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A B S T R A C T

Video monitoring the nearshore can provide high-frequency remotely-sensed optical information from which
morphological changes and hydrodynamic data can be derived. Although overlooked in most of the studies, it is
acknowledged that camera viewing angles can substantially vary in time for a variety of reasons, reducing con-
sistently data accuracy. This paper aims to identify the primary environmental parameters controlling camera
shifts at the video monitoring station of Sète (SE France) and develops an empirical model to routinely reduce these
deviations. Our model simulates camera movements with an excellent skill (BSS=0.87) and shows that camera
viewing angles’ deviation is primarily controlled by the position of the sun during sunny days, making it pre-
dictable. This study opens new perspective to routinely improve camera geometry of video monitoring systems.

1. Introduction

Appropriately monitoring the nearshore is challenging given that
morphological changes cover a wide range of spatial and temporal scales
(Larson and Kraus, 1994). Traditional topo-bathymetric measurements are
not compatible with this wide range of scales, mostly because of the cost
and the practical difficulties to survey the nearshore (Lippmann and
Smith, 2009), particularly in the surf zone. Instead, video monitoring can
provide high-frequency remotely-sensed optical information from which
morphological changes and hydrodynamic data can be derived. Shoreline-
sandbar geometry as well as rip channel positions have long been mea-
sured with reasonable accuracy using video stations (Alexander and
Holman, 2004; Almar et al., 2010; Gallop et al., 2011; Holman et al., 2006;
Lippmann and Holman, 1989; Ruessink et al., 2009). By combining the
video-measured shoreline position and elevation, video-based techniques
show also good accuracy in estimating the complete intertidal bathymetry
for steep beaches (Aarninkhof et al., 2003; Osorio et al., 2012).

A more recently used product from video monitoring is pixel time
series (Holman and Stanley, 2007), which are now commonly exploited
in coastal research for diverse purposes. Pixel time series usually consists
in a 17-mn temporal acquisition of high-frequency (2 Hz) measured pixel
intensities providing more information none easily measurable in-situ so
far. Recent developments and analysis of these time-series give access to
multiple parameters still hard to obtain on the field. Such improvements

concern diverse coastal research applications such as optically measuring
the runup (Holland et al., 1995; Holman and Guza, 1984), the wave
directional spectrum (Lippmann and Holman, 1991), the longshore
currents in the surf zone (Chickadel, 2003), the breaking wave height
(Almar et al., 2012) or the nearshore subtidal bathymetry (Holman et al.,
2013). These measurement techniques do not require sampling and
storage of the entire image but just the pixel intensities at a number of
individual locations, or along cross-shore or alongshore transects.

To provide validation of such video data and to further infer time
series, each (u, v) pixel coordinate must be transformed into (x, y, z)
real world coordinates (Fig. 1a and b). To resolve the equation, one of
the most used models is the pinhole model (Faugeras, 1993; Hartley
and Zisserman, 2004; Heikkila and Silven, 1997; Holland et al., 1997;
Pérez Muñoz et al., 2013), whose calibration is performed by using
camera locations (x0, y0, z0), camera intrinsic (details about the sensor,
the camera view field and the distortion parameters of the lens) and
extrinsic (tilt, roll or azimuth angle) parameters. These last three geo-
metry parameters correspond to the viewing angle of the camera
(Fig. 2c) and can be computed by a photogrammetric transformation
using a number of ground control points of which the real world co-
ordinates have been accurately measured (Holland et al., 1997).

Although overlooked in most of the studies involving video-derived
data, it is acknowledged that camera viewing angles can substantially
vary in time for a variety of reasons including thermal and wind effects,
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especially on tall towers (Holman and Stanley, 2007). A relatively small
shift in tilt and/or roll on camera orientation can lead to shift in a few
pixels and, in turn, in real world coordinates on the order meters to tens
of meters, or even more depending on the distance of the area of in-
terest from the camera location. Fig. 1a and c provide an extreme ex-
ample at the video monitoring station of Sète, SE France (Bouvier et al.,
2017), with a 0.43° tilt and a 0.15° roll deviation between two images
resulting in a large shift in the location, size and shape of the sampling
area (colored box on Fig. 1d). This error reaches 130m in the longshore
and 20m in the cross-shore direction for box 2 located approximately
600m from the camera.

