
HAL Id: hal-01855450
https://brgm.hal.science/hal-01855450v1

Submitted on 7 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Agglomerative hierarchical clustering of airborne
electromagnetic data for multi-scale geological studies

Marc Dumont, Pierre-Alexandre Reninger, Alexandre Pryet, Guillaume
Martelet, Bertrand Aunay, Jean-Lambert Join

To cite this version:
Marc Dumont, Pierre-Alexandre Reninger, Alexandre Pryet, Guillaume Martelet, Bertrand Aunay, et
al.. Agglomerative hierarchical clustering of airborne electromagnetic data for multi-scale geological
studies. Journal of Applied Geophysics, 2018, 157, pp.1 - 9. �10.1016/j.jappgeo.2018.06.020�. �hal-
01855450�

https://brgm.hal.science/hal-01855450v1
https://hal.archives-ouvertes.fr


Agglomerative hierarchical clustering of 
airborne electromagnetic data for multi-scale 
geological studies

M. Dumont a,b,⁎, P.A. Reninger c, A. Pryet d, G. Martelet c, B. Aunay b, J.L. Join a
a Laboratoire Géosciences, Université de La Réunion, Institut de Physique du Globe de Paris, UMR 7154, Sorbonne Paris Cité, CNRS, 97744, Saint Denis, 
France b BRGM, Saint-Denis, La Réunion, France
c Bureau de Recherches Géologiques et Minières (BRGM), UMR 7327, BP 36009, 45060 Orléans, France
d EA 4592 Géoressources et Environnement, Bordeaux INP and Université Bordeaux Montaigne, Pessac, France
a b s t r a c t

Airborne electromagnetic methods provide detailed subsurface resistivity imaging over 
extensive areas. The in-version of electromagnetic measurements can be conducted with a 
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1. Introduction

Airborne electromagnetics (AEM) aims at imaging subsurface re-
sistivity contrasts. It can cover extensive areas with virtually no to-
pographic and vegetation limitations within the same hydrological
period (Fountain, 1998). Though developed originally for mining
purposes, recent improvements of airborne time domain electro-
magnetic systems make it suitable for groundwater and environ-
mental studies (Siemon et al., 2009; Sørensen and Auken, 2004).
AEM surveys consist of thousands to hundreds of thousands of 1D
electromagnetic measurements acquired along flight lines. The in-
version of these latter can be conducted with a quasi-3D spatially-
constrained inversion scheme (Viezzoli et al., 2008), which provides
a consistent dataset at the regional scale. To be interpreted, these re-
sults are usually confronted with local or land-based observations
iversité de La Réunion, Institut
Paris Cité, CNRS, 97744, Saint

).
such as geological, geophysical or hydrogeological data. However, a
straightforward confrontation of large 3D resistivity models with
hundreds of wells (e.g. geological logs, electrical water conductiv-
ity), geological maps and climatic information tends to be challeng-
ing in complex geological settings.

After inversion, AEM surveys are generally visualized as 2D profiles
of vertical resistivity soundings or 2D maps at various depths or eleva-
tions. Profiles andmaps are useful for the interpretation but they cannot
display succinctly the 3D information provided by the AEM resistivity
model (Danielsen et al., 2003). Furthermore, the interpretation of such
results has to be done with a fine tuned color scale, which necessarily
highlights some contrasts at the expense of others. Alternatively,
coupledwith borehole data, 3D geological structures can behighlighted,
located and characterized (Auken et al., 2008; Christensen et al., 2015)
but this cannot be automated for large datasets. Alternatively, resistivity
contrasts linked to specific geological contacts can be represented as
isoresistivity depth maps or interpolated resistivity slope maps
(Reninger et al., 2016). This remains quite specific as both approaches
require simple geological contexts to be reliable. Inverted vertical resis-
tivity soundings can also be interpolated into a 3D resistivity model
(Pryet et al., 2011) displaying the 3D nature of subsurface resistivity
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variations. However, it is challenging to confront 3D resistivity models
to 1D or 2D (hydro)-geological data. As a consequence, 3D resistivity
models are hardly usable for detailed spatial analysis. Thus, the interpre-
tation of regional resistivity models derived from large AEM surveys
often turns to be challenging.

