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Research highlights:  

• The influence of camera viewing angles’ deviation on nearshore video monitoring is 

explored 

• The environmental parameters controlling camera movements at the video station of Sète, 

SE France, are identified 

• Camera viewing angle deviations are simulated using an empirical model significantly 

reducing the geo-rectification errors  

 

Abstract: 

Video monitoring the nearshore can provide high-frequency remotely-sensed optical information from 

which morphological changes and hydrodynamic data can be derived. Although overlooked in most of the 

studies, it is acknowledged that camera viewing angles can substantially vary in time for a variety of 

reasons, reducing consistently data accuracy. This paper aims to identify the primary environmental 

parameters controlling camera shifts at the video monitoring station of Sète (SE France) and develops an 

empirical model to routinely reduce these deviations. Our model simulates camera movements with an 

excellent skill (BSS = 0.87) and shows that camera viewing angles’ deviation is primarily controlled by 

the position of the sun during sunny days, making it predictable. This study opens new perspective to 

routinely improve camera geometry of video monitoring systems. 
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1. Introduction 1 

Appropriately monitoring the nearshore is challenging given that morphological changes cover a wide 2 

range of spatial and temporal scales (Larson and Kraus, 1994). Traditional topo-bathymetric 3 

measurements are not compatible with this wide range of scales, mostly because of the cost and the 4 

practical difficulties to survey the nearshore (Lippmann and Smith, 2009), particularly in the surf zone. 5 

Instead, video monitoring can provide high-frequency remotely-sensed optical information from which 6 

morphological changes and hydrodynamic data can be derived. Shoreline-sandbar geometry as well as rip 7 

channel positions have long been measured with reasonable accuracy using video stations (Alexander and 8 

Holman, 2004; Almar et al., 2010; Gallop et al., 2011; Holman et al., 2006; Lippmann and Holman, 1989; 9 

Ruessink et al., 2009). By combining the video-measured shoreline position and elevation, video-based 10 

techniques show also good accuracy in estimating the complete intertidal bathymetry for steep beaches 11 

(Aarninkhof et al., 2003; Osorio et al., 2012). 12 

A more recently used product from video monitoring is pixel time series (Holman and Stanley, 2007), 13 

which are now commonly exploited in coastal research for diverse purposes. Pixel time series usually 14 

consists in a 17-mn temporal acquisition of high-frequency (2Hz) measured pixel intensities providing 15 

more information none easily measurable in-situ so far. Recent developments and analysis of these time-16 

series give access to multiple parameters still hard to obtain on the field. Such improvements concern 17 

diverse coastal research applications such as optically measuring the runup (Holland et al., 1995; Holman 18 

and Guza, 1984), the wave directional spectrum (Lippmann and Holman, 1991), the longshore currents in 19 

the surf zone (Chickadel, 2003), the breaking wave height (Almar et al., 2012) or the nearshore subtidal 20 

bathymetry (Holman et al., 2013). These measurement techniques do not require sampling and storage of 21 

the entire image but just the pixel intensities at a number of individual locations, or along cross-shore or 22 

alongshore transects. 23 

To provide validation of such video data and to further infer time series, each (u, v) pixel coordinate 24 

must be transformed into (x, y, z) real world coordinates (Figure 1a, b). To resolve the equation, one of the 25 



most used models is the pinhole model (Faugeras, 1993; Hartley and Zisserman, 2004; Heikkila and 26 

Silven, 1997; Holland et al., 1997; Pérez Muñoz et al., 2013), whose calibration is performed by using 27 

camera locations (x0, y0, z0), camera intrinsic (details about the sensor, the camera view field and the 28 

distortion parameters of the lens) and extrinsic (tilt, roll or azimuth angle) parameters. These last three 29 

geometry parameters correspond to the viewing angle of the camera (Figure 2c) and can be computed by a 30 

photogrammetric transformation using a number of ground control points of which the real world 31 

coordinates have been accurately measured (Holland et al., 1997). 32 

Although overlooked in most of the studies involving video-derived data, it is acknowledged that 33 

camera viewing angles can substantially vary in time for a variety of reasons including thermal and wind 34 

effects, especially on tall towers (Holman and Stanley, 2007). A relatively small shift in tilt and/or roll on 35 

camera orientation can lead to shift in a few pixels and, in turn, in real world coordinates on the order 36 

meters to tens of meters, or even more depending on the distance of the area of interest from the camera 37 

location. Figures 1a and 1c provide an extreme example at the video monitoring station of Sète, SE France 38 

