirier et al. (2017), although the opposed 

579 behaviour of Cap Ferret and Arçay spits regarding wave climate suggest that coastal 

580 barrier spits response to increased LST may differs regarding if SLR is or not turning 

581 spits’ adjacent shoals into sediment sinks.

582 In a broader perspective, the present results further highlight the vulnerability to SLR of 

583 barrier-spit backed by large estuaries. Given this, they may also serve to detect coastal 

584 adjustments driven by climate change.

585
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827 Tables

828 Table 1. Morphological parameters of the inlet throat between 1949 and 2014.

year Channel volume
(Mm3)

Shoal volume
(Mm3)

Mean elevation
(m NGF)

Morphological amplitude
(Mm3)

1949 32.14 59.48 -5.50 42.69

1969 30.02 54.20 -5.61 38.80

1979 30.02 43.21 -6.17 34.74

2001 33.93 61.41 -5.53 44.02

2014 38.62 60.58 -5.82 46.65

mean 32.53 55.78 -5.77 41.38
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830 Table 2. Trends in Brest tidal gauge annual sea level data.

Periods Linear trend, mm.y-1 Spit behaviour

1807-1835 -1.08 extending

1826-1872 0.14 retreating

1865-1909 -0.33 extending

1900-1934 2.5 retreating

1932-1972 1.26 extending

1968-2015 2.42 retreating
831
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832 Table 3. Comparison of hindcasted wave parameters and wave buoy observations.

Wave Field BIAS (% of mean) ERMS (% of mean) Pearson Corr. coeff.

Hs -1.16 43 cm 0.93

WP -2.4 - 0.93

wDir 3.75° (0°) - -

WPx -3.4 (1.7) - 0.93 (0.93)

WPy 27.1 (1.7) - 0.80 (0.81)
833
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834 Figures

835

836 Figure 1 – Location maps. <b>a</b>) Bathymetry of the Bay of Biscay, bordering the 

837 SW coast of France; <b>b</b>) Gironde sandy coast, between the Gironde Estuary and 

838 the Bay of Arcachon, former estuary of the Leyre river and now a lagoon, semi-enclosed 

839 by the Cap Ferret sand spit (coordinates given in Lambert 93, in meters); <b>c</b>) 

840 Satellite Landsat 8 image of the Bay’s tidal inlet in October 2014, showing the main 

841 geomorphological units and the red dotted line indicating the 2014 coastline of the Cap 

842 Ferret spit-end, on the inlet’s updrift margin.

843

844 Figure 2 – Nautical charts. <b>a</b>) Ordnance survey map from 1888, black circled 

845 dots indicate control points used for georeferencing the map, red dashed line is the 

846 coastline measured by GPS on 2014 spring, red stars indicate the 3 reference locations 

847 used for georeferencing nautical charts; <b>b-e</b>) examples of nautical charts used 

848 to measure the spit-end positions, indicated by asterisk symbols for every given date; 

849 <b>f-g</b>) Satelite Landsat image of the Bay of Arcachon and its tidal inlet in October 

850 2014.

851

852 Figure 3 – Measuring the spit’s extension relative to the position of Cap Ferret’s 

853 lighthouse. <b>Upper panels</b>: charts and coastlines from 1768 and 1826 and 

854 Satellite Landsat 8 image from October 2014, red dotted lines represent the 2014 

855 coastline and the red stars indicate the lighthouse’s position, white dashed lines 

856 materialize the axe onto which spit-end positions were orthogonally projected and 
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857 measured, the black sector in the right panel represents the spit-end migration range; 

858 <b>lower panel</b>: the grey curve shows the spit-end path between 1768 and 1936, 

859 grey error bars stand for historical charts and the black ones for modern charts, asterisk 

860 symbol stand for spit-end positions in Figure 2<b>b-e</b>.