We propose a clustering approach to summarize on 2D horizon-
tal maps the 3D resistivity information contained in AEM datasets.
Our methodology is based on a statistical algorithm, the Agglomera-
tive Hierarchical Clustering (AHC) (Murtagh and Legendre, 2011;
Ward, 1963). Soundings are sorted in function of their vertical resis-
tivity distribution and gathered into clusters. These clusters define
areas with consistent vertical resistivity structures. The obtained
map directly features the repartition of 3D resistivity variations
and allows regional preliminary interpretation in terms of geologi-
cal or hydrogeological environment.

First, we detail the implementation of the statistical process on AEM
data. Secondwe illustrate theAHCapproach over an extensive AEM sur-
vey conducted over Reunion Island.
2. Materials and methods

2.1. Airborne electromagnetic data

Our methodology is applicable to electromagnetic surveys, ei-
ther in frequency domain or in time domain (Siemon et al., 2009).
This study focuses on helicopter-borne time domain electromag-
netic for the illustration of the methodology. This method uses
high-powered transmitter loops to induce electric currents in the
ground and measure the resulting magnetic field. The measured
signal, i.e. electromagnetic decay, allows bulk resistivity to be esti-
mated. For a more detailed discussion on electromagnetic theory
the reader is referred to Nabighian (1991). Airborne systems have
been developed for surveying large areas in a short time lapse.
They are not limited by surface water, topography or dense vegeta-
tion. Such surveys can be used to investigate lateral resistivity con-
trasts of large geological structures. They result in datasets
consisting of thousands to hundreds of thousands of electromag-
netic decays. Various processing stages and the process of an inver-
sion have to be performed to transform these decays into 1D
vertical resistivity soundings.

Electromagnetic noise and anthropic couplings have to be
rejected by automatic or manual filtering (Auken et al., 2009;
Reninger et al., 2011). After the data pre-processing step, two
methods can be used to obtain vertical resistivity profiles from elec-
tromagnetic measurements. The first option is to compute apparent
resistivity curves in function of time for each decay (Fitterman and
Stewart, 1986). The second option is to invert each decay curve to
obtain a resistivity model. In this study, the second option was cho-
sen, with the quasi-3D Spatially Constrained Inversion scheme. It
provides more continuous and geologically consistent resistivity
models (Viezzoli et al., 2008). This inversion yields a 1D vertical re-
sistivity sounding for each AEM decay. A resistivity model is defined
by a number of layers with a resistivity and a thickness. Two different
types of inverted soundings are commonly used: (i) “smooth”
models with a large number of layers (e.g. 20 to 30) with a fixed
thickness, or (ii) “few-layer” models with a few number of layers
(e.g. 4 or 5), for which both resistivity and thickness of the layers
can vary during the inversion. These models are used for a smooth
or a contrasted imaging, respectively. In this study, we focus in
smooth inversion models generally used to inverse AEM datasets at
regional scale. During the inversion and for each sounding, the
depth of investigation (DOI) is estimated (Christiansen and Auken,
2012). Thus, after processing, the AEM dataset consists of 1D
inverted soundings divided in layers, each defined by a resistivity
and a thickness, down to the DOI.
The clustering approach presented in this paper could be
achieved with different input data, such as the decay curves, the ap-
parent resistivity curves or the resistivity soundings. The reliability
of clustering approach depends on the consistency and the reliability
of classified data. The classification of decay curves is hardly feasible
because of the three following reasons. First, the number of usable
time gates can vary significantly from one sounding to another. Sec-
ond, they are not corrected for the exact location of emission and re-
ception loops (i.e. flight altitude and effective loop areas). These
variations create inconsistency between EM decays and would in-
clude bias in the classification. Third, the clustering results would
not straightforwardly inform on vertical resistivity variations. De-
rived directly from decay curves, apparent resistivity also holds the
uncertainty from EM noise and loops locations, which could bias
the clustering approach too. So as to maintain the same number of
parameters for each sounding, limit geophysical uncertainty and fa-
cilitate the interpretation, the AHC is therefore conducted on 1D
inverted resistivity soundings, without consideration to the DOI.
The parameters used for the AHC are the resistivity values of each
layer of the smooth soundings.