(Bouvier et al., 2017), with a 0.43 ° tilt and a 0.15 ° roll deviation between two images resulting in a large 39 

shift in the location, size and shape of the sampling area (colored box on Figure 1d). This error reaches 40 

130 m in the longshore and 20 m in the cross-shore direction for box 2 located approximately 600 m from 41 

the camera.  42 

Such movements are likely to occur for a certain number of outdoor installations (Holman and Stanley, 43 

2007; Pearre and Puleo, 2009; Radermacher et al., 2018; Vousdoukas et al., 2011). Thereby, each image 44 

requires a specific geometry solution (tilt, roll and azimuth value) calculated after acquisition assuming 45 

camera location and intrinsic parameters remain the same.  46 

An accurate geometry solution for one image is usually obtained detecting a certain number of fixed 47 

salient points (ground control points) on the camera fields. Although tedious, this systematic geometry 48 

rectification is often efficient in providing accurately rectified images. Consequently, the frequency of 49 

accurate geo-rectified images usable for nearshore monitoring often reduce drastically (often more than 50 

90 %) depending of the time allowed for the geo-rectification process. Despite attempts to stabilize the 51 



camera-mounting structure at certain video monitoring stations (Pearre and Puleo, 2009), camera 52 

movement remain significant constraining the user to elaborate a rectification procedure. Previous efforts 53 

to automatically compensate camera movements automatically post-acquisition have been often realized 54 

using feature matching (Pearre and Puleo, 2009; Vousdoukas et al., 2011). Such techniques systematically 55 

apply a procedure consisting in identifying the deviation of a region of interest, providing the camera 56 

viewing angle deviations and then an automatic geo-rectification. Such methods have been further 57 

developed with the increased use of drones and became more computationally efficient (Colomina and 58 

Molina, 2014; Turner et al., 2016). Such approach can correct high (e.g. induced by the wind) and low 59 

frequency (e.g. thermal expansion) camera field movement. However, such a technique requires the 60 

presence of fixed salient points (e.g. building, road) or any fixed region with high contrast in the camera 61 

view field. If the camera view field essentially consists in the beach and the ocean with no fixed points, 62 

which is common in coastal monitoring, camera displacement rectification is not possible and video data 63 

are typically taken at face value. The same occurs for scheduled pixel time series acquisitions along a 64 

point, a transect or for a grid which can be used, for instance, for depth inversion purposes (Holman et al., 65 

2013). The solution, which would consist in recording each snapshot on which feature matching and geo-66 

rectification would be performed (pending salient fixed points are available), is computationally very 67 

expensive and impossible for operational purposes. Therefore, it is crucial to define which environmental 68 

variables control the camera movements to further develop generic methods for rectification procedures 69 

using time-varying geometry. 70 

This paper aims to identify the primary environmental parameters controlling camera shifts of the 71 

Argus station of Sète (SE France) and to propose an empirical model to routinely reduce these deviations 72 

after acquisition or even before a scheduled pixel sampling. After a brief description of the video 73 

monitoring system of Sète (section 2), the data and method used to unravel the cause of the camera drifts 74 

are given in section 3. Results (section 4) are discussed in section 5 before conclusions are drawn in 75 

section 6. We show that camera viewing angles deviation is driven by thermal distortion, which make 76 

predictable these camera shifts and opens to perspective to routinely improve camera geometry of video 77 



monitoring systems. 78 

 79 

2. Field site  80 

The Lido of Sète, SE France, is a narrow and relatively straight sandy barrier separating the Thau 81 

lagoon from the Mediterranean Sea in the northern part of the Gulf of Lion (Figure 2a). A large beach 82 

management program was developed to mitigate chronic erosion involving the deployment of a 1-km long 83 

submerged breakwater. A permanent video monitoring system was installed in April 2011 to study 84 

morphological evolution following this coastal management program (Bouvier et al., 2017). 85 