Such movements are likely to occur for a certain number of outdoor
installations (Holman and Stanley, 2007; Pearre and Puleo, 2009;
Radermacher et al., 2018; Vousdoukas et al., 2011). Thereby, each
image requires a specific geometry solution (tilt, roll and azimuth
value) calculated after acquisition assuming camera location and in-
trinsic parameters remain the same.

An accurate geometry solution for one image is usually obtained de-
tecting a certain number of fixed salient points (ground control points) on
the camera fields. Although tedious, this systematic geometry rectification
is often efficient in providing accurately rectified images. Consequently,
the frequency of accurate geo-rectified images usable for nearshore mon-
itoring often reduce drastically (often more than 90%) depending of the
time allowed for the geo-rectification process. Despite attempts to stabilize
the camera-mounting structure at certain video monitoring stations
(Pearre and Puleo, 2009), camera movement remain significant con-
straining the user to elaborate a rectification procedure. Previous efforts to

automatically compensate camera movements automatically post-acqui-
sition have been often realized using feature matching (Pearre and Puleo,
2009; Vousdoukas et al., 2011). Such techniques systematically apply a
procedure consisting in identifying the deviation of a region of interest,
providing the camera viewing angle deviations and then an automatic geo-
rectification. Such methods have been further developed with the in-
creased use of drones and became more computationally efficient
(Colomina and Molina, 2014; Turner et al., 2016). Such approach can
correct high (e.g. induced by the wind) and low frequency (e.g. thermal
expansion) camera field movement. However, such a technique requires
the presence of fixed salient points (e.g. building, road) or any fixed region
with high contrast in the camera view field. If the camera view field es-
sentially consists in the beach and the ocean with no fixed points, which is
common in coastal monitoring, camera displacement rectification is not
possible and video data are typically taken at face value. The same occurs
for scheduled pixel time series acquisitions along a point, a transect or for
a grid which can be used, for instance, for depth inversion purposes
(Holman et al., 2013). The solution, which would consist in recording each
snapshot on which feature matching and geo-rectification would be per-
formed (pending salient fixed points are available), is computationally
very expensive and impossible for operational purposes. Therefore, it is
crucial to define which environmental variables control the camera
movements to further develop generic methods for rectification proce-
dures using time-varying geometry.

This paper aims to identify the primary environmental parameters
controlling camera shifts of the Argus station of Sète (SE France) and to
propose an empirical model to routinely reduce these deviations after
acquisition or even before a scheduled pixel sampling. After a brief
description of the video monitoring system of Sète (section 2), the data
and method used to unravel the cause of the camera drifts are given in
section 3. Results (section 4) are discussed in section 5 before conclu-
sions are drawn in section 6. We show that camera viewing angles
deviation is driven by thermal distortion, which make predictable these
camera shifts and opens to perspective to routinely improve camera
geometry of video monitoring systems.

2. Field site

The Lido of Sète, SE France, is a narrow and relatively straight sandy
barrier separating the Thau lagoon from the Mediterranean Sea in the
northern part of the Gulf of Lion (Fig. 2a). A large beach management
program was developed to mitigate chronic erosion involving the deploy-
ment of a 1-km long submerged breakwater. A permanent video mon-
itoring system was installed in April 2011 to study morphological evolution
following this coastal management program (Bouvier et al., 2017).

