

The geochemistry of naturally occurring methane and saline groundwater in an area of unconventional shale gas development

Jennifer Harkness, Thomas Darrah, Nathaniel Warner, Colin Whyte, Myles Moore, Romain Millot, Wolfram Kloppmann, Robert Jackson, Avner Vengosh

► To cite this version:

Jennifer Harkness, Thomas Darrah, Nathaniel Warner, Colin Whyte, Myles Moore, et al.. The geochemistry of naturally occurring methane and saline groundwater in an area of unconventional shale gas development. Geochimica et Cosmochimica Acta, 2017, 208, pp.302 - 334. 10.1016/j.gca.2017.03.039. hal-01849916

HAL Id: hal-01849916 https://brgm.hal.science/hal-01849916

Submitted on 6 Dec 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

The Geochemistry of Naturally Occurring Methane and Saline Groundwater in an Area of Unconventional Shale Gas Development

Jennifer S. Harkness^a, Thomas H. Darrah^b, Nathaniel R. Warner^c, Colin J. Whyte^b, Myles T. Moore^b, Romain Millot^d, Wolfram Kloppman^d, Robert B. Jackson^e, Avner Vengosh^{a*}

^a Division of Earth and Ocean Sciences, Nicholas School of the Environment, Duke University, Durham, NC 27708, USA

^b Divisions of Solid Earth Dynamics and Water, Climate and the Environment, School of Earth Sciences, The Ohio State University, Columbus, OH 43210, USA

^c Department of Civil and Environmental Engineering, Pennsylvania State University, College Park. PA 16802. USA

^d BRGM, French Geological Survey, Laboratory Division, Orléans, France ^e Department of Earth System Science, Stanford University, Stanford, CA 94305, USA

17 * Corresponded author (vengosh@duke.edu)

19 Abstract

1

2 3

4

5

6 7 8

9

10

11

12 13

14 15

16

18

20 Since naturally occurring methane and saline groundwater are nearly ubiquitous in many 21 sedimentary basins, delineating the effects of anthropogenic contamination sources is a major 22 challenge for evaluating the impact of unconventional shale gas development on water quality. 23 This study investigates the geochemical variations of groundwater and surface water before, 24 during, and after hydraulic fracturing and in relation to various geospatial parameters in an area 25 of shale gas development in northwestern West Virginia, United States. To our knowledge, we 26 are the first to report a broadly integrated study of various geochemical techniques designed to 27 apportion natural and anthropogenic sources of natural gas and salt contaminants both before and 28 after drilling. These measurements include inorganic geochemistry (major cations and anions), stable isotopes of select inorganic constituents including strontium (87 Sr/ 86 Sr), boron (δ^{11} B), 29 30 lithium (δ^7 Li), and carbon (δ^{13} C-DIC), select hydrocarbon molecular (methane, ethane, propane, butane, and pentane) and isotopic tracers (δ^{13} C-CH₄, δ^{13} C-C₂H₆), tritium (³H), and noble gas 31 32 elemental and isotopic composition (He, Ne, Ar) in 112 drinking-water wells, with repeat testing 33 in 33 of the wells (total samples=145). In a subset of wells (n=20), we investigated the variations 34 in water quality before and after the installation of nearby (<1 km) shale-gas wells. Methane 35 occurred above 1 ccSTP/L in 37% of the groundwater samples and in 79% of the samples with 36 elevated salinity (chloride >50 mg/L). The integrated geochemical data indicate that the saline 37 groundwater originated via naturally occurring processes, presumably from the migration of 38 deeper methane-rich brines that have interacted extensively with coal lithologies. These 39 observations were consistent with the lack of changes in water quality observed in drinking-40 water wells following the installation of nearby shale-gas wells. In contrast to groundwater 41 samples that showed no evidence of anthropogenic contamination, the chemistry and isotope 42 ratios of surface waters near known spills or leaks occurring at disposal sites (n=8) mimicked the 43 composition of the Marcellus flowback fluids, and show direct evidence for impact on surface 44 water by fluids accidentally released from nearby shale-gas well pads and oil and gas wastewater

45 disposal sites. Overall this study presents a comprehensive geochemical framework that can be used as a template for assessing the sources of elevated hydrocarbons and salts to waterresources in areas potentially impacted by oil and gas development.

48

49 Keywords

50 Water quality, hydraulic fracturing, methane, isotope tracers, shale gas, brines

- 51 52
- 52
- 54

1. INTRODUCTION

55 Development of unconventional hydrocarbon resources from previously uneconomical 56 black shales and tight sands through the advent of horizontal drilling and hydraulic fracturing 57 technologies has revitalized the domestic energy industry in the U.S. and reduced dependency on 58 coal combustion for electricity generation (USEIA, 2014). However, numerous environmental 59 concerns, including the potential for compromised drinking-water quality, have tempered public 60 opinions about the economic benefits of unconventional energy development in the U.S. 61 (Jackson et al., 2014; Vengosh et al., 2014). For example, evidence for stray gas contamination 62 in shallow drinking-water wells was reported in a subset of wells located less than 1 km from 63 shale gas sites in Pennsylvania (PA) and Texas (TX) using both geospatial statistics and 64 hydrocarbon and noble gas geochemistry (Darrah et al., 2014; Jackson et al., 2013; Heilweil et 65 al., 2014; Osborn et al., 2011).

66 The debate around the potential for wide spread contamination from hydraulic fracturing 67 stems from the lack of pre-drilling datasets that include a comprehensive suite of geochemical tracers. The nearly ubiquitous presence of naturally occurring inorganic and hydrocarbon 68 69 contaminants in many areas of hydrocarbon extraction, and the potential for legacy 70 contamination from conventional oil and gas development and other industries (e.g., coal) can 71 also deteriorate water quality (Vengosh et al., 2014). Several studies have suggested that 72 dissolved methane (CH₄) and saline groundwater in shallow aquifers in the Appalachian Basin 73 likely originated from natural processes (Baldassare et al., 2014; Darrah et al., 2015b; Molofsky 74 et al., 2013; Schon, 2011; Siegel et al., 2015a; Siegel et al., 2015b; Warner et al., 2012).