The video monitoring system of Sète consists in 8 cameras mounted on two 20-m high and 2.5-km 86 

spaced reinforced concrete mast (Figure 2d). This study focusses on Mast 2, which provides a complete 87 

data time series and offers a 180 ° view of the beach with 5 cameras (C1 to C5, Figure 2b) oriented to 88 

obtain a panoramic view of the coast (Figure 2d). Cameras 1 and 5 correspond to longshore oriented 89 

cameras with the highest azimuth angle with respect to shore normal (|��|> 70 ° in Table 1), while camera 90 

2, 3 and 4 are pointing the sea in a more cross-shore direction (|��|< 45 ° in Table 1). Cameras are 91 

mounted at different positions and heights on the mast (x0, y0 and z0 in Table 1); tilt and roll angles are 92 

very different depending on cameras orientation. 93 

 94 

3. Materials and methods 95 

3.1. Camera geometry data 96 

For approximatively 5 years (from April 2011 to April 2016), manual geometry solutions (tilt, roll and 97 

azimuth angle) have been determined at the Sète station. Geometry solutions have been tediously obtained 98 

using Argus toolbox (Holland et al., 1997) by clicking a certain number of fixed salient points on a large 99 

amount of images from each of the 5 cameras. Geometry images have been processed approximatively 100 

every 15 days and during storms at various times of the day for each camera to extract 101 

shoreline/sandbar(s) position for other studies (Balouin et al., 2013; Bouvier et al., 2017). Over 2000 102 

geometry solutions have been computed, that is, approximately 400 for each camera. The accuracy of such 103 



a technique is difficult to generalize but Holman and Stanley (Holman and Stanley, 2007) estimated a ± 2 104 

pixel accuracy for a wide-angle camera in a well-managed system. However, considering the large amount 105 

of data at Sète and the fact that different operators performed the manual geometry solutions throughout 106 

the years, we estimate that the accuracy of our geometry database is approximatively ± 5 pixels. Taking 107 

into account the longshore resolution of the system (dy = 3 m at 500 m from the mast), we estimate the 108 

mean accuracy of the geometry parameters (∆�) to be approximately ± 0.1 ° for our entire database. 109 

Figure 3 shows the evolution of the geometry solutions obtained for camera C5. Even if the confidence 110 

limit of each solution is within ± 0.1 °, large tilt and roll variations (up to 1°) are observed. Only the 111 

azimuth angle remains relatively constant and will therefore be considered hereafter as a non-variant 112 

geometry parameter. It is important to note that the time variability in geometry parameters can consists in 113 

abrupt changes (near august 2015, thick black cross in Figure 3) due to an occasional update of the basic 114 

geometry solution induced during manual intervention on the camera system. Tilt and roll anomalies were 115 

computed for each camera by subtracting the average tilt or roll solution (red curve in Figure 3) until a 116 

jump occurs and that a new averaged solution appeared. 117 

Tilt and roll anomaly will be given in degrees as real-world coordinate errors vary spatially. Camera 118 

deviations anomaly systematically induces an error in pixels real-world location potentially reaching few 119 

hundred meters far from the camera, depending on the grazing angle and lens properties. The induced 120 

error (���) can be approximated using classical trigonometry formulation: 121 

tan����� =  ������
����� − ������

� , (1)

with ��� (°) the camera deviation anomaly, z0 (m) the height at which the video system is installed and L 122 

(m) the horizontal distance of the sampling area from the camera. Figure 4 provides the estimated geo-123 

rectification induced error according to the distance from the camera and camera viewing angle deviation. 124 

Depending on camera viewing angle anomaly, the estimated geo-rectification error can reach dramatic 125 

values (Err>50 m for |α_Err |>0.25°) when the camera is located approximately 200 m from the sampling 126 

area, which is a common video monitoring distance. 127 



 128 

3.2. Environmental condition 129 

3.2.1. Meteorological data 130 

Specific environmental conditions are assumed to control changes in camera orientation. To verify this 131 

hypothesis air temperature (������) and wind condition (velocity and direction) measured every hour by a 132 

Meteo France station located a few kilometers away from the video station were collected. The 5-year 133 

time series of the longshore and cross-shore wind components (�� and �  respectively) were computed 134 

hourly. Nebulosity (!�����) which is a proxy of the percentage of the cloud cover was observed every 3 135 

hours as an integer variable 0 (no cloud) to 8 (cloudy). An observer assessed the description of the state of 136 

the sky according to the criteria most frequently adopted. Nebulosity is then linearly interpolated every 137 

hour. Using these parameters, each camera geometry data (tilt and roll) was linked to a set of 138 

environmental data. 139 

 140 

3.2.2. Solar position 141 

Structure deformation can occur as a result of thermal dilatation caused by solar absorption (Assem, 142 

