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Abstract

The sensitivity analysis method used in linear systems with a limited number of unknown parameters
has been generalized to groundwater flow and transport models. The main problems were that in
groundwater models the results are not linear functions of the parameters and the number of
parameters may - in theory - amount to several thousands. Moreover the calibration errors (on
hydraulic heads or concentration for instance) are often highly spatially correlated. To take into
account these difficulties a new approach has been developed: the number of parameters has been
drastically reduced by defining zones with homogeneous parameters. The equations have been
locally linearized and the variogram of the calibrations errors has been integrated. The resulting
covariance matrix of the parameters is obtained after running the model several times to determine
the derivative of the results (heads, flows, concentrations) with respect to the parameters. When the
model is used for prediction, after modifying the boundary conditions (recharge, pumpings, pollutant
spreading), the new derivatives are calculated. Combined with the covariance matrix - which is
invariant - they yield the confidence limits of the predictions.

The model has been applied with success to 5 aquifers (monolayer, multilayer, steady-state or
transient state) and to a tracer test in a fractured formation.

1.Introduction

The simulations and forecasts obtained with a groundwater model - as with any physical model are
deterministic: a unique response is given in reaction to a given input. As a matter of fact the response
is a function of the inputs but also of the model parameters (hydraulic conductivity, storage
coefficient). The inputs are usually known with accuracy: abstraction rates, specified hydraulic
heads, etc. On the other hand, the model parameters are usually estimated by pumping tests or tracer
tests in a limited number of locations, and are determined by calibration over the rest of the aquifer.
If the observations are not accurate, or are affected by external phenomena not taken into account by
the model (error of synchronization, barometric effect, spatial variability), the calibration will be
approximate and the parameters will be affected with uncertainty. This will induce uncertainty on
the forecast established with the model. It does not suffice to calibrate a model but it is better to
provide the standard deviation associated to the identified values. Similarly it is necessary to provide
the standard deviation, or the confidence limits, associated to a forecast. A mapping of the standard
deviation makes it possible to determine the locations where it is recommended to get new
measurements in priority. A general method of calculation of standard deviation of the parameters
of a model and of forecasts has been described in detail by Leijnse (1982) and Thiery (1989). The
adaptation of



this method to distributed models as groundwater models (Cooley, 1979; Lavenue and Pickens,
1992) evokes 2 specific problems: parameters are distributed (one or several in each cell of the
model) and the observations for calibration are data fields with autocorrelations in 2 or 3
dimensions and possible autocorrelation in time.

This paper presents a method to determine conditional confidence limits on model
parameters (hydraulic conductivities, storage coefficients, dispersivity, porosity...) and on
forecasts obtained with the model (hydraulic heads, drawdown, spring discharge, concentration,
density, etc.). These confidence limits are conditional because they depend on the
hydrogeological hypotheses which are not changed (for instance: monolayer model, steady
state). The definition of the parameters may not be changed: if 5 zones of hydraulic conductivity
have been previously defined, the analysis determines the accuracy of the hydraulic conductivity
in each zone but keeps the number of zones and the extension of each zone.

2. Methodology

2.1. Notations

a = optimal parameter

aq = parameter derived from sample q

d = distance between observations (lag)

Da = a-aq = error for parameters a

e = difference between observation (yohs) and simulation (yc¢)
g = variogram of errors

20 = nugget in variogram

K = hydraulic conductivity

k = decimal logarithm of hydraulic conductivity

n = number of observations

Ne = equivalent number of independent observations

p = number of observations

r = range of variogram

R = correlation coefficient between observations

RI = radius of influence

rij = correlation coefficient between parameter i and parameter j
Sa = standard deviation of parameter a

Se = standard deviation of error e

sez = variance of error = sill of variogram

Sr = relative standard deviation (%)

t = transposed of matrix

X = location

Xf = location for a forecast

Ye = calculated (simulated) value with the model

Yobs = observed value (hydraulic head)

Pij = correlation coefficient between error i and error j

2.2. Standard deviation parameters

It is assumed that a model M depends on p parameters a. The model is calibrated on n
observations yohs Which make a sample q of n values (hydraulic heads or concentrations...) at
locations xj. The optimal parameters aq are determined from this sample by calibration. They



are dependent on the sample q. The aim of the sensibility analysis is to determine the
distribution of the parameters aq.