The intense debate about these issues has been sustained for over five years, highlighting the need to better understand the critical factors that control the elevated levels of hydrocarbon gas and salts in groundwater systems globally. Indeed, answering these questions is a critical challenge in assessing the impacts of unconventional energy development and hydraulic fracturing on the quality of water resources. To address this debate, we must first develop a robust understanding of the fundamental geochemical, hydrogeological, and environmental
factors that control the composition and behavior of hydrological systems in a given area.

This presents a comprehensive suite of geochemical tracers that interrogates the fundamental geochemical interactions and crustal fluid flow processes that control groundwater geochemistry, using a case study in the North Appalachian Basin (NAB) of northwestern West Virginia. The Appalachian Basin is an archetypal energy basin with diverse tectonic and hydrological characteristics and energy development activities, and therefore constitutes an important area to study the potential impacts to water quality from shale gas development (Warner et al., 2012; Darrah et al., 2015b; Engle and Rowan, 2014; Ziemkiewicz and He, 2015).

89 While many studies have focused on Pennsylvania, less is known about the distribution 90 of naturally occurring saline groundwater and methane in aquifers overlying the southwestern 91 segments of the Marcellus Basin. Despite the long history of fossil fuel development, including 92 both coal mining and conventional oil and gas drilling, there is limited historical geochemical 93 information about these aquifers, particularly studies that integrate both aqueous concentrations 94 and dissolved gas phase measurements. Two reports, one from the West Virginia groundwater 95 atlas (Shultz, 1984) and another from eastern Kentucky coalfield, have identified saline 96 groundwater in the region (Wunsch, 1992). The legacy of previous energy exploration and 97 naturally occurring migration of saline water and natural gas to shallow aquifers are a set of 98 additional factors that could complicate the delineation of potential contamination from recent 99 shale gas development (Vengosh et al., 2014).

Previous applications of inorganic and isotopic tracers of dissolved salts and hydrocarbon and noble gas geochemical tracers have revealed the influence of the tectonic and hydrogeological setting on water quality and natural contamination in areas of oil and gas development both in the NAB and elsewhere (Darrah et al., 2015b; Engle and Rowan, 2014; Llewellyn, 2014, Lautz et al, 2014; Molofsky et al., 2013; Mortiz, 2015; Revesz et al., 2010; Schon, 2011; Sharma and Baggett, 2011; Siegel et al., 2015a; Siegel et al., 2015b; Warner et al., 2012, Warner et al., 2013b, Wunsch, 1992).

Here, we present a combination of integrated techniques applied to a longitudinal dataset as an improved framework to assess the geochemical processes that control groundwater geochemistry, as well as changes to surface water geochemistry during unconventional oil and gas operations. While we apply our framework to a specific area in this study, the ultimate aim 111 of this study is to contribute to the emerging body of knowledge about the risks to water 112 resources from unconventional oil and gas development and to develop a standardized 113 assessment tool for a more broad application to study the sources and migration of hydrocarbon-114 rich brines to water resources in the NAB and other hydrocarbon-rich basins.

- 115
- 116

2. BACKGROUND

117 2.1. Hydrological Background

118 The study area in northwestern West Virginia is part of the Appalachian Plateau 119 Physiographic Province, where irregular, steeply sloping ridges, separated by narrow valleys and 120 mountainous terrain characterize the topography. Bedrock in the region is dominated by cyclic 121 sequences of sandstone, siltstone, shale, limestone and coal, which vary in thickness and lateral 122 extent throughout the Appalachian Plateau (Wunsch, 1992). The aquifer rocks are composed of 123 the Permian/Upper Pennsylvania Drunkard Group and the Upper Pennsylvanian Monongahela 124 Group (Fig. 1 and 2). Locally, perched water tables are typical in some upland regions where 125 intermittent shale layers act as local aquitards, which result in horizontal flow through cleated 126 coal seam layers (Wunsch, 1992).

127 Where present, the unconsolidated alluvium provides the highest yields for domestic 128 wells, while secondary fractures and bedding planes transmit water in the bedrock and the flow is 129 highly variable (3.7 to 757 liters per minute) spatially because of vertical and lateral changes in 130 fracture density, but with little variability across different geologic units. Shallow groundwater 131 flow is dominated by shallow sets of vertical neotectonic fractures in the sandstone layers, with 132 more intense fractures and thus higher hydraulic permeability in the valley bottoms (Wyrick and 133 Borchers, 1981). Wells located in valley settings generally yield higher flow rates (~22.7L/min) 134 than those in hillslopes and uplands (7.5 to 11.4 L/min). Lineaments, which experience the 135 highest fractures and joint system intensity, are associated with the highest groundwater flow 136 rates (Bain, 1972) and can be pathways for gas and brine migration.

In Tyler, Doddridge and Harrison counties groundwater is generally hard (hardness>120 mg/L) with high manganese (Mn>50 ug/L) and iron (Fe>300 ug/L). However, similar to groundwater flow rates, hardness and metal levels are highly variable with some topographic controls. Groundwater wells located in valleys generally have higher alkalinity, pH, and total dissolved solids (TDS). Sodium (Na), pH, alkalinity, chloride (Cl) and total dissolved salt (TDS) 142 concentrations increase with well depth, while calcium and magnesium decrease. Generally,
143 there is little difference in water quality and water type between different geologic units, with
144 dominantly Ca-HCO₃ composition in most areas, followed by a Na-HCO₃ water type.