2011). To assess these effects, solar position was used as a proxy of solar absorption as it indicates the 143 

exact position of the sun (Figure 5). Solar azimuth and elevation angle (ɸ# and # respectively) were 144 

computed for each camera geometry data according to (Reda and Andreas, 2004): 145 

ɸ# = ��$%&'2 ) #*+,-
 �#,-.#*+∅0�1+2-. �#∅3, (2)

# = 90 − ∅, (3)

with the local hour angle (78), sun declination (9′) and zenith angle ∅ observed from a particular point on 146 

the Earth surface (here the head of the pole where cameras are mounted). The date and the local 147 

coordinates (longitude, latitude and elevation) are needed. Solar azimuth angle varies from -180 ° to 180 °, 148 

and is negative and positive when the sun is located eastward and westward, respectively. As is, the sun 149 

rises approximatively to the east (ɸ ~ - 90 °) and sets to the west (ɸ ~ + 90 °) passing through the south 150 

(ɸ = 0 °). The solar elevation angle is the altitude of the sun, that is, the angle between the horizon and the 151 



center of the sun's disc. 152 

 153 

3.3. Camera deviation models 154 

3.3.1. Models construction 155 

Given that camera geometry data is highly variable in time, identifying the preferred timescale(s) of 156 

geometry changes is complex. Despite the extensive data set used for training, the application of Artificial 157 

Neuronal Network (ANNs) was disregarded. The two primary reasons are that ANNs hamper the physical 158 

interpretation of the results and they typically provide unreliable prediction beyond the range represented 159 

by the training dataset. Robust methods such as based on Principal Component Analysis were also 160 

disregarded as they would lead to the loss of any cause-effect relationship between each variable. On the 161 

contrary, a 3rd degree polynomial regression model provides a unique value of regression coefficients, a 162 

moderate flexibility of shape, interpretable results and makes possible interactions between dependent 163 

variables. Such models were computed with multiple explanatory parameters (see eq. 4 and 5 below) and 164 

processed separately as a function of the observed camera tilt and roll angle deviation (�<=#>?  and @<=#>?  165 

respectively). A11� and A21� correspond to the tilt and roll polynomial regression equations with C11� and 166 

C21� the associated error of the least square method. The index Az indicates the average azimuth angle of 167 

each camera with respect to shore normal: 168 

�<=#>? = A11� �ɸ#, #, ������ , !����� , � , ��� + C11�, (4)

@<=#>? = A21� �ɸ#, #, ������ , !����� , � , ��� + C21�, (5)

To objectively assess model skill, linear squared-correlation (R²) and root mean square error (RMSE) 169 

between the observed (�<=#>?  or @<=#>?) and simulated (�E*�>? or @E*�>?) camera deviations have been 170 

computed. Then to consider measurement error (∆� in section 3.1), the Brier Skill Score (BSS) has been 171 

computed for each model according to (Davidson et al., 2013). 172 

FGG = 1 − ∑IJKLMN>?0KOPQ>? J0∆KI
R

∑�KLMN>?0K=�R , (6)

with �<=#>?  and �E*�>? the angle deviation observed and simulated respectively. This method compares 173 



the model residuals with a suitable baseline (�S). The choice of baseline has been fixed to zero as the 174 

variable measured is an anomaly. Positive BSS indicates a significant improvement relative to the base 175 

line with a value in excess of 0.0, 0.3, 0.6, 0.8 typically described respectively as ‘poor’, ‘fair’, ‘good’ and 176 

‘excellent’ (Davidson et al., 2013). 177 

 178 

3.3.2. Models’ application and sensitivity 179 

To assess the performance of our method, tilt and roll models have been run for camera C1 (second 180 

worst model skill; see section 4.1) throughout the 22th of June 2013 (hindcast) and during a one-year non-181 

trained period starting on April 2016 (forecast). During that period, tilt and roll simulations were 182 

compared with more than 50 manually computed geometry solutions (more details in section 3.1). 183 

Finally, in order to determine equations’ sensitivity on each of the 6 explanatory variables (A11� and 184 