The video monitoring system of Sète consists in 8 cameras mounted
on two 20-m high and 2.5-km spaced reinforced concrete mast
(Fig. 2d). This study focusses on Mast 2, which provides a complete data
time series and offers a 180° view of the beach with 5 cameras (C1 to
C5, Fig. 2b) oriented to obtain a panoramic view of the coast (Fig. 2d).
Cameras 1 and 5 correspond to longshore oriented cameras with the
highest azimuth angle with respect to shore normal (Az| |>70° in
Table 1), while camera 2, 3 and 4 are pointing the sea in a more cross-
shore direction (Az| |<45° in Table 1). Cameras are mounted at dif-
ferent positions and heights on the mast (x0, y0 and z0 in Table 1); tilt
and roll angles are very different depending on cameras orientation.

3. Materials and methods

3.1. Camera geometry data

For approximatively 5 years (from April 2011 to April 2016), manual
geometry solutions (tilt, roll and azimuth angle) have been determined at
the Sète station. Geometry solutions have been tediously obtained using
Argus toolbox (Holland et al., 1997) by clicking a certain number of fixed
salient points on a large amount of images from each of the 5 cameras.

Fig. 1. a) Argus images captured on June 22, 2013 at 10h00 UTC at the beach
of Sète (France). b) Associated rectified image with location of two schematic
sampling areas (green boxes). Panels c) and d) highlight the impact of camera
viewing angle deviation with an image captured a few hours after (at 15h00
UTC) by the same camera.

Fig. 2. a) Study site with the location of the video monitoring area.
Photography of the video monitoring system deployed at the beach of Sète.
Geometry parameters (tilt, roll and azimuth) required for image rectification.
Rectified plan view timex images (23 Oct 2011) with indication of the camera
fields.
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Geometry images have been processed approximatively every 15 days
and during storms at various times of the day for each camera to extract
shoreline/sandbar(s) position for other studies (Balouin et al., 2013;
Bouvier et al., 2017). Over 2000 geometry solutions have been com-
puted, that is, approximately 400 for each camera. The accuracy of such
a technique is difficult to generalize but Holman and Stanley (2007)
estimated a ± 2 pixel accuracy for a wide-angle camera in a well-man-
aged system. However, considering the large amount of data at Sète and
the fact that different operators performed the manual geometry solu-
tions throughout the years, we estimate that the accuracy of our geo-
metry database is approximatively ± 5 pixels. Taking into account the
longshore resolution of the system (dy=3mat 500m from the mast),
we estimate the mean accuracy of the geometry parameters ( D) to be
approximately ± 0.1° for our entire database.

Fig. 3 shows the evolution of the geometry solutions obtained for
camera C5. Even if the confidence limit of each solution is within ± 0.1°,
large tilt and roll variations (up to 1°) are observed. Only the azimuth
angle remains relatively constant and will therefore be considered here-
after as a non-variant geometry parameter. It is important to note that the
time variability in geometry parameters can consists in abrupt changes
(near august 2015, thick black cross in Fig. 3) due to an occasional update
of the basic geometry solution induced during manual intervention on the
camera system. Tilt and roll anomalies were computed for each camera by
subtracting the average tilt or roll solution (red curve in Fig. 3) until a
jump occurs and that a new averaged solution appeared.

Tilt and roll anomaly will be given in degrees as real-world co-
ordinate errors vary spatially. Camera deviations anomaly system-
atically induces an error in pixels real-world location potentially
reaching few hundred meters far from the camera, depending on the
grazing angle and lens properties. The induced error (Err) can be ap-
proximated using classical trigonometry formulation:

=
+
z

L Err
z
L

tan( ) 0 0 ,Err (1)

with Err (°) the camera deviation anomaly, z0 (m) the height at which
the video system is installed and L (m) the horizontal distance of the

sampling area from the camera. Fig. 4 provides the estimated geo-rec-
tification induced error according to the distance from the camera and
camera viewing angle deviation. Depending on camera viewing angle
anomaly, the estimated geo-rectification error can reach dramatic va-
lues (Err> 50m for |α_Err |> 0.25°) when the camera is located ap-
proximately 200m from the sampling area, which is a common video
monitoring distance.