145 Based on the data from Shultz (1984), dissolved solutes in the shallow groundwater 146 varied greatly from low salinity with Cl < 10 mg/L to saline waters with Cl up to 2,200 mg/L. Na concentrations had positive correlations with increasing Cl concentrations ($r^2 = 0.57$, p<0.05), 147 148 with Na concentrations reported up to 970 mg/L. Groundwater with Cl> 250 mg/L has been 149 observed in the area ranging from a few hundred to several thousand feet deep. Elevated Cl 150 concentrations are found at shallower depths mainly in valley floors. Densely fractured zones 151 provide nearly vertical highly permeable conduits for upward migration of deep-seated saline 152 water. High Cl concentrations in groundwater have been also reported in areas of oil and gas 153 development. Old deteriorating oil and gas wells can short-circuit the natural flowpaths and 154 provide an area of localized contamination of groundwater (Shultz, 1984). Cl> 50 mg/L was 155 reported in roughly 23% of wells surveyed (n=32 out of 139) conducted prior to shale gas 156 development. A USGS survey of CH₄ in WV groundwater between 1997 and 2006 reported CH₄ 157 contents up to 15 mg/L (21 ccSTP/L) (White and Mathes, 2006).

158

159 2.2 Background of Study Design and Geochemical Techniques

160 Previous studies in the NAB (northeastern PA) have demonstrated compelling evidence 161 for naturally occurring gas and saline groundwater in regional aquifers. However, prior to the 162 rapid rise of shale gas development and hydraulic fracturing, there was a lack of sufficient 163 baseline water quality datasets in many of the areas of active unconventional energy 164 development. Even when baseline water quality databases do exist, they typically consist of only 165 major elements. For this reason, it can still be challenging to distinguish between naturally 166 occurring salts and hydrocarbon gases in shallow groundwater and any possible anthropogenic 167 contamination that could result from poor shale-gas well integrity (e.g., stray gas contamination) 168 or accidental releases (e.g., surface spills of hydraulic fracturing fluids, produced water, or 169 flowback fluids; Vengosh et al., 2014).

Several geochemical tools such as hydrocarbon isotopic and noble gas tracers have been
previously developed to identify and distinguish water contamination from unconventional
hydrocarbon production (Baldassare et al., 2014; Chapman et al., 2012; Darrah et al., 2014; Phan

173 et al., 2016; Sharma et al., 2014; Warner et al., 2014; Ziemkiewicz and He, 2015). In addition, 174 Br/Cl ratios have been successfully employed to identify deep formation brines as the source of 175 saline groundwater in the NAB, however they do not sufficiently distinguish naturally sourced 176 brines from brines released from oil and gas activity (Warner et al., 2012; Ziemkiewicz and He, 177 2015). Similarly, oxygen and hydrogen stable isotopes are typically enriched in brines (Sharma 178 et al., 2014; Warner et al., 2014), however the relative proportion of a typical brine contribution 179 to a blend that would generate saline groundwater is too small (i.e., <20% contribution) to 180 observe significant changes in the stable isotope composition of salinized groundwater (Warner 181 et al., 2014).

182 In contrast, the stable isotopes of strontium (Sr), boron (B) and lithium (Li) are more 183 sensitive techniques to detect even small contributions of brines to a blend with fresh water 184 (<1%) due to their distinct isotopic compositions in formation brines and the high concentrations 185 of these elements in the brines (Warner et al., 2014). NAB oil and gas brines are typically enriched in radiogenic Sr, (⁸⁷Sr/⁸⁶Sr values ranging from 0.71000 to 0.72200), with Marcellus 186 187 brines being less radiogenic (0.71000 to 0.71212) (Capo et al., 2014; Chapman et al., 2012; 188 Warner et al., 2014) than Upper Devonian brines (0.71580 to 0.72200) (Chapman et al., 2012; 189 Warner et al., 2014). Boron and Li isotope signatures in Marcellus hydraulic fracturing flowback fluids were distinct ($\delta^{11}B = 25$ to 31‰ and $\delta^7Li = 6$ to 10‰) from most surface waters ($\delta^{11}B = 8$ 190 191 to 20% and $\delta^7 \text{Li} = 17$ to 30%), and depleted compared to conventional NAB oil and gas brines $(\delta^{11}B = 36 \text{ to } 51\% \text{ and } \delta^7 \text{Li} = 10 \text{ to } 23\%$; Phan et al., 2016; Warner et al., 2014). However, the 192 193 application of these isotope systems for identifying groundwater contamination is limited 194 without establishing a systematic dataset of the isotope signatures of pre-drill saline groundwater 195 in the region.

196 The molecular and isotopic composition of natural gases can also help to distinguish 197 between natural flow and anthropogenic hydrocarbon gas contamination. Natural gases are often 198 classified as thermogenic, biogenic, or "mixed" sources, based on their molecular ratios (e.g., 199 wetness: C_2+/C_1) along with carbon (C) and hydrogen (H) isotopic compositions (e.g., Bernard, 200 1978; Clayton, 1991; Rice and Claypool, 1981; Schoell, 1980, 1983; Schoell, 1988). 201 Thermogenic natural gases are typically more enriched in ethane (C_2H_6) and heavier aliphatic hydrocarbons, and thermogenic CH₄ is typically more enriched in ${}^{13}C$ ($\delta^{13}C$ -CH₄>-55‰) and 202 hydrogen (e.g., Schoell, 1983). As thermal maturity increases, the δ^{13} C of methane and ethane is 203

further increased. Conversely, biogenic gas is almost exclusively composed of CH_4 ($C_1/C_2+ \ge$ ~5,000), with a typically light $\delta^{13}C$ -CH₄ between -55‰ and -75‰ (Schoell, 1983; Whiticar et al., 1985). However, methanogenesis, aerobic and anaerobic oxidation, sulfate reduction (thermal or bacterially driven), or post-genetic fractionation (e.g., fractionation during gas transport in the subsurface by diffusion) can alter the original composition of natural gases or lead to complex mixtures of natural gases from multiple sources.