A21�), each model has been processed on most possible cases. To reduce the computational time, each 185 

variable has been decomposed into (10 by 1) vectors, resulting in 105 simulations for one variable tested. 186 

Each vector boundary was defined by the percentile 10 and 90 of the variable intensity observed along the 187 

study period. Model sensitivity was estimated for each equation A11� and A21� separately by averaging 188 

the absolute value of the simulated tilt and roll anomaly along the dynamic variable. 189 

 190 

4. Results 191 

4.1. Models performance 192 

Figure 6 shows the fit of the tilt and roll anomaly models for each of the 5 cameras (�<=#>?  and @<=#>?  193 

versus �E*�>? and @E*�>?). Camera viewing angle deviation models were found to significantly reproduce 194 

the tilt and roll variability along the study period (from April 2011 to April 2016). Brier Skill Score (BSS) 195 

indicates that models were rated as ‘excellent’ (BSS = 0.87). Root mean square error (RMSE) is relatively 196 

small compared to the range of variations simulated (≈ 60% of the observed tilt and roll anomalies is 197 

greater than the 0.12° RMSE). Furthermore, RMSE remains slightly higher than the estimated ± 0.1° 198 



geometry accuracy (dashed lines in Figure 6) which suggests a good performance of the polynomial 199 

regression models. Coefficient of determination (R²) reveals that our method explains on average 71% of 200 

the camera viewing angle deviation variability.  201 

Details of the polynomial regression are provided for each models in Table 2. Statistical measurement 202 

of the tilt and roll models have been realized for each camera separately. Results indicate that model 203 

quality remains homogenous except for the roll anomaly on camera 5 (A20TU). Even if BSS score is 204 

relatively high (0.74), the coefficient of determination (R²) is weak and RMSE remains high (0.19°). It is 205 

suspected that the inaccuracy of the A20TU model is highly related to the quality of the roll angle 206 

observations. Roll angle was relatively difficult to obtain precisely for this camera because of the practical 207 

difficulty to identify ground control points resulting in errors on the roll anomaly values and the 208 

inaccuracy of the A20TU model. 209 

 210 

4.2. Model application 211 

To assess the performance of our method, tilt and roll models have been run throughout the 22th of 212 

June 2013 and during a one-year non-trained period starting on April 2016. We choose for this test the 213 

second worst model skill (A1V� and A2V�) used to reproduce the camera C1 variability (see Table 2).  214 

 215 

4.2.1. One-day application 216 

The 22th of June 2013 has been presented in the introduction as a day with high camera tilt and roll 217 

variability (Figure 1). Inputs of the model are presented in Figures 7a, b and c. Elevation and azimuth 218 

angle of the sun varied respectively from 0 to 70 ° and -150 to 150 ° during the day. Nebulosity was very 219 

low (no clouds) and remained nearly the same while air temperature slightly increased until 15h00 UTC. 220 

The coast was exposed to a reasonably constant offshore wind from NW during the entire day (-3.83 m/s 221 

and -1.44 m/s on average for the cross-shore and longshore component respectively). 222 

Tilt and roll anomaly varied approximately from -0.2° to 0.4° (Figures 7d and e). Even if direct 223 

correlation with model inputs (Figure 7a-c) is readily difficult to identify, both models reproduce the 224 



observed camera viewing angle anomaly with fair accuracy. Considering the estimated geometry 225 

accuracy, root mean square error is low (RMSE < 0.1°) and coefficient of determination is good (R² > 226 

0.76) for both models. We suspect that the deviations from the observed roll anomaly could be due to an 227 

inaccurate ground control point manual detection when processing the camera geometry (@<=#WX in Figure 228 

7e). 229 

 230 

4.2.2. One-year application 231 

Even if the first objective of the model presented was primarily more to better identify the primary 232 

environmental parameters controlling camera shifts, a comparison between manually resolved camera 233 

viewing angle deviations and model estimations is given Figure 8. The model was applied to a one-year 234 

non-trained period for camera 1 providing the estimated camera viewing angle deviation. The comparison 235 

between observed and simulated tilt and roll anomalies (Figure 8d and e) shows less accuracy than in 236 

Figure 7 with a root-mean square error reaching 0.15 ° in roll anomaly. However, solutions determined by 237 

the model significantly reduces the camera viewing angle anomaly and shows a good skill in prediction 238 