861

862 Figure 4 – Positions of the Cap Ferret spit-end measured on aerial photographs. 

863 <b>Upper panels</b>: series of aerial photographs of the spit-end, red dotted lines 

864 represent the 2014 coastline, black asterisk symbols materialize the spit-end positions 

865 for the given years, superimposed on photographs from 1934 and 1946 are the 

866 shorelines reproduced from charts of 1932 and 1936 respectively; <b>lower panel</b>: 

867 distance of the spit-end to lighthouse’s position, black asterisk symbols correspond to 

868 those on the upper panel.

869

870 Figure 5 – Inlet throat bathymetric data. <b>a</b>) summer 2014 along transect 

871 soundings; <b>b</b>) interpolated bathymetry with the -7 m NGF contours (black lines); 

872 <b>c</b>) -7 m NGF contours  superimposed onto October 2014 Landsat image; 

873 <b>d</b>) erosion (blue) – deposition (red) patterns over the 12.74 km2 area covered 

874 by all 5 surveys between 1949 and 2014; <b>e-h</b>) channel volume (below -7 m 

875 NGF) , shoal volume (above -7 m NGF), overlapping area mean depth (m NGF) and 

876 inlet morphological amplitude over panel <b>d</b>’s area (<b>e</b>,<b>f</b> and 

877 <b>h</b> are in percent of averaged values for all 5 surveys).

878

Page 39 of 53

http://mc.manuscriptcentral.com/esp

Earth Surface Processes and Landforms

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Wave climate and sea level controls on a coastal spit – submitted to ESPL

40

879 Figure 6 – Brest tidal gauge Mean Sea Level (MSL) variation. <b>Upper panel</b>: 

880 annual MSL data from 1807 to 2015 recovered from the PMSL observatory (Holgate et 

881 al., 2013), black lines are the 11-year centred running mean of annual measurements 

882 and the thick dotted red line is the quadratic fit of all the data; <b>lower panel</b>: 

883 same as above with data from 20th century onward fitted with a 5th order polynomial 

884 function.

885

886 Figure 7 – Local, 54 m water depth wave hindcast. <b>Upper panel</b>: 90-day 

887 running mean of the wave power (WP; linear wave theory approximation) 15 km 

888 offshore Cap Ferret, solid blue line are wind wave model (WWM-II, Roland et al., 2012) 

889 results with Bertin et al. (2015) setup, dotted black line are the wave buoy observations 

890 (CETMEF, n.d.) between April 2011 and May 2014, data is normalized using mean WP 

891 value over the hindcast period (1948-2014); <b>lower panel</b>: same as above with 

892 the alongshore component of the wave power (WPy); <b><i>r</i></b> values are 

893 Pearson’s linear correlation coefficients between plotted curves. 

894

895 Figure 8 – Spit-end path and cumulated winter NAO indices between 1768 and 2014. 

896 <b>Upper panel</b>: the grey curve shows the distance from the spit-end to the Cap 

897 Ferret lighthouse as on Figures 3&4 (red dotted frame is for next Figure 8’s zoom); 

898 <b>mid panel</b>: darker blue curve is the cumulated winter (DJFM) index of the NAO 

899 reconstruction of Luterbacher et al. (1999), lighter blue curve is the same but for 

900 (Hurrell's (2015) station-based (DJFM) index; <b>lower panel</b>: darker blue curve is 

901 the cumulated winter (DJF) index of the NAO reconstruction of Ortega et al. (2015), 
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902 lighter blue curve is the same but for Hurrell's (2015) station-based (DJFM) index; on all 

903 panels, orange shades indicate periods of spit elongation with the Dalton Minimum 

904 period in darker orange, <b><i>r</i></b> values are Pearson’s linear correlation 

905 coefficients between plotted curves.

906
907 Figure 9 – Evolution of the spit-inlet system across the Dalton Minimum (1780 – 1830). 

908 Navigation charts from years 1768, 1813, 1826 and 1865; blue asterisks indicate the 

909 positions of the spit terminus at the respective dates; black arrows materialize the inlet 

910 minimal width; red and blue arrows materialize the position of respectively the northern 

911 and southern channels; the dotted black line depicts the migration of the main inlet 

912 shoal barycentre; common red stars, dotted white axis and dotted red line are the same 

913 as in Figures 2 and 3. 