2.2. Agglomerative hierarchical clustering

Statistical algorithms have long been used to classify observa-
tions in geosciences. They are based on the degree of similarity
between individual observations. The most popular method is
partitional clustering, as K-means (Bedrosian et al., 2007; Di
Giuseppe et al., 2014; Paasche et al., 2006). It is based on the clas-
sification of the dataset in a specified number of clusters. Contrarily
to the K-means method, Agglomerative Hierarchical Clustering
(AHC) reveals the genetic relation between each observation.
AHC classifies the dataset starting with as many clusters as obser-
vations. It iteratively groups “similar” observations to form a hier-
archical tree, until all observations are gathered in a single cluster.
The result can be visualized at different levels of the hierarchical
tree, thus providing global to detailed synthetic views of the ana-
lyzed dataset, i.e. a multi-scale cartographic analysis (Martelet et
al., 2006). Here, we aim at classifying a large number of 1D inverted
resistivity soundings (the observations) into a series of clusters.
The AHC process can be divided in three steps.

First, resistivity values are log-transformed to take into account the
resolution of EM method. Thus, the standard score of logarithmic resis-
tivity values, ρ �i;k, is calculated in order to limit the impact of extreme
values and increase the weight of vertical trends in the clustering pro-
cess (Eq. 1).

ρ �i;k ¼
logρi;k

� �
−μ i

σ i
ð1Þ

where ρi, k is the inverted resistivity values of layer i from sounding k. μi,
σi, are respectively themean and the standard deviation of all the resis-
tivity values of layer i.

Second, the AHC algorithm starts with as many clusters as AEM
soundings in the dataset. The squared Euclidean distance (Eq. 2) is
used to measure pairwise dissimilarities (i.e. distance):

δ2 c1; c2ð Þ ¼
Xm
i¼1

ρ �i;1−ρ �i;2
� �

2 ð2Þ

where c1 and c2 are two AEM soundings now considered as two clusters
of m layers. The Euclidean distance is the sum of m squared distances
between ρ �i;1 and ρ �i;2 which are normalized resistivity values of
the i-th layer of soundings c1 and c2, respectively.

Third, after calculating the dissimilarity matrix, the entire dataset is
iteratively merged until obtaining one final cluster. At each iteration,
the two closest clusters aremerged tominimize the total within-cluster



variance and maximize the distance between clusters. The Euclidean
distance between the new cluster and the others is calculated with
the Ward's minimum variance (Eq. (3) - (Ward, 1963)).

δ c1∪c2; c3ð Þ ¼
�
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where c1 ∪ c2 is the new cluster formed by clusters 1 and 2, and c3 is an-
other cluster, | | is the number of AEM soundings gathered in the cluster
and δ2 the Euclidean squared distance (Eq. (2)). For further details
about the Ward method, the reader can refer to Murtagh and
Legendre (2011).

The AHC process stops when the whole dataset is merged within a
single cluster. Then, two graphics are usually used to analyze the results
(Fig. 1). The dendrogram (Fig. 1A) presents the hierarchical evolution of
the clustering process. Its vertical shape can be used to interpret cluster
scattering and the overlap between them. Each node represents a
pairwise aggregation. The ordinate length between two nodes repre-
sents the Euclidean distance between two merged clusters. Second,
the evolution of the Euclidean distance as a function of the number of
clusters can be displayed (Fig. 1B). It represents the distance between
the last two clusters merged at each iteration.