(BSS > 0.8). A conversion of the angle anomaly (°) into a real-coordinate error (m) provides additional 239 

into model improvement. For a 20-m high positioned camera, a 0.4° improvement of the camera viewing 240 

angle anomaly leads to a 100 m error correction in pixel position at a distance of 500 m from the camera 241 

(Figure 4).  242 

 243 

4.3. Model sensitivity 244 

To determine model sensitivity to each variable, each model has been run on all possible cases (section 245 

3.3.2). The evolution of the simulated averaged absolute deviations (Y�EZ�[\Y���������� and Y@EZ�[\Y����������) are presented 246 

in Figure 9 for each model (different colors) as a function of variable evolution (different panels). When 247 

varying the solar azimuth angle or the nebulosity, the averaged deviation anomalies were strongly affected 248 

for all models (Figure 9a and c). These results suggest an important sensitivity of all models to both 249 



variables. The value of the camera viewing angle deviation anomaly shows a dependency to the solar 250 

azimuth angle (ɸ#) depending on camera orientation (Az) on the mast (Figure 9a). Moreover, with low 251 

nebulosity (no clouds), we observe a large averaged deviation value for all models, and the contrary with 252 

intense nebulosity (Figure 9c). It is therefore deduced that low cloud cover is important to observe large 253 

tilt and roll variation. This behavior suggests that camera viewing angle deviations were linked to the 254 

deformation of the mast by solar absorption, which will be discussed in section 5. In contrast, the 255 

simulated deviations were less affected when varying other environmental parameters (Figures 9b, d, e, f). 256 

To quantify the influence of each variable for all models, standard deviation of these curves have been 257 

computed. Results were averaged over all models and finally normalized across each variable. This 258 

parameter is presented as a sensitivity index (G]1�) in Table 3. Even if wind forcing is sometimes blamed 259 

for being responsible for camera deviation (Rutten et al., 2017; Vousdoukas et al., 2011), in the case of 260 

Sète, model sensitivity to longshore or cross-shore wind components remains very low (G]1� < 0.2 for 261 

both variables in Table 3). Air temperature and solar elevation angle do not affect significantly camera 262 

deviations neither with a G]1� of 0.1 and 0.16, respectively. 263 

 264 

5. Discussion 265 

Until recently, camera movements in fixed platform imagery for coastal application were largely 266 

ignored. Holman and Stanley (2007) introduced this difficulty highlighting that camera viewing angles 267 

regularly shift slightly for a variety of reasons including primarily thermal and wind effects, especially on 268 

tall towers. At the video monitoring system of Duck, North Carolina, camera viewing angle deviations can 269 

be described as a diurnal signal of about 2-pixel range, resulting in an approximately 30-m longshore drift, 270 

1000 m away from the camera according to the pixel resolution of the video station. These deviations 271 

were only observed during sunny days, similar to our observations at Sète. Pear and Puleo (2009) also 272 

reported deviations of the video monitoring system at Rehoboth Beach, Delaware leading to important 273 

errors on the plan view image (estimated 500-m shift 2300 m from the camera). Similarly, Vousdoukas et 274 

al. (2011) observed cameras movement at the video system of Algarve, South Portugal introducing 275 



significant geo-rectification errors. 276 

 Each time, the automatic correction methods consisted in determining the cameras viewing angle 277 

deviation using a template matching method. Small, high-contrast regions (templates) from an original 278 

base image are matched against corresponding locations in subsequent images, providing the missing 279 

pinhole model extrinsic parameters (tilt, roll and azimuth). Such a technique requires a region of interest 280 

selection in the camera view field consisting of fixed objects with distinct contrast. However, for many 281 

coastal areas, this kind of pattern is not easily identified from camera images. Moreover, for scheduled 282 

pixel time series acquisitions, users need to anticipate the camera shift to produce a well-referenced pixel 283 

acquisition. Camera movements will not only induce the displacement of the area sampled, but also a 284 

modification of the acquired pixel grid resolution. If not corrected, significant errors are introduced when 285 

analyzing remotely-sensed hydrodynamic data such as longshore currents, run-up or wave celerity. At the 286 

Sand Motor, a mega-scale beach nourishment in the Netherlands, Radermacher et al. (2018) observed 287 

important errors in the remotely-sensed bathymetry depending on camera graze angles. 288 