914

915 Figure 10 – NAO relationships with Cap Ferret’s spit-end and local wave climate. 

916 <b>Upper panel</b>: in grey is the path of the spit-end, as the distance from the spit-

917 end to the Cap Ferret lighthouse, as on Figures 3&4 and over since 1909, 

918 superimposed blue curve is Hurrell's (2015) station-based NAO winter index, averaged 

919 of 10 years preceding each observation; <b>lower panel</b>: same winter NAO index 

920 curve as above, along with hindcasted alongshore winter wave power (WPy), averaged 

921 in same fashion as the NAO index and normalized using mean WPy value over the 

922 hindcast period (1948-2014); on both panels, orange shades indicate periods of spit 

923 elongation, <b><i>r</i></b> values are Pearson’s linear correlation coefficients between 

924 plotted curves

925
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926 Figure 11 – Sandspit’s morphological response to changes in mean wave direction. 

927 <b>a</b>) spit-end response to a decrease of the averaged wave angle of incidence, 

928 modelled by (and reproduced from) Ashton et al. (2016), dashed line represents initial 

929 shoreline and shaded area represents the spit-end contours after waves became more 

930 shore normal; <b>b</b>) same as panel <b>a</b>, but for an increase of the averaged 

931 wave angle of incidence, or after waves became more oblique; <b>c</b>) dashed line 

932 represents Cap Ferret spit-end in 1826, at the end of the Dalton Minimum, and shaded 

933 area represents the spit-end in 1865.
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Location maps. a) Bathymetry of the Bay of Biscay, bordering the SW coast of France; b) Gironde sandy 
coast, between the Gironde Estuary and the Bay of Arcachon, former estuary of the Leyre river and now a 

lagoon, semi-enclosed by the Cap Ferret sand spit (coordinates given in Lambert 93, in meters); c) Satellite 
Landsat 8 image of the Bay’s tidal inlet in October 2014, showing the main geomorphological units and the 

red dotted line indicating the 2014 coastline of the Cap Ferret spit-end, on the inlet’s updrift margin. 
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Nautical charts. a) Ordnance survey map from 1888, black circled dots indicate control points used for 
georeferencing the map, red dashed line is the coastline measured by GPS on 2014 spring, red stars indicate 
the 3 reference locations used for georeferencing nautical charts; b-e) examples of nautical charts used to 
measure the spit-end positions, indicated by asterisk symbols for every given date; f-g) Satelite Landsat 

image of the Bay of Arcachon and its tidal inlet in October 2014. 
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Measuring the spit’s extension relative to the position of Cap Ferret’s lighthouse. Upper panels: charts and 
coastlines from 1768 and 1826 and Satellite Landsat 8 image from October 2014, red dotted lines represent 

the 2014 coastline and the red stars indicate the lighthouse’s position, white dashed lines materialize the 
axe onto which spit-end positions were orthogonally projected and measured, the black sector in the right 

panel represents the spit-end migration range; lower panel: the grey curve shows the spit-end path 
between 1768 and 1936, grey error bars stand for historical charts and the black ones for modern charts, 

asterisk symbol stand for spit-end positions in Figure 2b-e. 
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Positions of the Cap Ferret spit-end measured on aerial photographs. Upper panels: series of aerial 
photographs of the spit-end, red dotted lines represent the 2014 coastline, black asterisk symbols 

materialize the spit-end positions for the given years, superimposed on photographs from 1934 and 1946 
are the shorelines reproduced from charts of 1932 and 1936 respectively; lower panel: distance of the 

spit-end to lighthouse’s position, black asterisk symbols correspond to those on the upper panel. 