3.2. Environmental condition

3.2.1. Meteorological data
Specific environmental conditions are assumed to control changes in

camera orientation. To verify this hypothesis air temperature (Tmeteo) and
wind condition (velocity and direction) measured every hour by a Meteo
France station located a few kilometers away from the video station were
collected. The 5-year time series of the longshore and cross-shore wind
components (Vl and Vc respectively) were computed hourly. Nebulosity
(Nmeteo) which is a proxy of the percentage of the cloud cover was ob-
served every 3 h as an integer variable 0 (no cloud) to 8 (cloudy). An
observer assessed the description of the state of the sky according to the
criteria most frequently adopted. Nebulosity is then linearly interpolated
every hour. Using these parameters, each camera geometry data (tilt and
roll) was linked to a set of environmental data.

3.2.2. Solar position
Structure deformation can occur as a result of thermal dilatation

caused by solar absorption (Assem, 2011). To assess these effects, solar
position was used as a proxy of solar absorption as it indicates the exact
position of the sun (Fig. 5). Solar azimuth and elevation angle ( s and s
respectively) were computed for each camera geometry data according
to (Reda and Andreas, 2004):

= Arctan sinH
cosH sin tan cos

2(
. .

),s (2)

= 90 ,s (3)

with the local hour angle (H '), sun declination ( ') and zenith angle
observed from a particular point on the Earth surface (here the head of
the pole where cameras are mounted). The date and the local co-
ordinates (longitude, latitude and elevation) are needed. Solar azimuth
angle varies from −180° to 180°, and is negative and positive when the
sun is located eastward and westward, respectively. As is, the sun rises
approximatively to the east ( - 90°) and sets to the west ( + 90°)

Table 1
Original geometry parameters for cameras mounted on mast 2 at the station of
Sète.

N° Camera Tilt [°] Roll [°] Az [°] x0 [m] y0 [m] z0 [m]

1 78.41 −1.16 79.65 −0.05 0.25 20.42
2 75.20 −2.33 43.90 0.01 0.24 20.10
3 72.87 −3.58 −1.04 0.05 0.31 19.76
4 74.47 1.50 −38.13 −0.01 0.72 20.11
5 80.62 −0.51 −72.27 −0.02 0.75 20.41

Fig. 3. Time series of geometry solutions for the a) tilt, b) roll and c) azimuth
angle of camera C5 at the video monitoring station of Sète. The jump indicated
by a black cross corresponds to a slight reset of camera aim. Red line represents
the average solution for a non-reset period.

Fig. 4. Estimated geo-rectification errors (Err) depending of the distance from
camera to monitored area (L) and of the viewing angle deviation (αErr) for a
camera mounted at a 20-m high.
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passing through the south ( = 0°). The solar elevation angle is the
altitude of the sun, that is, the angle between the horizon and the center
of the sun's disc.

3.3. Camera deviation models

3.3.1. Models construction
Given that camera geometry data is highly variable in time, iden-

tifying the preferred timescale(s) of geometry changes is complex.
Despite the extensive data set used for training, the application of
Artificial Neuronal Network (ANNs) was disregarded. The two primary
reasons are that ANNs hamper the physical interpretation of the results
and they typically provide unreliable prediction beyond the range re-
presented by the training dataset. Robust methods such as based on
Principal Component Analysis were also disregarded as they would lead
to the loss of any cause-effect relationship between each variable. On
the contrary, a 3rd degree polynomial regression model provides a
unique value of regression coefficients, a moderate flexibility of shape,
interpretable results and makes possible interactions between depen-
dent variables. Such models were computed with multiple explanatory
parameters (see eqs. (4) and (5) below) and processed separately as a
function of the observed camera tilt and roll angle deviation (TObsAz and
RObsAz respectively). F1az and F2az correspond to the tilt and roll poly-
nomial regression equations with 1az and 2az the associated error of
the least square method. The index Az indicates the average azimuth
angle of each camera with respect to shore normal:

= +T F T N V V1 ( , , , , , ) 1 ,Obs az s s meteo meteo c l azAz (4)

= +R F T N V V2 ( , , , , , ) 2Obs az s s meteo meteo c l azAz (5)

To objectively assess model skill, linear squared-correlation (R2)
and root mean square error (RMSE) between the observed (TObsAz or
RObsAz) and simulated (TSimAz or RSimAz) camera deviations have been
computed. Then to consider measurement error ( D in section 3.1), the
Brier Skill Score (BSS) has been computed for each model according to
(Davidson et al., 2013).