Let:
Da = ag-a
ei = Yobs - Y(a, Xj) = simulation error (with true parameters a) at location xj
eqi = Yobsi = ¥ (aq, Xi)
Sq = 21: (eqi)

Deriving Sq successively with respect to each parameter aq, neglecting the terms of second
order, and taking into account that aq is the optimal parameter, Thiery (1989) shows that one
obtains the following system:

[B] » [Da] =TA] « [e] (1)
where:
t[A] = matrix p lines, n columns = derivative of y
[B] = square matrix p . p made of the sums of products of 2 derivatives
[e] = vector of n simulation errors ej

The variance-covariance matrix of the parameters writes:
[VA] = [rij © saj ® saj]

where:
i = correlation coefficient between parameters aj and aj
saj = standard deviation of parameters aj

[VA] = [Da]  {{Da] = [B]~! « {{A] « [¢] « Y[¢] * [A]  [B] ] 2)
If the errors ej are all independent, the following relation holds:
[e] * Ye] = se2 o In where I, = identity matrix (n . n) 3)

Relation (2) may be simplified as : [VA] = se2 o [B]_1 4)
When using a model, relation (3) never holds because the errors are not independent. There are
periods when all computed values (heads) are too high (e.g. because the aquifer recharge is
overestimated) and there are regions of the model where all heads are too low (e.g. because the
hydraulic conductivity is too large).

[e] * Hel = [eij] = [p; * s¢?] )
It is a large n.n symmetrical matrix with variance of errors on the diagonal and covariances
between errors on the other elements. In a time series, pjj may depend only on the lag d
between the observations:

pij = p1d  whered = li-jl, p1 = autocorrelation of lag 1
For a spatial series, the variogram g may be used:

eij = g (d) where d = distance between 2 observations locations
g = variogram of the errors

Thiery (1989) shows that it is possible to define an equivalent number ne of independent errors.
Relation (4) is then transformed into:

[VA] = (/ne)  se? * [B]~1 ©)
The number of independent errors is determined from the variogram considering the disk
centred on an error and containing all the errors related by a correlation coefficient R greater
than 0.5. Inside this disk all the errors are considered as dependent and only one independent
error is counted. The radius d of this disk is defined by:

05=R=1-g(d)/se? )



2.3. Standard deviation on the forecast of the model

After calibration of the model and estimation of the standard deviation of the parameters, it is
possible to simulate modifications (new abstractions, new boundary conditions, different
infiltrations). It is also possible to study another variable y. For instance, the model may be
calibrated on observed hydraulic heads but may be used to forecast a flow, a concentration, a
density, a temperature or a spring discharge. The forecast of the model may be relative to a new
location xf where no observation was available for calibration. It is assumed that the calculated
values y¢ are locally linear functions of the parameters a. In order to obtain such a linear
relation, it is possible to change the variable. For instance if y is the drawdown and T the
transmissivity one can use @ = 1/T in order to get a quasi linear relation. Thiery (1989) shows
that the variance syc2 of the forecast y¢ is given by:

syc = 3 X I, . sa; . sa, . (dy /da;) . (dy /day) 8)
] k |y -
fixed term determined term depending
by the calibration on the location

This variance syc2 is only due to the uncertainty of the model parameters. The total variance

syp2 of the error between a forecast value y¢ and an observed value yohs must integrate the

variance of calibration error se2 which is independent on y¢ (and may be due to errors in ygbs):
syp? = syc? + se? ©)

2.4. Standard deviation by Monte Carlo simulations

In some situations it is not possible to get a linear relationship between yc and a. For instance

yc may be :
e the maximum pollutant concentration in a zone or the maximum concentration during a
period

e or the tranfert time of a pollutant
e or the position of a given path line.
In these cases it is possible to use Monte Carlo simulations. The problem reduces to the
generation of sets of p parameters with a given variance-covariance matrix. this generation can
be done easily by a Principal Components Analysis (PCA) of the variance-covariance matrix.
From p parameters, one gets p principal components [C1...Cp] which are independent from
each other.

It is easy to generate a set of random principal components (of given variances).
This set of generated components is then used to get the corresponding set of p parameters by a
simple linear realtionship. Each set of p paramerters is used to generate the corresponding
model simulation. The statistical analysis of all the simulation gives the statistical analysis of the
forecast variable yc.

3. Practical implementation

3.1. Parameters of the model

The method described in the previous part may be applied only to a number of parameters much
lower than the number of observations. This is due to the fact that, in a linear system without
constraint, the system is undetermined and the confidence limits are infinitely large if the
number of parameters is greater than or equal to the number of observations. Another reason is
that the sensitivity analysis of p parameters needs p runs of the model which is expensive in
term of CPU time. The number of parameters is drastically reduced by zonation for each type of



parameter. These zones may be determined from geology or - in steady state - by the head
gradient method as described by Thiery (1994a). In each zone (of hydraulic conductivity or
storage coefficient or infiltration coefficient for instance) a unique value is determined by
automatic calibration as described by Khan (1986), Kessler (1987), Thiery (1993a, 1994b).