210 Based on these considerations, the elemental and isotopic compositions of noble gases 211 (e.g., helium (He), neon (Ne), argon (Ar)) have recently been utilized to provide additional 212 constrains on the source of hydrocarbons gases in shallow aquifers (Darrah et al., 2014a; Darrah 213 et al., 2015a; Darrah et al., 2015b; Jackson et al., 2013; Heilweil et al., 2015). The inert nature, 214 low terrestrial abundance, and well-characterized isotopic composition of noble gases in the 215 mantle, crust, hydrosphere, and atmosphere enhance their utility as geochemical tracers of crustal 216 fluids such as groundwater (Ballentine et al., 2002). The noble gas composition of hydrocarbons 217 and other geological fluids are derived from three primary sources: the mantle, atmosphere, and 218 the crust (Ballentine et al., 2002). Previous work has demonstrated that the abundance of helium (i.e., ⁴He) and air-saturated water major (e.g., N₂) and noble gases (e.g., ²⁰Ne, ³⁶Ar) can be used 219 220 to distinguish the presence of large volumes of gas-phase hydrocarbons and track the source and 221 mechanism of fluid migration (Darrah et al., 2014; Darrah et al., 2015; Gilfillan et al., 2009; 222 Heilweil et al., 2015).

223 Northwestern West Virginia is an area that has seen a rapid rise in unconventional oil and 224 gas development, with over 3,000 unconventional gas wells drilled since 2008 (Fig. S1) 225 (WVGES, 2012). With knowledge that shale gas development was imminent in the study area, 226 we hypothesized that the collection and analyses of groundwater samples collected pre-, during-, 227 and post-drilling would allow us to 1) evaluate temporal changes in groundwater geochemistry 228 throughout the drilling processes; 2) determine the most sensitive geochemical parameters that 229 can detect anthropogenic contamination relative to naturally occurring geochemical processes; 3) 230 evaluate the source of the salinity and natural gas in shallow aquifers in this region; and 4) 231 determine whether groundwater near shale gas development in this area is becoming 232 contaminated by stray gas and other contaminants following shale gas development.

We conducted an extensive geochemical and isotopic analysis that included: (1) major and minor ions; (2) trace elements; (3) water isotopes ($\delta^{18}O, \delta^{2}H$); (4) isotopic ratios of dissolved constituents (87 Sr/ 86 Sr, δ^{11} B, δ^{7} Li, δ^{13} C-DIC); (5) molecular and isotopic composition of select dissolved gases (CH₄, C₂H₆+, N₂, δ^{13} C-CH₄, δ^{13} C-C₂H₆); (6) tritium (3 H); and (7) noble gas elemental and isotopic compositions (He, Ne, Ar). To better address these questions, we integrate our geochemical data with time-series and geospatial analysis with respect to shale-gas wells and geological deformational features such as faulting, folding, and proximity to valley bottoms.

241 In parallel with the groundwater study, we also collected surface water samples near 242 storage and disposal of oil and gas wastewater (OGW) areas in order to characterize the 243 geochemical fingerprints of OGW in the research area. We used the geochemical composition of 244 Marcellus flowback and produced waters (Warner et al., 2013a; Warner et al., 2014) as 245 references to determine the source and magnitude of contamination of surface water from OGW. 246 These geochemical fingerprints were also used as references to determine whether the saline and 247 CH₄-rich groundwater in northwestern West Virginia is derived from geogenic process or from 248 direct contamination of leaking from nearby shale-gas wells.

- 249
- 250

3. MATERIALS AND METHODS

251 **3.1 Sample Survey**

252 We examine the inorganic chemistry (anions, cations, trace metals), stable isotopes (O, 253 H, B, Sr, Li), noble gas, tritium, and hydrocarbon (molecular (C_1 to C_5) and stable isotopic $\delta^{13}C$ -CH₄ and δ^{13} C-C₂H₆) compositions of 145 samples from 112 domestic groundwater wells in 254 255 Doddridge, Harrison, Ritchie, Tyler and Wetzel counties in West Virginia, USA (Table 1). The 256 typical depth of shallow drinking-water wells in our study was 35 to 90 m. A subset of wells 257 (n=31) was tested prior to shale gas drilling in Doddridge County starting in summer 2012 (open 258 circle, triangle, and square according to water type defined below). Groundwater wells were 259 selected based on their location in an area targeted for shale gas development and homeowner 260 participation. An additional 79 wells were sampled in Doddridge (n=56), Harrison (n=9), Ritchie 261 (n=5), Tyler (n=6) and Wetzel (n=3) counties between 2012 and 2014, following installation of 262 shale-gas wells and hydraulic fracturing in the area (crossed circle, inverted triangle, and 263 diamond according to water type defined below). 55% of wells were located within 1 km of a 264 shale-gas well. 20 wells were more than 1 km from a shale gas well when first sampled, but retested at least once following installation of a shale gas well within 1 km during the study period. 8 wells that were less than 1 km of from a shale gas when initially sampled were retested during the study period.

268 Neither geological features, nor previous knowledge of water chemistry were considered 269 during water well selection. Instead, we tried to randomly sample domestic water wells from 270 across the study area to get a diverse suite of sample types. Four of the groundwater wells were 271 located near OGW disposal or spill sites in the study area. Modern data was compared to 272 groundwater data from 1982 reported by the West Virginia Department of Natural Resources 273 (Shultz, 1984). We present data from this study with color-coded symbols, while historical data 274 are identified by grey symbols. Pre- and post-drilling samples are indicated by symbol shape 275 within the colors of the three water types identified in this study. An open circle denotes Type 1 276 pre-drilling samples and post-drilling samples are denoted as a crossed-circle. Type 2 pre-drilling 277 samples are denoted by a triangle and post-drilling samples are denoted as an inverted triangle. 278 Type 3 pre-drilling samples are denoted by a square and a diamond denotes post-drilling 279 samples.