= ( )BSS
D D D

D Db
1

|| | |
,Obs Sim

Obs

2

2
Az Az

Az (6)

with DObsAz and DSimAz the angle deviation observed and simulated re-
spectively. This method compares the model residuals with a suitable
baseline (Db). The choice of baseline has been fixed to zero as the
variable measured is an anomaly. Positive BSS indicates a significant
improvement relative to the base line with a value in excess of 0.0, 0.3,
0.6, 0.8 typically described respectively as ‘poor’, ‘fair’, ‘good’ and
‘excellent’ (Davidson et al., 2013).

3.3.2. Models’ application and sensitivity
To assess the performance of our method, tilt and roll models have

been run for camera C1 (second worst model skill; see section 4.1)
throughout the 22nd of June 2013 (hindcast) and during a one-year
non-trained period starting on April 2016 (forecast). During that
period, tilt and roll simulations were compared with more than 50
manually computed geometry solutions (more details in section 3.1).

Finally, in order to determine equations’ sensitivity on each of the 6
explanatory variables (F1az and F2az), each model has been processed
on most possible cases. To reduce the computational time, each variable
has been decomposed into (10 by 1) vectors, resulting in 105 simula-
tions for one variable tested. Each vector boundary was defined by the
percentile 10 and 90 of the variable intensity observed along the study
period. Model sensitivity was estimated for each equation F1az and F2az
separately by averaging the absolute value of the simulated tilt and roll
anomaly along the dynamic variable.

4. Results

4.1. Models performance

Fig. 6 shows the fit of the tilt and roll anomaly models for each of the 5
cameras (TObsAz and RObsAz versus TSimAz and RSimAz). Camera viewing angle
deviation models were found to significantly reproduce the tilt and roll
variability along the study period (from April 2011 to April 2016). Brier
Skill Score (BSS) indicates that models were rated as ‘excellent’ (BSS=
0.87). Root mean square error (RMSE) is relatively small compared to the
range of variations simulated (≈60% of the observed tilt and roll
anomalies is greater than the 0.12° RMSE). Furthermore, RMSE remains
slightly higher than the estimated ± 0.1° geometry accuracy (dashed lines
in Fig. 6) which suggests a good performance of the polynomial regression
models. Coefficient of determination (R2) reveals that our method explains
on average 71% of the camera viewing angle deviation variability.

Details of the polynomial regression are provided for each models in
Table 2. Statistical measurement of the tilt and roll models have been
realized for each camera separately. Results indicate that model quality
remains homogenous except for the roll anomaly on camera 5 (F2 72).
Even if BSS score is relatively high (0.74), the coefficient of

Fig. 5. The position of the Sun in the sky is a function of both the time and the
geographic location of observation on Earth's surface.

Fig. 6. Model predictions (TSimAz and RSimAz) versus observations (TObsAz and
RObsAz). The solid line is the linear function =f x y( ) . Dashed lines represent the
estimated geometry accuracy interval = ±f x y( ) 0.1.
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determination (R2) is weak and RMSE remains high (0.19°). It is sus-
pected that the inaccuracy of the F2 72 model is highly related to the
quality of the roll angle observations. Roll angle was relatively difficult
to obtain precisely for this camera because of the practical difficulty to
identify ground control points resulting in errors on the roll anomaly
values and the inaccuracy of the F2 72 model.

4.2. Model application

To assess the performance of our method, tilt and roll models have
been run throughout the 22nd of June 2013 and during a one-year non-
trained period starting on April 2016. We choose for this test the second
worst model skill (F180 and F280) used to reproduce the camera C1
variability (see Table 2).