The selection of the number of clusters has a direct impact on the in-
terpretation and should be conductedwith care. The number of clusters
chosen for the interpretation should be consistent with the necessary
level of detail. But this choice should also consider the minimization of
the overall Euclidean distance (Fig. 1B). A high Euclidean distance re-
sults in more heterogeneity within clusters. Hence, a critical number
of clusters should be defined. Under this limit (diagonal stripes, Fig. 1),
dissimilarities within clusters may be too large for a relevant classifica-
tion. However, few explained clusters (in terms of natural behavior) are
preferable tomany unexplained clusters. The selection of the number of
clusters has a direct impact on their interpretation however the sub-
clusters of any cluster of interest are accessible at all stages after cluster-
ing. In this paper, the selected classification degree is given in square
brackets, e.g. cluster 8 [11d] is the cluster 8 for the 11-cluster classifica-
tion. For a given number of clusters, each cluster is characterized by its
median vertical resistivity profile and by the density of resistivity occur-
rence within each cluster at each depth. Higher densities indicate statis-
tically more common resistivity at given depths and the density width
informs on the resistivity dispersion.

The distribution of clusters can be plotted on a 2D map, but the
information is only available at sounding locations. Interpolation is
Fig. 1. AHC statistical graphics: (A) the dendrogram displays the hierarchical tree between 20
distance between the two last clusters merged vs. the total number of clusters. Diagonal stripes
performed in order to obtain a continuous cluster map. This can be con-
ducted with the nearest neighbor interpolation, described in (Franke,
1982). The interpretation of such result is not dependent on a color
scale and allows highlights in 2D most of the vertical and/or lateral (i.
e. 3D) resistivity contrasts imaged by the AEM method. Illustrations
will be provided hereafter as part of the case study.

3. Implementation of the clustering on Reunion Island

3.1. Regional survey on a volcanic island

We applied the proposed methodology to a large SkyTEM survey
(Sørensen and Auken, 2004) conducted in 2014 over Reunion Island
and anoffshore ring (Martelet et al., 2014). About 350,000 TimeDomain
ElectroMagnetic (TDEM) decays were acquired during 3 months along
10,400 km of flight-lines (Fig. 2). The SkyTEM system operates two dif-
ferent moments for each EM decays: (i) a low moment (3100 A.m2) to
ensure a good resolution at shallow depths and (ii) a high moment
(160,000 A.m2) to increase the depth of investigation. Flight-lines
were mainly oriented north-south with a 400-meter spacing, but addi-
tional lines with a different spacing and/or orientation were flown over
areas of particular geological or hydrogeological interest. After standard
data processing (Auken et al., 2009), 250,000 TDEM soundings have
been conserved. A smooth inversion was then performed using a
quasi-3D spatially constrained inversion (Viezzoli et al., 2008). The
thickness of the 25 layers increases logarithmically from the surface to
a depth of 350 m, starting with a 2 m thick first layer. The inversion
quality is characterized with the residual (STD), which ranges between
0.5 and 2.5with somepeaks to 6 close to urbanized areas (Viezzoli et al.,
2008).

Reunion Island is located in the southern part of the Mascarene Ar-
chipelago (southwestern Indian Ocean; Fig. 2). Two shield volcanoes
have shaped this island by the succession of constructive (accumulation
of lava flows and pyroclastic products) and destructive phases (erosive
processes, landslides). The older Piton des Neiges volcano (North-West)
was active before 2 Ma to 29 ka ago (Gillot and Nativel, 1982; Kluska,
1997). The younger Piton de la Fournaise (South-East) has been active
since 450 ka (Lénat et al., 2012). The inter-tropical climate and cyclonic
regime leads to significant erosion and rock weathering. Rainfall is
highly contrasted between the windward side (up to 10 m/year) and
the leeward side (lower than 2 m/year), influencing basalt weathering
and erosion processes (Barcelo and Coudray, 1996). The geological
heterogeneity leads to a wide variety of hydrogeological behaviors. In
addition, the steep morphology of the recent volcano induces high var-
iability between coastal and inland areas.
and 2 clusters. Black horizontal lines highlight 4, 6, 11 and 20 final clusters. (B) Euclidean
correspond to levels of clustering with too large Euclidean distance, which are unreliable.