280 Surface samples were collected from three spill sites, at the point nearest the origin (n=5)281 and in surface water downstream (n=8) and upstream (n=2) of the spill (Fig. 1; Table 3). We 282 sampled streams near two deep well injection sites and one flowback spill that occurred on a well 283 pad in Tyler County. The first injection well site in Lochgully, WV was sampled in October 284 2013 and the second site in Ritchie County, WV was sampled in December 2013. The spill in 285 Tyler County was identified on January 3, 2014 and the spill water was sampled directly on the 286 same day and three days after the spill. Surface waters from Big Run Creek were collected 287 upstream and at the point of entry for the spill water into the stream on January 6th and at points 288 adjacent to the pad and downstream along Big Run Creek on February 23rd, 2014 along with 289 water from Middle Island Creek, which is a drinking water source for the area.

290

3.2. Field Methods

Water samples from wells were collected prior to any treatment systems and were filtered and preserved in high density polyethylene (HDPE), air tight bottles following USGS protocols (USGS, 2011). Samples were filtered through 0.45 micron filters for dissolved anions, cations
and inorganic trace element isotopes (B, Sr, Li). Trace metal samples were preserved in 10%
Optima nitric acid following filtering through a 0.45 micron filter. Samples bottles collected for
stable isotopes of O, H and DIC were completely filled to minimized interaction with air or air
bubbles and were kept sealed until analysis. Water chemistry samples were stored on ice or
refrigerated until the time of their analysis.

300 Hydrocarbon gas samples for concentration and isotopic analyses were collected in the 301 field using Isotube bottles obtained from Isotech Laboratories by procedures detailed by Isotech 302 Laboratories (Isotech, 2011), stored on ice until delivery to Duke University, and analyzed for 303 CH_4 (and where applicable C_2H_6) isotopic compositions of carbon. Dissolved gas samples for 304 gas concentrations and noble gas measurements were collected in refrigeration-grade copper 305 tubes that were flushed in-line with at least 50 volumes of sample water prior to sealing with 306 stainless steel clamps according to standard methods reported previously (Darrah et al., 2013; 307 Darrah et al., 2015;).

308

309 3.3 Analytical Methods

310 **3.3.1 Water Chemistry**

Major anions (e.g., CI^{-} , $SO_4^{2^{-}}$, Br^{-}) were measured by ion chromatography and major cations (e.g., Na, Ca, Mg) were measured by direct current plasma optical emission spectrometry. Trace elements (i.e., Li, B, V, Cr, Fe, Mn, As, Se, Sr, Ba) were analyzed by ICP-MS on a VG PlasmaQuad-3 calibrated to the NIST 1643e standard. The detection limit of the ICP-MS of each element was determined by dividing three times the standard deviation of repeated blank measurements by the slope of the external standard.

317

318 **3.2.2. Isotope Chemistry**

¹¹B/¹⁰B ratios were measured as BO_2^- in negative mode and reported as δ^{11} B normalized to NIST NBS SRM-951. Long-term measurements (n=60) of NBS SRM 951 standard yielded a precision of 0.6‰. Sr in the water samples was pre-concentrated by evaporation in a HEPAfiltered clean hood and re-digested in 3.5N HNO₃. Sr was separated using Eichrom Sr-specific resin. The ⁸⁷Sr/⁸⁶Sr ratios were collected in positive mode on the TIMS and the standard NIST SRM 987 had an external reproducibility of 0.710265±0.000006. Li isotopes were measured by a ThermoFisher Neptune MC-ICP-MS at BRGM (French Geological Survey) in France. ⁷Li/⁶Li ratios were normalized to the L-SVEC standard solution (NIST SRM 8545) and presented as δ^7 Li. Long-term replicate measurements of NIST SRM 8545 standard yielded a precision of 0.5% (Millot et al., 2004).

The stables isotopes of water (i.e., δ^2 H and δ^{18} O) were analyzed in the Duke Environmental Isotope Lab. These gases are chromatographically separated in the TCEA, and carried to a ThermoFinnigan Delta+XL ratio mass spectrometer via a Conflo III flow adapter. Raw delta values were normalized offline against known vs. measured isotope values for international reference waters VSMOW, VSLAP and IAEA-OH16. The δ^2 H and δ^{18} O values are expressed in per mil versus VSMOW, with standard deviations of ±0.5 ‰ and ±0.1, respectively.

Carbons isotopes in dissolved inorganic carbon (δ^{13} C-DIC) were measured at Duke 335 336 University. Glass septum vials (Labco 11 mL Exetainers) were loaded into the thermostated 337 sample tray of a ThermoFinnigan GasBench II and flushed for ~20 minutes each by autosampler 338 with a two-way flushing needle and a carrier stream of UHP helium at ~30 mL/min. to remove 339 air, and then were each injected with 100 μ L of liquid ortho-phosphoric acid. Sample waters 340 were analyzed by ThermoFinnigan Delta+XL ratio mass spectrometer. Reference CO₂ pulses are injected automatically before and after the six sample peaks. The calculated raw δ^{13} C values of 341 342 samples were then normalized offline against known vs. measured values for three carbonate 343 standards that were analyzed during the run using the same acid reaction (NBS19, IAEA CO8, 344 and Merck calcium carbonate). The first two are international reference materials and the third is an internal standard previously calibrated against the first two. The δ^{13} C is expressed in per mil 345 346 vs. VPDB, and the standard deviation is ± 0.2 %.