3.2. Observation series

The sensitivity analysis may be performed in steady state or in transient state. In steady state the
observations are usually a map of hydraulic heads or observations of heads in a limited number
of locations. The observations may also be of another type e.g. a concentration map or a
temperature map. In transient state the observations may integrate also time-series of evolution
of hydraulic heads or of spring discharge at a limited number of locations.

3.2. Relative standard deviation

When a parameter (e.g. the hydraulic conductivity K) has a log-normal distribution it is better
to analyse the uncertainty of k the (decimal) logarithm of this parameter : k = log(K).

The analysis will be analyzed and will yield sk the standard deviation of k. We define the
relative standard deviation sy, which is expressed in percent, by : sy / 100 = 105K - 1. The
distribution of k being gaussian, the true value of k has a probability of 95% to be in the range
k + 1.96 sk. Taking the antilogarithm, K has a probability of 95% to be in the range :

[K/101-965k K e 101.96sk]  which corresponds to :

[K/f K- f] with f=(1 +s¢/100)1.96 (10)

4. Application to 5 actual aquifer systems with field data
The method described above has been applied to the field data of 5 aquifer systems studied by
BRGM and described in Table 1. Fig. 1 displays the observed hydraulic heads of the aquifers

and the boundaries with prescribed heads (marked by a cross).

Table 1 Description of the actual aquifers

Name Number Size of Number Number Localisation
of cells the cells of layers of times steps
(m) SS=Steady State

Thau 701 1000 1 SS Herault (F)

Cailly 1 378 500 1 SS Normandy (F)

Cailly 2 5

Breil 536 32 1 SS Aude (F)

Malta 964 500 1 SS Mediterr.

Sarthe 1196 1000 2 SS Sarthe (F)
two-layer

4.1. Determination of optimal parameters

The optimal parameters of each aquifer have been determined as follows:
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- determination of homogeneous zones of hydraulic conductivities by inverse modelling
(Thiery, 1994a) except for Sarthe aquifer where zones have been determined from
geology;

- automatic calibration by zones with MARTHE model (Thiery, 1990, 1993b, 1994c)
according to the method described by Khan (1986) and Kessler (1987) and improved by
Thiery (1993a, 1994b).

For each aquifer, 3 to 5 zones of homogeneous hydraulic conductivity have been identified. The
hydraulic conductivity of these zones is given in Table 2 (the figures given in the table must be
multiplied by the unit factor given in column 8).

Table 2 Hydraulic conductivities resulting from calibration

Aquifer Zone number Unit Number
Identif. 1 2 3 4 5 6 (m/s) of zones
Thau 0.071 0.5 3.11 6.99 23.0 (0.143) 5.10°0 5
Cailly 5.5 21 133 1323 - - 10-6 4
Breil 0.52 13.7 72 196 1390 (9000) 102 5
Malta 32 50 247 301 (7980) - 106 5
Sarthe 1.8 14 78 . - = 5.10°0 3

4.2. Analysis of errors

After calibration the characteristics of the simulation errors have been analyzed. They are given
in Table 3. The normalized residual (column 5) is the ratio of the mean square of errors s
divided by the observed variance. The histograms of errors for each aquifer are given in Fig. 2.
It appears that the distribution is symmetrical and may be considered as Gaussian. The
experimental variograms have been computed with VIVA software (Seguin, 1992) and a
spherical variogram has been fitted for each aquifer. Fig. 3 shows that the fit is very
satisfactory. The range r, the nugget g, and the sill se2 has been determined. The variogram
equation is:

g (d) = (s - g0) + [1.5 (@) ~ 0.5 ()] + g0 (11)
where d is the lag

Table 3 - Analysis of calibration errors.

Aquifer Mean RmSE Stand. dev. Normalized = Number  Range of Nugget Radius

error observ. residual  independent variog. of Infl.