4.2.1. One-day application
The 22nd of June 2013 has been presented in the introduction as a

day with high camera tilt and roll variability (Fig. 1). Inputs of the
model are presented in Fig. 7a, b and c. Elevation and azimuth angle of
the sun varied respectively from 0 to 70° and −150 to 150° during the
day. Nebulosity was very low (no clouds) and remained nearly the same
while air temperature slightly increased until 15h00 UTC. The coast
was exposed to a reasonably constant offshore wind from NW during
the entire day (−3.83m/s and −1.44m/s on average for the cross-
shore and longshore component respectively).

Tilt and roll anomaly varied approximately from −0.2° to 0.4°
(Fig. 7d and e). Even if direct correlation with model inputs (Fig. 7a–c)
is readily difficult to identify, both models reproduce the observed
camera viewing angle anomaly with fair accuracy. Considering the
estimated geometry accuracy, root mean square error is low
(RMSE < 0.1°) and coefficient of determination is good (R2 > 0.76)
for both models. We suspect that the deviations from the observed roll
anomaly could be due to an inaccurate ground control point manual
detection when processing the camera geometry (RObs80 in Fig. 7e).

4.2.2. One-year application
Even if the first objective of the model presented was primarily more

to better identify the primary environmental parameters controlling
camera shifts, a comparison between manually resolved camera viewing
angle deviations and model estimations is given Fig. 8. The model was
applied to a one-year non-trained period for camera 1 providing the
estimated camera viewing angle deviation. The comparison between
observed and simulated tilt and roll anomalies (Fig. 8d and e) shows less
accuracy than in Fig. 7 with a root-mean square error reaching 0.15° in
roll anomaly. However, solutions determined by the model significantly
reduces the camera viewing angle anomaly and shows a good skill in
prediction (BSS > 0.8). A conversion of the angle anomaly (°) into a
real-coordinate error (m) provides additional into model improvement.
For a 20-m high positioned camera, a 0.4° improvement of the camera
viewing angle anomaly leads to a 100m error correction in pixel position
at a distance of 500m from the camera (Fig. 4).

4.3. Model sensitivity

To determine model sensitivity to each variable, each model has

been run on all possible cases (section 3.3.2). The evolution of the si-
mulated averaged absolute deviations (T| |SimAz and R| |SimAz ) are pre-
sented in Fig. 9 for each model (different colors) as a function of
variable evolution (different panels). When varying the solar azimuth
angle or the nebulosity, the averaged deviation anomalies were strongly
affected for all models (Fig. 9a and c). These results suggest an im-
portant sensitivity of all models to both variables. The value of the
camera viewing angle deviation anomaly shows a dependency to the
solar azimuth angle ( s) depending on camera orientation (Az) on the
mast (Fig. 9a). Moreover, with low nebulosity (no clouds), we observe a
large averaged deviation value for all models, and the contrary with
intense nebulosity (Fig. 9c). It is therefore deduced that low cloud cover
is important to observe large tilt and roll variation. This behavior
suggests that camera viewing angle deviations were linked to the de-
formation of the mast by solar absorption, which will be discussed in
section 5. In contrast, the simulated deviations were less affected when
varying other environmental parameters (Fig. 9b, d, e, f).

To quantify the influence of each variable for all models, standard
deviation of these curves have been computed. Results were averaged
over all models and finally normalized across each variable. This
parameter is presented as a sensitivity index (SVar) in Table 3. Even if
wind forcing is sometimes blamed for being responsible for camera
deviation (Rutten et al., 2017; Vousdoukas et al., 2011), in the case of
Sète, model sensitivity to longshore or cross-shore wind components
remains very low (SVar <0.2 for both variables in Table 3). Air tem-
perature and solar elevation angle do not affect significantly camera
deviations neither with a SVar of 0.1 and 0.16, respectively.