347

348 **3.3.3. Dissolved Gas and Gas Isotope Geochemistry**

For samples where copper tube samples were not available, dissolved CH₄ concentrations were calculated using headspace equilibration, extraction and subsequent concentration calculation by a modification of the Kampbell and Vandegrift (1998) method (Kampbell and Vandegrift, 1998) at Duke University. Calculated detection limits of dissolved CH₄ were 0.002 mg/L water. Procedures for stable isotope analyses of gas are summarized in Jackson et al. (2013). Reporting limits for reliable stable carbon isotopic compositions of methane (δ^{13} C-C₁H₆) were consistent with Isotech Laboratories (Illinois, USA). Stable carbon

isotopes of methane and ethane were determined for all samples with CH₄ exceeding 0.1 cm³ 356 STP/L (n=97) and 0.001 cm³ STP/L, respectively. The δ^{13} C-CH₄ were determined by cavity ring-357 down spectroscopy (CRDS) (Busch and Busch, 1997) at the Duke Environmental Stable Isotope 358 359 Laboratory (DEVIL) using a Picarro G2112i or newer generation G-2132i (NOTE: after May 360 2014, the G221i was replaced with the newer generation G-2132i) or gas chromatographic 361 separation using a Trace Ultra ThermoFinnigan followed by combustion and dual-inlet isotope 362 ratio mass spectrometry using a Thermo Fisher Delta XL.For samples in which copper tubes 363 were available, dissolved gas samples were measured by extracting the fluid from the copper 364 tube on a vacuum line (Darrah et al., 2015). Copper tube samples were prepared for analysis by attaching the copper tube to an ultra-high vacuum steel line (total pressure= $1-3 \times 10^{-6}$ torr), 365 366 which is monitored continuously using a four digit (accurate to the nearest thousandths) 0-20 torr 367 MKS capacitance monometer, using a 3/8" (0.953 cm) Swagelok ferruled connection. After the 368 sample connection had sufficiently evacuated and pressure was verified, the fluid sample was 369 inlet to the vacuum line by re-rounding the copper (Kang et al., 2016). After the fluid pressure 370 had equilibrated, the sample was sonicated for ~30 minutes to ensure complete transfer of 371 dissolved gases to the sample inlet line (Solomon et al., 1995).

372 From this gas volume, splits of samples were taken for the measurement of major gas 373 components (e.g., N_2 , O_2 , Ar, CH₄ to C_5H_{12}) using an SRS quadrupole mass spectrometer (MS) 374 and an SRI gas chromatograph (GC) at Ohio State University with standard errors of <3% 375 (Cuoco et al., 2013; Hunt et al., 2012; Kang et al., 2016). The average external precision was 376 determined by measurement of a "known-unknown" standard, including an atmospheric air 377 standard (Lake Erie, Ohio Air) and a series of synthetic natural gas standards obtained from 378 Praxair. The results of the "known-unknown" average external precision analysis are as follows: 379 CH₄ (1.27%), C₂H₆ (1.68%), C₃H₈ (1.34%), C₄H₁₀-n (2.08%), C₄H₁₀-i (2.11%), C₅H₁₂-n 380 (2.78%), C₅H₁₂-i (2.81%), N₂ (1.25%), CO₂ (1.06%), H₂ (3.41%), O₂ (1.39%), and Ar (0.59%). 381 CH_4 concentrations are reported as cc/L (the SI molar unit for gas abundance in water) at 382 standard temperature and pressure (STP) where 1 mg/L of gas is equivalent to 1.4 cc STP/L.

An additional split of the gas was taken for the isotopic analysis of noble gases using a Thermo Fisher Helix SFT Noble Gas MS at Ohio State University following methods reported previously (Cuoco et al., 2013; Darrah and Poreda, 2012; Hunt et al., 2012). The average external precision based on "known-unknown" standards were all less than +/- 1.46% for noble

gas concentrations with values reported in parentheses (⁴He (0.78%), ²²Ne (1.46%), and ⁴⁰Ar 387 388 (0.38%)). These values were determined by measuring referenced and cross-validated laboratory 389 standards including an established atmospheric standard (Lake Erie Air) and a series of synthetic 390 natural gas standards obtained from Praxair including known and validated concentrations of C₁ 391 to C₅ hydrocarbons, N₂, CO₂, CO, H₂, O₂, Ar, and each of the noble gases. Noble gas isotopic standard errors were approximately ± 0.0091 times the ratio of air (or 1.26 x10⁻⁸) for ³He/⁴He 392 ratio, $<\pm 0.402\%$ and $<\pm 0.689\%$ for ²⁰Ne/²²Ne and ²¹Ne/²²Ne, respectively, less than $\pm 0.643\%$ 393 and 0.427% for ³⁸Ar/³⁶Ar and ⁴⁰Ar/³⁶Ar, respectively (higher than typical because of 394 395 interferences from C_3H_8 on mass=36 and 38).

To evaluate the potential for *in-situ* radiogenic production and/or release of ⁴He, we 396 397 analyzed the U and Th in various aquifer outcrop samples collected in Doddridge County, WV. 398 Analyses were conducted by standard methods using inductively coupled plasma mass 399 spectrometry (ICP-MS) (Cuoco et al., 2013). Additionally, tritium (³H) analyses were performed 400 on 56 groundwater samples to evaluate the contributions from modern meteoric water. Tritium (³H) concentrations were measured by the in-growth of ³He using a ThermoFisher Helix SFT 401 402 noble gas MS at The Ohio State University following methods reported previously (Darrah et al., 403 2015; Solomon et al., 1995; Solomon et al., 1992).

404

405 **3.4. Graphical and Statistical Treatment of Data**

All maps, cross-sections, and well coordinates are plotted using ArcMap GIS 10.2.2. Geological and oil and gas well data were available from the West Virginia Geological and Economic Survey (WVGES, 2012). All graphics are plotted using R v. 3.2.0. Statistical evaluations including mean, minimum, maximums, Spearman correlations, standard deviations, and analysis of variance (ANOVA) were performed using R v. 3.2.0. Correlation coefficient, *r* reported in the text was calculated as Spearman's rank correlation coefficient, ρ .

We present data from this study with color-coded symbols, while data from previous studies are identified by orange hexagon. Within all figures, the abundance of methane is preserved using a color intensity scale, where low methane concentrations close to 0 ccSTP/L are blue and range up to red for methane concentrations > 40 ccSTP/L. Samples for which methane samples were not analyzed are shown as a grey symbol.