(m)  (m (m) (%) m @ (%  (m
Thau -0.34 3.9 26.8 1.4 65 3850 1.93 13 1235
Cailly -0.22 224 224 1.0 61 1850 0 703
Breil -0.004  0.08 0.82 0.93 443 282 0.034 56 0
Malta 0.00 0.26 0.78 10.8 23 4400 0 1685
Sarthe 1  -0.42 4.6 19.2 5.4 175 5400 6 27 1350
Sarthe 2 0.34 5.2 5150 4 19

4.3. Determination of the number of independent observations

The radius of influence RI of one observation is defined by: 0.5 = 1 — g(RI) / se2. The number
of independent observations NI is the ratio of the total area A of the aquifer divided by the area
D of one independent disk of radius RI.

NI=A/D

A =Nea?
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D = n e RI2

which yields : NI = N ® a2 / (n * RI2)
where:

N = total number of cells

a = size of one cell (assumed to be square)

NI, r, go and RI are given in columns 6-9 of Table 3.

4.4 - Standard deviation of the parameters

Taking into account the number of independent observations, the standard deviations of the
parameters have been determined from the derivative of the computed hydraulic heads with
respect to each parameter. Table 4 displays these standard deviations in percent. Most of the
time the standard deviations are on the order of magnitude of 20% which means that the
confidence limits at 95% relative to an hydraulic conductivity K is: [K/f, K e f] with
f = 1.201.96 which yields: [0.70 K, 1.43 K]. In some zones (e.g. zone 1 for Breil aquifer, or
zone 5 for Malta) the hydraulic conductivity is nearly undetermined.

Table 4 - Relative standard deviation of hydraulic conductivity (%).

Zone number
Aquifer 1 2 3 4 5
Thau 15 7 18 21 56 21
Cailly 9 5 9 22 - -
Breil 18000 21 7 5 8 -
Malta 51 19 22 56 infinite -
Sarthe 8.7 10 28 - - —

4.5. Validation of the method

The validation has been performed by Monte Carlo simulations with Cailly aquifer data. The
optimal set of parameters has been considered as being the true solution. The corresponding
simulated hydraulic heads HS have been calculated and compared to the observed hydraulic
heads HO. The error of calibration ES = HS - HO has been considered as a random error due
to external reasons (measurements errors, incorrect recharge or runoffs evaluation, etc). Twenty
maps of possible observed heads HOi have been generated, computing, by random generation,
20 different possible maps of errors ESi respecting the standard deviation and the spatial
autocorrelation of errors. The optimal parameters corresponding to the 20 maps of hydraulic
heads, have been determined by automatic calibration. The standard deviation of each parameter
has then been computed from the 20 sets of parameters and compared to the standard deviation
determined directly by the method described in this paper. Table 5 compares the computed
relative standard deviations to the realisation obtained by the 20 Monte Carlo simulations. Table
6 compares the computed correlations between parameters to the correlations obtained by the
Monte Carlo simulations.

These tables show that the standard deviation of the parameters and the correlations computed
are correct. This validation proves that :

@) the hypothesis of approximate local linearity between hydraulic conductivity and
computed hydraulic head is acceptable.
(ii) the estimation of the equivalent number of independent observation is correct.



Table 5 Cailly hydraulic conductivity : verification by Monte Carlo simulations

Central value Relative standard deviation
(106 mys) (%)
Zone Optimal value Monte Carlo Sensitivity Monte Carlo
number simulations analysis simulations
1 3.5 3.3 9 8.5
2 21 21 5 6
3 133 137 9 13
4 1323 1271 22 30
Table 6 Correlation between parameters
Sensitivity Monte Carlo
analysis simulations
r(1,2) -0.54 -0.68
r(2,3) -0.45 -0.36
r(3,4) -0.38 -0.61
others < 0.2 < 0.2

4.6 - Influence of the number of parameters

For Thau, Malta and Sarthe aquifers, 2 sensitivity analysis have been performed :
the first one with a large number of hydraulic conductivity zones as initially determined by
a hydrogeologist;
the second one with a small number of zones determined by inverse modelling.

Table 7 compares the median relative standard deviation for each scheme in each aquifer. It
shows that for each aquifer the relative standard deviations are approximately doubled when
using the larger number of zones. This obviously advocates for using the minimum number of
parameters necessary to get an acceptable simulation.

Table 7 Standard deviation of parameters using different number of zones
Median of relative standard

Aquif Number of zones deviation of parameters
Thau 11 51 %
6 20 %
Malta 11 98 %
5 51 %
Sarthe 12 36 %
3 10 %

4.7. Sensitivity analysis for other parameters

Up to here we gave examples of sensitivity analysis of hydraulic conductivity. However the
method is general and may he applied to other parameters such as specific yield (in transient
state), infiltration factors etc. It is also possible to analyse the sensitivity to parameters
controlling pollution transport : e.g. the dispersivity, the cinematic porosity or the retardation
coefficient. In this case the observations of hydraulic head are replaced by observations of
concentration of pollutant in the aquifer.