Fig. 2.Resistivitymap between 20 and 30mdepth derived from SkyTEM survey of Reunion Island. AEM flight lines are displayed inwhite lines. The black line delineates the limit between
the two volcanoes: Piton des Neiges and Piton de la Fournaise.
Geological, hydrogeological and geophysical studies have been per-
formed over the last 30 years over Reunion Island. Thus, AHC results
can be confronted with a wide variety of datasets.

3.2. Clustering process

Here, we describe how the AHC algorithm has been applied on the
SkyTEM dataset. First, the statistical algorithm classifies the vertical re-
sistivitymodels obtained by inversion and yields the associated dendro-
gram (Fig. 3). In order to choose the adequate level at which to cut the
hierarchical clustering for a regional classification, we have compared
different clustering levels with geological and hydrogeological maps
(Bret et al., 2003; Descloitres et al., 1997; Join et al., 2005; Lénat et al.,
2001; Salvany et al., 2012). At the island scale, the classification in 11
clusters (Fig. 3) highlights the major geological structures and is there-
fore considered appropriate for regional mapping. Second, the clustered
1D resistivity models have been interpolated to create continuous areas
for cartographic interpretation (Fig. 4).

The first step to interpret the results is the analysis of the clustering
process. Fig. 3 displays the dendrogram and the 11 cluster signatures.
Cluster signatures are characterized by: (i) its vertical resistivity shape
with the median curve and the median depth of investigation, (ii) the
resistivity density scattering and (iii) the number of AEM soundings
gathered into each cluster. According to the dendrogram (Fig. 3), five
panels, named A to E, are characterized by a range of resistivity values
and a vertical trend. First, highly conductive geophysical responses de-
viate from the rest of the dataset (group E – 1Ω.m). This group agglom-
erates only offshore soundings affected by seawater. Second, highly
resistive soundings (group D – above 500 Ω.m) are discriminated
from resistive soundings (groups A and B – between 100 and 500 Ω.
m) and conductive soundings (group C – between 10 and 100 Ω.m).
The vertical trend, characterized by the resistivity density, has to be an-
alyzed from the surface to the DOI. Group A and C have decreasing
trends in opposition with group B, D and E. Group B has a specific man-
ner: resistivity decreases between 0 and 20m and increases again down
to the DOI. However, five clusters are not sufficient to explain the
regional geological heterogeneity. Their signatures (median and densi-
ties) overlap too much to characterize any specific geological response.
For each panel, a higher discretization level provides new clusters with
comparable vertical resistivity trends but centered around different re-
sistivity values (Fig. 3). The two characteristics (i.e. the vertical trend and
the resistivity) are important for groundwater and geological interpreta-
tions. At the 11-cluster level the resistivity signatures are well individual-
ized and the resistivity density is rather well focused around the median
sounding (Fig. 3). For instance, some clusters such as number 3 or 7
[11d] are well defined and are mainly controlled by regional behaviors.
Other clusters seem to be well defined only at some interval depths
such as clusters 6 or 8 [11d] and could also be associated to a specific set-
ting. Sometimes, high density of resistivity occurs under the DOI. This is
directly related to the starting model and should not be considered.