Therefore, it is crucial to define which environmental variables control those camera movements in 289 

order to minimize these deviations for futures video system deployment. This will also help designing 290 

appropriate data collection plan for which no deviation is suspected, which opens new perspectives to 291 

develop generic methods for rectification procedures using time-varying geometry (Bergsma et al., 2014). 292 

While the robustness of the polynomial regression inputs was questionable (not only measurement 293 

accuracy but also the choice to simulate camera deviations as an instantaneous response to environmental 294 

forcing), high skill was found for all models. Sensitivity analysis highlighted that all models are primarily 295 

controlled by the solar azimuth angle and the nebulosity. While low cloud cover has been clearly 296 

identified to systematically affect camera movements, processes connecting camera shifts with solar 297 

azimuth angle remains misunderstood. 298 

To fully understand which processes induce camera deviations, tilt and roll anomaly simulations 299 

(Figure 10a and b respectively) are presented as a function of solar azimuth angle (ɸ#) for each camera 300 

orientation (Az) while others variables have been fixed (see the legend in Figure 10). The maximum 301 



anomaly for C5 up to C1 occurs for progressively increasing solar azimuth angle. It is important to note 302 

that cameras C1 and C5, which are looking towards opposite direction (ENE and WSW, respectively), 303 

show very similar but out of phase deviations. Moreover, tilt and roll deviations patterns are clearly 304 

connected. For instance, a tilt deviation on a southward-looking camera (C3), is related with a roll 305 

deviation on an eastward- or westward-looking camera (C1 and C5). These results show that camera 306 

deviations are controlled by a local thermal deformation of the pole on which they are mounted. This 307 

process is induced by solar absorption of the face of the structure exposed to the sun leading to its 308 

dilatation. From structural mechanics, it is well known that temperature gradient across any cross section 309 

of a determined element (in this case the mast) produces changes of its curvature (Kassimali and 310 

Garcilazo, 2010). According to the theory, the mast will arc in the same direction of the temperature 311 

gradient, here from the enlighten face of the mast toward the opposite side. Instead of empirically 312 

modelling camera movements as if they were independent, one solution could be to determine directly the 313 

deformation of the pole where the camera are mounted depending of the environmental parameters, 314 

providing the camera viewing angle deviation for each camera. Technically, the solution is powerful but 315 

difficult to implement as it is highly influenced by the shape of the structure and the specific camera 316 

mount. 317 

A major advantage of the model described in this study is to assess a complete time series of such 318 

camera movements at high frequency. While one specific day has been highlighted (section 4.2.1), model 319 

outputs also showed a certain seasonality. Lower anomalies amplitude is generally observed during the 320 

winter period (pinkish red dots in Figure 8d and e). This behavior could be explained by the cloud cover, 321 

generally higher in winter, which reduces sun action on the pole, resulting in lower changes in camera 322 

viewing angle. Although the model described in this study reproduced correctly the camera viewing angle 323 

deviation observed at Sète during the last 5 years, some errors on the prediction can occur when the 324 

environmental input data is not (or poorly) represented (very low temperature, high wind forces) during 325 

the model construction phase (polynomial regression). It is therefore anticipated that model skill increases 326 

with increasing amount, quality and range of training environmental data. 327 



 328 

Conclusion 329 

We showed that camera viewing angle deviations can induce large errors, with for instance more than 330 

200 m and 20 m during a day in the longshore and cross-shore direction, respectively, at the video 331 

monitoring station of Sète. This correction remains sometimes difficult for seaward-looking camera and 332 

pixel time series because of the practical difficulty to identify ground control points. At the video 333 

monitoring station of Sète, cameras viewing angle deviations are controlled by thermal deformation of the 334 

pole where they are mounted. Deviation magnitude depends mainly on cloud cover, with a daily evolution 335 

due to camera orientation and solar azimuth angle. These deviations have been simulated using a 336 

polynomial regression method with good accuracy allowing a significant reduction of the geo-rectification 337 

errors. This method is applicable to other field sites subject to camera viewing angle anomaly. This study 338 

opens new perspectives in video monitoring, particularly to routinely improve camera geometry of video 339 

monitoring systems and to further derive higher quality remotely sensed hydrodynamic and morphological 340 

products.  341 
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Figure 1. a) Argus images captured on June 22, 2013 at 10h00 UTC at the beach of Sète (France). b) 

Associated rectified image with location of two schematic sampling areas (green boxes). Panels c) and d) 

highlight the impact of camera viewing angle deviation with an image captured a few hours after (at 

15h00 UTC) by the same camera. 

