

Investigation of dental amalgam electrode behaviour for the long term monitoring of nuclear waste disposal.

Jordan Daoudi^{1,3}, Stéphanie Betelu¹, Johan Bertrand², Théo Tzedakis³, Ioannis Ignatiadis¹

¹ BRGM (French Geological Survey), Orléans, France. j.daoudi@brgm.fr; s.betelu@brgm.fr; i.ignatiadis@brgm.fr

² ANDRA (French national radioactive waste management agency), Châtenay-Malabry, France. Johan.Bertrand@andra.fr

³ LGC (Chemical Engineering Laboratory), UPS, Toulouse, France. tzedakis@chimie.ups-tlse.fr

 Context
 High level radioactive nuclear waste : long-term storage and reversibility

 - Robust barrier : Callovian-Oxfordian geological formation (from 400 to 600m deep)

 Clayey formation : ions adsorption phenomena and very low permeability

 > slow down radionuclide mobility

 Continuous storage environment monitoring over several decades :

 rocks mechanical parameters, temperature, pH, redox potential (Eh), conductivity

 - 4 < pH < 12 ; 25 < T° < 100 ; -500 < Eh < 500 mV/SHE</td>

 - Water content variations : partial desaturation, saturated periods

constraints

- Presence of redox perturbations : radionuclides, corrosion products

E(Am) = -64.8pH + 535.18

 $R^2 = 0.9236$

- (Fe species, H_2), sulphide (due to sulphate reducing bacteria (SRB) activity)
- Presence of gases : H₂, CO₂, H₂S, CH₄...

Synthesis of dental amalgam	Metals constituting the dental amalgam	Mass percentage (± 3 %)	Relative Standard Deviation (%)	
Heta alver Cu, Sn, Ag Cu, Sn, Ag Cu, Sn, Ag Cu, Sn, Ag Cu, Sn, Ag Cu, Sn, Ag	Hg	43,4	2,8	ICP-MS analyses (LGC, Toulouse)
	Ag	34,2	2,1	
	Sn	14,6	1,7	
	Cu	7,8	2	
	lr	Traces	-	
	Ge	Traces	-	
			П	

$$\underbrace{Ag_{3}Sn + AgCu + Hg}_{Y-phase} \rightarrow \underbrace{Ag_{2}Hg_{3}}_{Y_{1}-phase} + \underbrace{Sn_{7-8}Hg}_{Y_{2}-phase} + \underbrace{(Ag_{3}Sn + AgCu)}_{Y-phase}_{residual} = \underbrace{Sn_{7-8}Hg}_{Y_{2}-phase} + \underbrace{AgCu}_{Y_{2}-phase} + \underbrace{AgCu}_{Y_{1}-phase} + \underbrace{Ag_{2}Hg_{3}}_{Y_{1}-phase} + \underbrace{AgCu}_{Y_{1}-phase} + \underbrace{AgCu}_{Y_{1}-p$$

Bibliography: γ_1 -phase is the most noble¹, γ -phase is weakly altered due to its electrochemical stability in the buccal environment², γ_2 -phase is described as the most reactive¹, probably due to the formation of a Sn^(IV) oxide

200

0

-200

Conclusions and perspectives

 $\frac{1}{2} = \frac{1}{2} = \frac{1}$

Amalgam (GB)

Sn (GB)

Mixed OCP fixed by SnO2/Sn, AgCl/Ag and Cu^(I)/Cu°

In glove box, the amalgam OCP is a mixed potential (AgCl/Ag, $Cu^{(1)}/Cu$ and SnO_2/Sn). The sensitivity is due to the presence of the SnO_2/Sn couple

- More experiments/analyses are needed to clarify amalgam electrochemical behavior such as surface analyses coupled with electrochemical measurements
- In absence of oxygen, amalgam electrode could be used as pH electrode as it presents a near-Nernstian Slope
- **Reference:** ¹Acciari H.A., Antonio C., Guastaldi A.C., Brett C.M.A. (2001) Corrosion of dental amalgams: electrochemical study of Ag–Hg, Ag–Sn and Sn–Hg phases. Electrochimica Acta ; 46: 3887-3893.

²Toumelin-Chemla T., Toumelin J.P., Degrange M. (1998) - L'amalgame dentaire et ses alternatives - Evaluation et gestion des risques, Edition Lavoisier tec & doc, chapitre 3 : 23-25.