When clusters are correctly characterized, the second step is to cor-
relate cluster signatures and their spatial extensionswith natural obser-
vations. The cluster map (Fig. 4B) differs from the resistivity map (Fig.
2). The latter simply describes the resistivity variations at a given
depth interval, while the former integrates in 2D the 3D resistivity
structure information. The cluster map summarizes 3D resistivity varia-
tions: all the main geological settings are characterized by different
clusters. The younger geological domain, in green, is mainly character-
ized by resistive clusters 2, 8 and 10 [11d]. In contrast, the older part
of the island is mainly represented by more conductive clusters such
as clusters 3, 4, 7, 9 and 10 [11d]. The last major geological ensemble,
detritic and alluvial formations (in yellow), are mainly represented by



Fig. 3. The dendrogramwith the 11 cluster signatures can be further interpreted infive sub-groups (A to E) according to the shape of the dendrogram. These sub-groups constitute families
of contrastedmajor resistivity signatures; thenumber of AEMsoundingswithin each cluster is specified in square brackets. Cluster signatures can be describedwith: (i) themedian vertical
profile (black line) and (ii) the density of resistivity occurrence (in color). The resistivity density informs in the resistivity occurrence within each cluster at each depth. The density is
blanked for resistivity values without occurrence. For each cluster, the horizontal red dashed line represents the median DOI.
conductive clusters 1 and 5 [11d]. The two last clusters are correlated
with hydrogeological behaviors: cluster 11 [11d] is located over the
ocean, which explains low resistivity at the surface, and cluster 6
[11d] is restricted to the coastal area; its deep conductive layer might
be controlled by saltwater intrusion. In conclusion, the cluster map
highlights the main geological settings and two clusters are influenced
by water mineralization. In the following, we present the interest of
the AHC processing with two examples at the regional and local scales.

3.3. Regional interpretation: basaltic weathering

Volcanic rock weathering is a major process in subtropical areas,
strongly accentuated by trade winds and cyclonic phenomena in Re-
union Island. Weathering has considerable impact on raw material
prospecting, land-use planning, erosion process, risk and groundwater
management. Weathering is controlled by two main factors, such as
the age of the volcanic formations and the rainfall, which is correlated
to wind exposure in oceanic islands. In terms of resistivity signature,
un-weathered lava flows are highly resistive (N 1000 Ω.m), whereas
weathering increases clay content directly reducing the bulk resistivity
(Descloitres et al., 1997). To understand their impacts, clusters on four
basaltic areas have been compared (white dashed polygons, Fig. 4).
The first area, PN1, is an old basaltic slope (Fig. 4) with low rainfall
rates (1 to 2 m y−1). Its upper part is mainly represented by clusters 7
and 9 [11d] characterized by highly resistive cluster signatures (Fig.
3). The superficial layers of this cluster are less resistive, highlighting a
weak weathering. The second slope, PN2, is made up of the same an-
cient basaltic formations. This area is wetter (3 to 4 m y−1), increasing
weathering process. Thus, the upper part is mainly characterized by
more conductive clusters (3 and 9). While only the superficial layers
are impacted on the dry leeward side, thewet windward side is charac-
terized by deeper weathering. In contrast, the lower parts of these two
slopes are characterized by less resistive clusters 1 and 5 [11d].

In opposition, the two other slopes are in the younger volcano. Slope
PF1 is composed by old basaltic lavas in a dry area (1 to 2m y−1 rainfall
rates), whereas PF2 is composed by recent lava flows in a much wetter
climate (4 to 10 m y−1 rainfall rates). PF1 is characterized by cluster 8
[11d], its first 50 m are less resistive than cluster 10 (≈ 100 Ω m). PF2
slope is characterized by the more resistive cluster 10 [11d] (N 1000
Ω m) related to unweathered lava flows. This difference can be associ-
ated to a significant variation in superficial weathering. Overall, the con-
frontation of the cluster map with geological and climatic information
can be used to to classify the four slopes according to their degree of
weathering, in increasing order: (i) PF2, (ii) PN1, (iii) PF1 and (iv)