417

418

4. RESULTS

419 **4.1 Groundwater quality**

420 The dissolved solutes in the shallow groundwater in the study area varied from low 421 salinity (Cl <50 mg/L) to saline waters (Cl up to 2400 mg/L), mostly in the deeper wells (depths 422 ~100 m). Cl concentrations >50 mg/L were detected in 19% of wells surveyed in our study 423 (n=27/145). Saline waters were typically also elevated in other major constituents (Fig. 3). For 424 example, Br and Na concentrations had strong positive correlations with Cl (r = 0.79, p<0.05 and 425 r = 0.62, p<0.05, respectively; Fig. 4). Br concentrations ranged from below detection limits 426 (<0.02 mg/L) to 15.2 mg/L, and Na concentrations ranged from below detection limits (<0.1 427 mg/L) to 1,362 mg/L. DIC in groundwater was also positively correlated with Cl (r = 0.35, 428 p<0.05) and concentrations ranged from 42 to 836 mg/L (Fig. 4). Ca, Mg and SO₄ in the 429 groundwater, however, did not show any correlation with salinity (Fig. 4). SO_4 concentrations 430 were relatively low in groundwater, ranging from below detection limits up to 50 mg/L, while Ca 431 concentrations ranged from below detection limits up to 346 mg/L, and Mg concentrations 432 ranged from below detection limits up to 233 mg/L.

433 Some trace elements were strongly associated with the salinity of the groundwater (Fig. 434 S2). B and Li, specifically, had higher concentrations in the saline water. Li concentrations 435 ranged from below detection limits (0.1 μ g/L) to 72 μ g/L, and were positively correlated to Cl (r 436 = 0.54, p<0.05), while B concentrations ranged from 6 to 232 µg/L and correlated to Cl (r = 0.60, 437 p<0.05; Fig. S2). Arsenic (As) was weakly correlated with Cl (r = 0.18, p<0.05), while other 438 trace elements, such as Ba and Sr, were not significantly correlated with Cl (Fig. S2 and S3). Sr 439 concentrations were relatively high in the study area and ranged from below detection limits 440 $(<0.1 \ \mu g/L)$ to 2,782 $\mu g/L$, while Ba concentrations ranged from below detection limits (<0.1 441 ug/L) to 4.2 mg/L. Ba and Sr were both correlated with Ca (r = 0.53, p<0.05 and r = 0.68, 442 p<0.05, respectively; Fig. S3). These high correlations with Ca suggest that Sr and Ba 443 concentrations are more likely influenced by water-rock interactions in the shallow subsurface 444 than from the migration of a brine.

The Br/Cl (molar) ratios in the saline water (Cl>50 mg/L) ranged from very low values around $2x10^{-4}$ to brine-type waters with Br/Cl > $1.5x10^{-3}$ (up to $7.8x10^{-3}$). These ratios are similar to ranges found in saline groundwater that have been impacted by deep formation brines in other regions of the Appalachian Basin (Warner et al., 2012; Wunsch, 1992). Based on the Cl 449 concentrations and Br/Cl ratios (Warner et al., 2012), we divide the water samples into three 450 major water types. The first type (Type 1) is characterized by Cl< 50 mg/L and has Ca-Na-HCO₃ 451 composition (n=118 samples) (Fig. 3). Type 2 (n=17) has elevated salinity (Cl>50 mg/L) and is a Ca-Na-Cl type, with Br/Cl molar ratio between 1.0×10^{-3} and 2.5×10^{-3} and high correlation 452 453 between Br and Cl (r = 0.97 p<0.05). Type 3 (n=10) also has elevated salinity (Cl>50 mg/L) and is a Ca-Na-Cl type, but has a Br/Cl molar ratio $>2.5 \times 10^{-3}$ and a lower correlation between Br and 454 455 Cl (r = 0.56; p<0.05; Fig. 4). In addition to the difference in Br/Cl, Type 3 had lower Na/Cl (0.99 ± 0.28) and B/Cl $(0.97\pm5.4x10^{-4})$ ratios relative to those in Type 2 (2.68 ± 1.87) and 456 $4.4\pm3.5\times10^{-3}$, respectively) (Fig. 4). All Type 3 groundwater samples occurred within 750 m of a 457 458 valley bottom. The majority of these Type 3 water samples were located in valley bottom 459 characterized by the hinge of the Burchfield syncline (Fig. 2) (Hennen, 1912; Ryder et al., 2012).

The stable isotopes ($\delta^{18}O = -5.9$ to -9.2%; $\delta^{2}H = -24.1$ to -55.0%) of the shallow 460 461 groundwater in the study area primarily fall along the local meteoric water line (LMWL = 6.6 δ^{18} O + 2.4) (Kendall and Coplen, 2001), with low deuterium excess relative to the LMWL in the 462 463 more saline samples (Fig. S4). δ^7 Li values in groundwater from the study area ranged from 10.9% to 21.3%, which are higher than the δ^7 Li of Middle Devonian-age brines (6-10%; Phan 464 et al., 2016; Warner et al., 2014). The δ^{11} B values of the groundwater were between 12.7‰ and 465 25.2‰, which are lower relative to the δ^{11} B of the Devonian-age brines (25-31‰) (Warner et al., 466 467 2014).

The saline groundwater had higher δ^{11} B values (19.9±5.9‰) than that of the low-saline ground water of Type 1 (16.1±5.8‰, p<0.001), and also had lower B/Cl ratios (p<0.001) (Fig. 5). The δ^{11} B was statistically indistinguishable between Types 1 and 2 (p= 0.75). The Li/Cl ratios were similar to B/Cl ratios, with lower ratios in the saline water (p<0.001). However, δ^7 Li values were only significantly higher in Type 2 water (mean = 19.7±1.4‰, p<0.05) compared to both Type 1 (16.8±5.3‰) and Type 3 (16.4±5.2‰) water. δ^7 Li in groundwater of types 1 and 3 were statistically indistinguishable (p=0.83).