5. Discussion

Until recently, camera movements in fixed platform imagery for
coastal application were largely ignored. Holman and Stanley (2007)
introduced this difficulty highlighting that camera viewing angles
regularly shift slightly for a variety of reasons including primarily
thermal and wind effects, especially on tall towers. At the video mon-
itoring system of Duck, North Carolina, camera viewing angle devia-
tions can be described as a diurnal signal of about 2-pixel range, re-
sulting in an approximately 30-m longshore drift, 1 000m away from
the camera according to the pixel resolution of the video station. These
deviations were only observed during sunny days, similar to our ob-
servations at Sète. Pear and Puleo (2009) also reported deviations of the
video monitoring system at Rehoboth Beach, Delaware leading to im-
portant errors on the plan view image (estimated 500-m shift 2 300m
from the camera). Similarly, Vousdoukas et al. (2011) observed cam-
eras movement at the video system of Algarve, South Portugal in-
troducing significant geo-rectification errors.

Each time, the automatic correction methods consisted in de-
termining the cameras viewing angle deviation using a template
matching method. Small, high-contrast regions (templates) from an
original base image are matched against corresponding locations in
subsequent images, providing the missing pinhole model extrinsic
parameters (tilt, roll and azimuth). Such a technique requires a region
of interest selection in the camera view field consisting of fixed objects
with distinct contrast. However, for many coastal areas, this kind of
pattern is not easily identified from camera images. Moreover, for
scheduled pixel time series acquisitions, users need to anticipate the
camera shift to produce a well-referenced pixel acquisition. Camera
movements will not only induce the displacement of the area sampled,
but also a modification of the acquired pixel grid resolution. If not
corrected, significant errors are introduced when analyzing remotely-
sensed hydrodynamic data such as longshore currents, run-up or wave
celerity. At the Sand Motor, a mega-scale beach nourishment in the
Netherlands, Radermacher et al. (2018) observed important errors in
the remotely-sensed bathymetry depending on camera graze angles.

Therefore, it is crucial to define which environmental variables
control those camera movements in order to minimize these deviations

Table 2
Results of the 3rd degree polynomial regression models.

N° Camera F1az F2az
R2 RMSE [°] BSS R2 RMSE [°] BSS

C1 (az= 80°) 0.74 0.08 0.84 0.61 0.12 0.84
C2 (az= 44°) 0.80 0.07 0.86 0.78 0.11 0.90
C3 (az=−1°) 0.77 0.09 0.88 0.76 0.12 0.92
C4 (az=−38°) 0.84 0.08 0.90 0.66 0.14 0.88
C5 (az=−72°) 0.77 0.10 0.91 0.38 0.19 0.74
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Fig. 7. Tilt and roll anomaly forecast for camera 1 during the 22nd of June 2013. Panels a), b) and c) present the model inputs with respectively, the position of the
sun ( s, s), weather condition (Tmeteo, Nmeteo) and wind velocity (Vc, Vl). Panels d) and e) illustrate tilt and roll anomaly outputs (pinkish red dots) and also provide a
comparison between modeled (red dots on thick curve) and observed (blue dots on thick curve) camera viewing angle deviation.

Fig. 8. Tilt and roll anomaly forecast for camera 1 during a one year period from April 2016. Panels a), b) and c) present the model inputs with respectively, the
position of the sun ( s, s), weather condition (Tmeteo, Nmeteo) and wind velocity (Vc, Vl). Panels d) and e) illustrate tilt and roll anomaly outputs (pinkish red dots) and
also provide a comparison between modeled (red dots on thick curve) and observed (blue dots on thick curve) camera viewing angle deviation.
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for futures video system deployment. This will also help designing ap-
propriate data collection plan for which no deviation is suspected,
which opens new perspectives to develop generic methods for rectifi-
cation procedures using time-varying geometry (Bergsma et al., 2014).
While the robustness of the polynomial regression inputs was ques-
tionable (not only measurement accuracy but also the choice to simu-
late camera deviations as an instantaneous response to environmental
forcing), high skill was found for all models. Sensitivity analysis high-
lighted that all models are primarily controlled by the solar azimuth
angle and the nebulosity. While low cloud cover has been clearly
identified to systematically affect camera movements, processes con-
necting camera shifts with solar azimuth angle remains misunderstood.