Fig. 4. The geological map [A] and [B] the 11 clustermap. The black line separates the two volcanoes: Piton des Neiges (north-west) and Piton de la Fournaise (south-east). Their activities
are simplified in two periods with their age in square brackets. White dashed polygons highlight four specific areas with different weathering processes (see details in the text).
PN2. Rainfall rates and the age of volcanic formations have a coupled
impact on the weathering process. First, it appears that areas with ex-
treme rainfall rates but recent lava flows are only slightly impacted by
weathering process (i.e. PF2), somehow comparable to old dry volcanic
slopes (PN1). Second, the older but drier slope PF1 is less weathered
than PN2 (older and wetter). The AHC results bring new elements,
which could be used to update the geological map and especially the
regolith map of Reunion Island. Thus, the degree of weathering de-
pends, first, on the rainfall rates, but the age of volcanic formations is
also amajor factor to take into account. The difference ofweatheringde-
gree between windward and leeward sides appears to increase with
time. Finally, on the older volcano, results would inform on the
weathering process by significant temperature.

3.4. Local interpretation: saltwater intrusion

Saltwater intrusion is amajor issue for groundwatermanagement of
oceanic islands, especially in the low coastal areaswhere the population
concentrates and where water supply requires high pumping rates in
coastal aquifers. The significant decrease in bulk resistivity caused by
saltwater allows its detection with AEM surveys (Viezzoli et al., 2012;
Vittecoq et al., 2015). In Fig. 4, cluster 6 [11d] is only found in coastal
areas. Its signature (Fig. 3) corresponds to saltwater intrusionwith a re-
sistive layer (N 100 Ω.m) overlying a highly conductive layer (b 10 Ω.
m). In Fig. 5, we have selected a specific area located on the west coast
to confront AHC results (i.e. cluster 6 [11d]) to groundwater measure-
ments. The aim is to validate the interpretation of regional clusters at
the local scale using the AHC multi-scale analysis.

At the regional scale, the selected area is mainly characterized by
cluster 6 [11d] (Fig. 5). Using the hierarchical nature of the classification,
we have increased the number of clusters from 11 to 18, and then the
area is divided into two clusters: 9 and 10. Cluster 10 [18d] is character-
ized by one thick resistive layer (1000Ωm). In contrast, cluster 9 [18d]
presents a more complex shape with alternation of resistive (100–200
Ω.m) and conductive layers (5–20 Ω m) in the first 50 m. The differ-
ences between them are the resistivity of the superficial layer and the
depth of the conductive layer (b 10 Ω m). These differences are illus-
trated in the resistivity profile (Fig. 5): deep layers are highly conductive



Fig. 5. Two cluster maps (11 and 18 clusters). For each map, clusters are characterized by their cluster signatures. Black line represents the median resistivity profile. The color scale
represents the density of resistivity value for each cluster. The number of AEM soundings within each cluster is specified in square brackets. Below, the resistivity profile, located on
the two maps by a red line, illustrates lateral resistivity variations in the area.
for all clusters, but superficial ones display sizeable resistivity and shape
divergence from west to east.

These geophysical results have been confronted to geological and
groundwater electrical conductivity logs (Bourhane et al., 2016). The
deep conductive layer is related to saltwater intrusion, which plunges
towards the east. Superficial layers of cluster 10 [18d] are related to
dry basaltic sands. Conversely, superficial layers of cluster 9 [18d] are
controlled by a salty lake and its deposits. The regional cluster 1 [11d]
is characterized by a superficial resistive layer (200–500 Ω.m) and a
slow decrease with depth (Fig. 5). This cluster is located in both coastal
areas and highlands. Thus, all the members of this cluster cannot be re-
lated to saltwater intrusion. In the selected area, cluster 1 [11d] becomes
cluster 2 [18d] which is more contrasted and consistent with cluster 10
[18d]. Thus, cluster 1 [11d] can be related with deeper saltwater intru-
sion. The extension from 11 to 18 clusters allows the characterization
of a local cluster in this specific area and cannot be extrapolated to the



whole cluster 1 [11d] area. Nevertheless, at the island scale the 11 clus-
ter map permits a fast detection of deep saltwater intrusion areas.