In order to prove the applicability of the method we applied it to the data of Finnsjon
site (Sweden) which belong to INTRAVAL international tests. The data are relative to the
injection of a tracer (In-Edta) in a borehole at an average rate of 2.9 g/day.

The concentration is monitored in another borehole situated 137 meters apart, which is
pumped at a rate of 2 1/s creating a convergent flow.

The system is modeled in 3D by 7 000 cells in 5 layers (Schwartz 1993) and the
concentration is calculated by a method of characteristics (MOC). Three parameters are
determined by automatic calibration :

oy, the longitudinal dispersivity
avp the transverse dispersivity
R the retardation coefficient

The optimal simulation and the 95 % confidence limits, compared to the observations,
appear in fig. 4 and the resulting parameters are displayed in table 8. The number of selected |
observation is 31 and the mean sqare of errors is equal to 1.24 mg/I.

Table 8 Finnsjon tracer test parameters

Parameter Optimal value Relative standard Correlation Matrix
deviation
o 26.8 m 254 % 1
o 23m 49.1 % -0.56 1
R 1.19 5.8 % - 0.37 -0.12 1

This table shows that the best determined parameter is the retardation coefficient
(relative standard deviation equal to 5.8 %). The transverse dispersivity is determined with less
accuracy and its correlation with the longitudinal dispersivity is equal to - 0.56 which means
that an underestimation of cij, may be partly compensated by overestimation of ouy.

30

25 - simulated

20

Conc (ppb)

observed

0 10 20 30 40 50 60 70 80
time (days)

Fig. 4 - Finnsjon tracer test : comparison of simulated and observed concentrations with 95 %
confidence limits.

4.8. Standard deviation of predictions

The standard deviations and correlations between parameters have been used to compute the
standard deviations of the calculated hydraulic heads. Fig. 5 displays the map of the standard
deviations of heads for every aquifer. As it could be expected the standard deviations are
smaller near the limits with specified heads. The standard deviations are - in the average - rather
small because the situations correspond to the calibration. The standard deviation may be
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computed for other situations: higher recharge or new pumping. The uncertainty of the heads
would have been much larger. When the number of zones is increased the average standard
deviation of hydraulic heads is approximately doubled:

Table 9 Average standard deviation of hydraulic heads (m)

Thau Malta Sarthe
3 to 6 zones 0.61 0.107 0.50
11 to 12 zones 1.54 0.195 0.89

For Thau aquifer, fig. 6 shows that the area where the standard deviation of the computed
hydraulic head is greater than 1 m is much more reduced when using 6 zones of hydraulic
conductivity (determined by inverse modelling) than when using 11 zones (selected a priori by a
hydrogeologist).

For Finnsjon system a simulation has been made with a variable injection rate of tracer (from
3.4 to 1.4 g/day) and a variable pumping rate (from 0.8 to 2.5 1/s) in the monitored well. Fig. 7
displays the computed concentration at the pumped well and the 95 % confidence limits
determined using the variance-covariance matrix of the 3 parameters. It appears that the
uncertainty due to the parameters is equal to about 3 mg/l and is variable during the monitored
period. It is minimal at the beginning (before the breakthrough) and at the end of the simulation.

5. Conclusions

A method of sensitivity analysis has been described. This method is associated with a kriging
technique in order to determine an equivalent number of independent observations used for the
calculation of the standard deviation of the parameters. This number, which is usually in the
range 5% to 20% of all observations for the 5 studied aquifers, is assumed to be 100% by many
authors which is incorrect. The standard deviation of the model parameters and the
intercorrelations are calculated from the derivative of the computed hydraulic head or
concentration with respect to each parameter. It has been shown that the number of parameters
should be kept to a minimum in order to obtain well determined values. The analyzed
parameters were hydraulic conductivities, dispersivities and retardation factors but the method is
general. It has already been applied to other parameters such as storage coefficients and
infiltration factors. Instead of hydraulic heads or pollutant concentrations, the calibration
variable may be water content, pressure, salinity or temperature. The standard deviation of the
forecasts are derived from the standard deviation of the parameters but Monte-Carlo simulations
may also be used after generation of parameters.

Acknowledgements: The research described in this paper has been funded partly by ANDRA and
partly by the research project S11 financially supported by BRGM.
This is BRGM contribution n°9504%
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