42x19mm (300 x 300 DPI) 

Page 46 of 53

http://mc.manuscriptcentral.com/esp

Earth Surface Processes and Landforms

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 

Inlet throat bathymetric data. a) summer 2014 along transect soundings; b) interpolated bathymetry with 
the -7 m NGF contours (black lines); c) -7 m NGF contours  superimposed onto October 2014 Landsat 
image; d) erosion (blue) – deposition (red) patterns over the 12.74 km2 area covered by all 5 surveys 
between 1949 and 2014; e-h) channel volume (below -7 m NGF) , shoal volume (above -7 m NGF), 

overlapping area mean depth (m NGF) and inlet morphological amplitude over panel d’s area (e,f and h are 
in percent of averaged values for all 5 surveys). 
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Brest tidal gauge Mean Sea Level (MSL) variation. Upper panel: annual MSL data from 1807 to 2015 
recovered from the PMSL observatory (Holgate et al., 2013), black lines are the 11-year centred running 

mean of annual measurements and the thick dotted red line is the quadratic fit of all the data; lower 
panel: same as above with data from 20th century onward fitted with a 5th order polynomial function. 
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Local, 54 m water depth wave hindcast. Upper panel: 90-day running mean of the wave power (WP; linear 
wave theory approximation) 15 km offshore Cap Ferret, solid blue line are wind wave model (WWM-II, 

Roland et al., 2012) results with Bertin et al. (2015) setup, dotted black line are the wave buoy observations 
(CETMEF, n.d.) between April 2011 and May 2014, data is normalized using mean WP value over the 

hindcast period (1948-2014); lower panel: same as above with the alongshore component of the wave 
power (WPy); r values are Pearson’s linear correlation coefficients between plotted curves. 
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Spit-end path and cumulated winter NAO indices between 1768 and 2014. Upper panel: the grey curve 
shows the distance from the spit-end to the Cap Ferret lighthouse as on Figures 3&4 (red dotted frame is for 

next Figure 8’s zoom); mid panel: darker blue curve is the cumulated winter (DJFM) index of the NAO 
reconstruction of Luterbacher et al. (1999), lighter blue curve is the same but for (Hurrell's (2015) station-

based (DJFM) index; lower panel: darker blue curve is the cumulated winter (DJF) index of the NAO 
reconstruction of Ortega et al. (2015), lighter blue curve is the same but for Hurrell's (2015) station-based 

(DJFM) index; on all panels, orange shades indicate periods of spit elongation with the Dalton Minimum 
period in darker orange, r values are Pearson’s linear correlation coefficients between plotted curves. 
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Evolution of the spit-inlet system across the Dalton Minimum (1780 – 1830). Navigation charts from years 
1768, 1813, 1826 and 1865; blue asterisks indicate the positions of the spit terminus at the respective 
dates; black arrows materialize the inlet minimal width; red and blue arrows materialize the position of 
respectively the northern and southern channels; the dotted black line depicts the migration of the main 

inlet shoal barycentre; common red stars, dotted white axis and dotted red line are the same as in Figures 2 
and 3. 
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NAO relationships with Cap Ferret’s spit-end and local wave climate. Upper panel: in grey is the path of the 
spit-end, as the distance from the spit-end to the Cap Ferret lighthouse, as on Figures 3&4 and over since 
1909, superimposed blue curve is Hurrell's (2015) station-based NAO winter index, averaged of 10 years 
preceding each observation; lower panel: same winter NAO index curve as above, along with hindcasted 
alongshore winter wave power (WPy), averaged in same fashion as the NAO index and normalized using 

mean WPy value over the hindcast period (1948-2014); on both panels, orange shades indicate periods of 
spit elongation, r values are Pearson’s linear correlation coefficients between plotted curves. 
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Sandspit’s morphological response to changes in mean wave direction. a) spit-end response to a decrease of 
the averaged wave angle of incidence, modelled by (and reproduced from) Ashton et al. (2016), dashed line 

represents initial shoreline and shaded area represents the spit-end contours after waves became more 
shore normal; b) same as panel a, but for an increase of the averaged wave angle of incidence, or after 

waves became more oblique; c) dashed line represents Cap Ferret spit-end in 1826, at the end of the Dalton 
Minimum, and shaded area represents the spit-end in 1865. 
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