This example shows, first, the ability of the AHC to provide quick
views of a given 3D structure. Second, the hierarchical character of the
method allows the integration of local studies in regional interpretation.

4. Discussion

The inversion of AEM datasets results in a large number of 1D verti-
cal resistivitymodels. The visualization and interpretation of such 3D re-
sistivity model are complex. The suggested AHC approach consists in
classifying AEM vertical soundings into clusters. It is an original ap-
proach to delineate the spatial extension of 3D geological features on
2D maps. The case study in Reunion Island highlights the interest of
the AHC algorithm for the interpretation of a large resistivity model in
terms of geological and hydrogeological processes.

In some contexts, the interpretation of clusters can be challenging.
The selection of the most efficient number of clusters should be con-
ductedwith care. The clustering process should be based on both statis-
tical and geological/hydrogeological considerations. While the
interpretation of some clusters is relatively easy, otherswithweak resis-
tivity contrasts are more questionable at the regional scale. Such clus-
ters may require a local focus to clarify their signatures at depth. This
highlights the need to consider this approach at different scales and
levels of details (hierarchical level and associated number of clusters).
A classification with few clusters will provide a fast interpretation tool
to delineatemain resistivity behaviors at a regional scale. A classification
with more clusters helps with more specific cluster signatures at local
scale. The information collected at various levels of detail can eventually
be integrated in a regional map assembling interpretations at different
scales. For a proper interpretation, cluster signatures and maps should
be confronted with resistivity profiles and available independent
knowledge.

The diffusive nature of the electromagnetic method implies that in-
formation gradually fades away with depth. This loss of sensitivity is
generally represented by the depth of investigation (DOI), which is dif-
ferent for each AEM sounding. Layers below the DOI should theoreti-
cally not be considered for the classification. However, the AHC
algorithm requires the same number of parameters (here, number of
layers) for each AEM sounding. A relevant option could be to weight
the calculation of the Euclidean distancewith the standardized sensitiv-
ity associated to each layer. On one hand this could limit the impact of
unreliable deep resistivity values. On the other hand, the clustering
might be too influenced by the DOI, at the expense of the resistivity.
As the aim of our approach is to classify AEM soundings according to
their resistivity profile, we preferred to disregard theDOI rather than in-
troducing a bias in the resistivity classification. In our case, we expect
that layers below the DOI have little impact on the classification. First,
the median DOI is deep, implying that for the majority of soundings,
only the last four layers are impacted. Second, the resistivity density
(Fig. 3) shows that cluster signatures are relatively consistent under
the DOI. During the inversion, layers with low sensitivity tend towards
the starting model, which was spatially consistent and the same for
most of the island; a more conductive starting model was chosen for
the offshore ring and a more resistive for the volcanoes. Hence, we as-
sume that the influence of the geophysical “artefacts” under the DOI
on the classification is limited.

5. Conclusion

The AHCmethodology is a reliable statistical tool clustering regional
AEM datasets in 2D resistivity clusters. Compared to inverted resistivity
models, it summarizes the 3D information from an AEM survey in two
complementary results. First, the 2Dmap of interpolated clusters delin-
eates areas where EM soundings display comparable vertical resistivity
signatures. Second, each cluster signatures provide information on their
resistivity characteristics and their statistical reliability (i.e. heterogene-
ity of soundings within the cluster). Given the hierarchical nature of the
clustering, AHC allows multi-scale analyses of the dataset, including
local understanding in a regional approach. In heterogeneous areas,
where local behaviors are hardly featured at the regional scale, the
AHC is useful to individualize and focus geological and hydrogeological
studies. Accordingly, this approach provides support in awide variety of
AEM applications/contexts, such as water management, mining
prospecting, geotechnical studies and risk management. Finally, this
methodology is a reliable tool for cross-studying multi-disciplinary re-
sults and provides 2D operational maps at regional and local scales;
their interpretation is enhanced with the aid of resistivity profiles and
confronted with available independent knowledge.
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