 

Figure 2. a) Study site with the location of the video monitoring area. Photography of the video 

monitoring system deployed at the beach of Sète. Geometry parameters (tilt, roll and azimuth) required for 

image rectification. Rectified plan view timex images (23 Oct 2011) with indication of the camera fields. 

 



Table 1. Original geometry parameters for cameras mounted on mast 2 at the station of Sète. 

N° Camera Tilt [°] Roll [°] �� [°] x0 [m] y0 [m] z0 [m] 

1 78.41 -1.16 79.65 -0.05 0.25 20.42 
2 75.20 -2.33 43.90 0.01 0.24 20.10 
3 72.87 -3.58 -1.04 0.05 0.31 19.76 
4 74.47 1.50 -38.13 -0.01 0.72 20.11 
5 80.62 -0.51 -72.27 -0.02 0.75 20.41 

 

 

Figure 3. Time series of geometry solutions for the a) tilt, b) roll and c) azimuth angle of camera C5 at the 

video monitoring station of Sète. The jump indicated by a black cross corresponds to a slight reset of 

camera aim. Red line represents the average solution for a non-reset period. 

 

Figure 4. Estimated geo-rectification errors (Err) depending of the distance from camera to monitored 

area (L) and of the viewing angle deviation (αErr) for a camera mounted at a 20-m high. 



 

Figure 5. The position of the Sun in the sky is a function of both the time and the geographic location of 

observation on Earth's surface.  

 

Figure 6. Model predictions (^_`abc and d_`abc) versus observations (^efgbc and defgbc). The solid line 

is the linear function h�i� = j. Dashed lines represent the estimated geometry accuracy interval h�i� =
j ± k. l. 

Table 2. Results of the 3rd degree polynomial regression models. 

 mlnc  monc 

N° Camera R2 RMSE [°] BSS  R2 RMSE [°] BSS 

C1 (az = 80°) 0.74 0.08 0.84  0.61 0.12 0.84 

C2 (az = 44°) 0.80 0.07 0.86  0.78 0.11 0.90 

C3 (az = -1°) 0.77 0.09 0.88  0.76 0.12 0.92 

C4 (az = -38°) 0.84 0.08 0.90  0.66 0.14 0.88 

C5 (az = -72°) 0.77 0.10 0.91  0.38 0.19 0.74 



 

 

Figure 7. Tilt and roll anomaly forecast for camera 1 during the 22th of June 2013. Panels a), b) and c) 

present the model inputs with respectively, the position of the sun (ɸg, pg), weather condition (Tmeteo, 

Nmeteo) and wind velocity (Vc, Vl). Panels d) and e) illustrate tilt and roll anomaly outputs (pinkish red 

dots) and also provide a comparison between modeled (red dots on thick curve) and observed (blue dots 

on thick curve) camera viewing angle deviation. 



 

Figure 8. Tilt and roll anomaly forecast for camera 1 during a one year period from April 2016. Panels a), 

b) and c) present the model inputs with respectively, the position of the sun (ɸg, pg), weather condition 

(Tmeteo, Nmeteo) and wind velocity (Vc, Vl). Panels d) and e) illustrate tilt and roll anomaly outputs (pinkish 

red dots) and also provide a comparison between modeled (red dots on thick curve) and observed (blue 

dots on thick curve) camera viewing angle deviation. 

 



 

Figure 9. a) to f) Model sensitivity to each variable. Simulated averaged absolute tilt (^_`aqr) and roll 

(d_`aqr) deviation computed along each environmental variable (different panel) and presented for each 

model (different colors). 

 

Table 3. Model sensitivity index _snt to all environmental variables.  

Variable ɸg # uavwvx ������ �  �� 
G]1� 0.58 0.16 0.76 0.10 0.16 0.13 

 

 

Figure 10. Simulation of the tilt and roll anomaly (^_`abc, d_`abc in a) and b), respectively) as a function 

of solar and camera azimuth angle (ɸg and Az respectively). For each simulation, nebulosity has been set 

to 1, solar elevation angle to 21°, temperature to 15°C and cross-shore/longshore wind component to 0 

m/s. 