To fully understand which processes induce camera deviations, tilt
and roll anomaly simulations (Fig. 10a and b respectively) are presented
as a function of solar azimuth angle ( s) for each camera orientation (Az)
while others variables have been fixed (see the legend in Fig. 10). The
maximum anomaly for C5 up to C1 occurs for progressively increasing
solar azimuth angle. It is important to note that cameras C1 and C5,
which are looking towards opposite direction (ENE and WSW, respec-
tively), show very similar but out of phase deviations. Moreover, tilt and
roll deviations patterns are clearly connected. For instance, a tilt devia-
tion on a southward-looking camera (C3), is related with a roll deviation
on an eastward- or westward-looking camera (C1 and C5). These results

show that camera deviations are controlled by a local thermal de-
formation of the pole on which they are mounted. This process is induced
by solar absorption of the face of the structure exposed to the sun leading
to its dilatation. From structural mechanics, it is well known that tem-
perature gradient across any cross section of a determined element (in
this case the mast) produces changes of its curvature (Kassimali and
Garcilazo, 2010). According to the theory, the mast will arc in the same
direction of the temperature gradient, here from the enlighten face of the
mast toward the opposite side. Instead of empirically modelling camera
movements as if they were independent, one solution could be to de-
termine directly the deformation of the pole where the camera are
mounted depending of the environmental parameters, providing the
camera viewing angle deviation for each camera. Technically, the solu-
tion is powerful but difficult to implement as it is highly influenced by
the shape of the structure and the specific camera mount.

A major advantage of the model described in this study is to assess a
complete time series of such camera movements at high frequency.
While one specific day has been highlighted (section 4.2.1), model
outputs also showed a certain seasonality. Lower anomalies amplitude
is generally observed during the winter period (pinkish red dots in
Fig. 8d and e). This behavior could be explained by the cloud cover,
generally higher in winter, which reduces sun action on the pole, re-
sulting in lower changes in camera viewing angle. Although the model
described in this study reproduced correctly the camera viewing angle
deviation observed at Sète during the last 5 years, some errors on the
prediction can occur when the environmental input data is not (or
poorly) represented (very low temperature, high wind forces) during
the model construction phase (polynomial regression). It is therefore
anticipated that model skill increases with increasing amount, quality
and range of training environmental data.

Fig. 9. a) to f) Model sensitivity to each variable. Simulated averaged absolute tilt (TSimAz) and roll (RSimAz) deviation computed along each environmental variable
(different panel) and presented for each model (different colors).

Table 3
Model sensitivity index SVar to all environmental variables.

Variable s s Nmeteo Tmeteo Vc Vl

SVar 0.58 0.16 0.76 0.10 0.16 0.13

Fig. 10. Simulation of the tilt and roll anomaly (TSimAz, RSimAz in a) and b), respectively) as a function of solar and camera azimuth angle ( s and Az respectively). For
each simulation, nebulosity has been set to 1, solar elevation angle to 21°, temperature to 15 °C and cross-shore/longshore wind component to 0m/s.
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6. Conclusion

We showed that camera viewing angle deviations can induce large
errors, with for instance more than 200m and 20m during a day in the
longshore and cross-shore direction, respectively, at the video mon-
itoring station of Sète. This correction remains sometimes difficult for
seaward-looking camera and pixel time series because of the practical
difficulty to identify ground control points. At the video monitoring
station of Sète, cameras viewing angle deviations are controlled by
thermal deformation of the pole where they are mounted. Deviation
magnitude depends mainly on cloud cover, with a daily evolution due
to camera orientation and solar azimuth angle. These deviations have
been simulated using a polynomial regression method with good ac-
curacy allowing a significant reduction of the geo-rectification errors.
This method is applicable to other field sites subject to camera viewing
angle anomaly. This study opens new perspectives in video monitoring,
particularly to routinely improve camera geometry of video monitoring
systems and to further derive higher quality remotely sensed hydro-
dynamic and morphological products.
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