

Assessment of the French metals demand induced by national consumption and its associated environmental footprints

Stéphanie Muller⁽¹⁾ – <u>s.muller@brgm.fr</u>, Frédéric Lai⁽¹⁾, Baptiste Boitier⁽²⁾ and Jacques Villeneuve⁽¹⁾ (1) BRGM, (2) SEURECO

(:()NIH)

 Among the objectives of the French roadmap towards a circular economy:

STUDY OBJECTIVES

• Use of environmentally extended multi regional input (EEMRIO) approaches to assess the output footprings induced by French final demand

GHG emissions & **Resources consumption**

- How to simultanously assess these elements in order to avoir burden shifting?
- How to assess the impacts of a specific value chain?
- Use of different EEMRIO databases to test the effects of their specific characteristics on the results

Metal carbon footprint

X

METHODS

Domestic IO table Country A	Imports from B to supply A intermediary use	From C to A	rofits + sumption	rmation	d valuables	
From A to B	Domestic IO table Country B	From C to B	d + non pr final con	capital fo	ntories an	al output
From A to C	From B to C	Domestic IO table Country C	Household	ross fixed	ge in inver	Tot
Total i	ntermediate consu	mption	δΩ Ω	Ū	Chan	

CALCULATIONS

Total production: $x = (I-A)^{-1}$. y y: French final demand Total footprint: E = B.x

Footprint expressed by element of the final demand: $E=B.(I-A)^{-1}.\dot{y}$ Footprint expressed by element of the total production: $E = B \hat{x}$

For the metal carbon footprint:

In the B matrix, for the non-metal related sectors, GHG emissions are set to 0.

Value added Output at basic prices **Environmental extensions** - emissions, extractions, land use, ... -

Matrix modelling interindustries exchanges – Input to define the technology matrix A

Environmental extensions table – Input to define the B matrix

CONSIDERED DATABASES

	WIOD2013	EXIOBASE V2
Temporal coverage	1995 - 2009	2007
Geographical coverage	40 countries + 1 ROW	43 countries + 5 ROW
Technological coverage	35 activities (1 metal sepecific)	163 activities (22 metal specific)
Metal extraction	1: Minerals metals	10

SOME RESULTS

Elements of the final demand with the highest metal and metal carbon \bullet footprints are the same and are mainly due to their iron and steel content (assessment using EXIOBASE v2)

47% of the metal footprint **71%** of the metal carbon footprint

1995 1996 1997 1998 1999 1999 1999 1996 1996 1996 1996	:+10																1.
Years		1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	
								Y	'ear	S							

Metal carbon footprint Total Metal footprint

- Metals represent **13%** of French carbon footprint
- Metals represent **11%** of French material fooprint
- Evolution of the location of GHG emissions induced by metal \bullet production for the French final demand, between 1995 and 2009 (assessment using WIOD)

 $30 \% \rightarrow 20\%$

PERSPECTIVES AND CONCLUSION

EEMRIO permits to understand in details the impacts linked to consumption and to take specific actions to limit them:

WHICH PRODUCTS? TEMPORAL EVOLUTION? WHERE? WHAT PRODUCTION ACTIVITIES?

Limitations: age of the data in publicly available databases (2011 for EXIOBASE v3, 2015 for EUROSTAT) and transparency in EEMRIO development

Acknowledgments: part of this work was cofunded by the French environmental and energy agency ADEME through the project 16 10 C 0003 IODA