Sr/Ca molar ratios were lower than values typically reported in the Appalachian brines (0.002 to 0.17) (Warner et al., 2012), with values in the saline water ranging from 0.0004 to 0.022 (Fig. 5). The 87 Sr/ 86 Sr ratios ranged from 0.71210 to 0.71333, and mean ratios were 0.71287±0.0002 for Type 1, 0.71279±0.0001 for Type 2 and 0.71294±0.0002 for Type 3 (Table 1). These 87 Sr/ 86 Sr ratios are more radiogenic than typical Marcellus age brines (0.71000 to 480 0.71212), but still less radiogenic than the Upper Devonian conventional produced water 481 (0.71580 to 0.72200). The Sr/Ca and 87 Sr/ 86 Sr ratios of the three-groundwater types were 482 statistically indistinguishable from each other (in spite of the differences in salinity and Sr 483 concentrations).

484 High concentrations of Ba and other trace metals were also observed in the saline 485 groundwater (Table 1). Type 3 groundwater had higher Ba (1.9±1.3 mg/L, p<0.05) than either 486 Type 1 or 2, with concentrations exceeding the U.S. EPA maximum contaminant level (MCL) of 487 2 mg/L in 4 out of 10 Type 3 saline waters, and 1 out of 17 Type 2 waters. Likewise, the saline 488 groundwater of Type 3 had distinctively higher As concentrations (14.3 \pm 15.7 µg/L) relative to 489 either Type 1 (5.4 \pm 6.7 µg/L) or Type 2 (4.9 \pm 3.7 µg/L) samples, but it was not statistically 490 significantly (p=0.16), and the MCL of 10 ug/L was exceeded in 5 of the 10 Type 3 waters and 2 491 out of 17 Type 2 waters. The MCL was also exceeded in 18 of the 119 low-salinity Type 1 492 groundwater. Overall, arsenic exceeded the MCL level of 10 µg/L in 25 well samples (17%).

493 **4.2 Dissolved Gas Geochemistry**

494 CH₄ concentrations in groundwater from the study area ranged from below detection limits (~0.01 cm³ STP/L) to 36.9 cm³ STP/L (Table 2). Similar to previous studies in the 495 496 Appalachian Basin, the upper limit is near saturation conditions for CH₄ in fresh water 497 (saturation for CH₄ is ~35-40 cm³STP/L at $p(CH_4)=1$ atm at 10°C) (Darrah et al., 2014; Darrah 498 et al., 2015b). Samples from this study area had C₂H₆ concentrations that ranged from below detection limits (~0.0005 cm³ STP/L) to 0.037 ccSTP/L, C₃H₈ concentrations that ranged from 499 below detection limits (~0.0005 ccSTP/L) to 6.65 x 10⁻⁴ ccSTP/L, C₄H₁₀-i concentrations that 500 ranged from below detection limits (~0.0001 ccSTP/L) to 2.68 x 10⁻⁶ ccSTP/L, C₄H₁₀-n 501 502 concentrations that ranged from below detection limits (~0.0001 ccSTP/L) to 2.24 x 10^{-6} 503 ccSTP/L, C₅H₁₂-i concentrations that ranged from below detection limits (~0.0005 ccSTP/L) to 504 4.65×10^{-7} ccSTP/L, and C₅H₁₂-n concentrations that ranged from below detection limits (~0.0005) ccSTP/L) to $4.32 \times 10^{-7} ccSTP/L$ (Table 2). 505

A one-way analysis of variance of all data from each water type found that groundwater Types 2 and Type 3 (high salinity types) had significantly higher (p<0.05) CH₄ concentrations (13.4 \pm 15 and 14.3 \pm 15 ccSTP/L, respectively) relative to the low salinity Type 1 (1.7 \pm 3.2 ccSTP/L), but were not significantly different from each other. CH₄ and Cl contents were positively correlated when including all samples ($r^2 = 0.70$, p<0.05; Fig. 6). CH₄ was also correlated with Br ($r^2 = 0.68$, p<0.05), B (r= 0.47, p<0.05), and Li (r= 0.71, p<0.05; Fig. S5) across the whole dataset. In the saline samples, CH₄ was correlated with Cl (r=0.60, p<0.05), Br (r=0.59, p<0.05), and Li (r= 0.67, p<0.05).

Most of the Type 1 samples had CH₄ below 1.4 ccSTP/L, with a wide δ^{13} C-CH₄ range of 514 515 -96‰ to -19‰ and elevated C_1/C_2 + ratios (mean = 10,389 ± 45). A subset (30 out of 145) of 516 low-salinity groundwater samples had CH₄ above 1.4 ccSTP/L, with most of these samples having δ^{13} C-CH₄= <-55‰. Types 2 and 3 groundwater with elevated salinity had much higher 517 CH₄ contents on average, but had relatively low δ^{13} C-CH₄ (mean= -63.0±18.3‰ in Type 2 and 518 519 mean = $-69.0 \pm 28.6\%$ in Type 3), an isotopic composition that is consistent with biogenic sources 520 (Fig. 6) (Schoell, 1983; Whiticar and Faber, 1986). Types 1, 2 and 3 samples did display 521 significantly heavier ethane isotope values, where sufficient ethane concentrations were available for isotopic analysis. The mean δ^{13} C-C₂H₆ were -35.87±1.80, -38.25±0.87, and -37.60±0.54‰ 522 523 for Types 1, 2, and 3, respectively. These values are consistent with the ranges observed for 524 thermogenic gases derived from marine (e.g., shale) or terrestrial (e.g., coal) of organic matter.

Groundwater samples from the current study display N_2 (8.94 cm³ STP/L to 20.50 cm³ STP/L; average=12.71 cm³ STP/L) and Ar (0.21 cm³ STP/L to 0.41 cm³ STP/L; average=0.30 cm³ STP/L) concentrations that vary within 9% and 19% of air-saturated water (ASW) values (13.9 and 0.37 cm³ STP/L, respectively) on average, assuming Henry's Law solubility equilibration conditions at atmospheric pressure (1 atm), 10°C, and ~600 meters of elevation (average elevation in the study area) (Table 2; Fig. 7). In fact, the majority of samples have N₂ and Ar that plot within 14% of the temperature-dependent ASW solubility line (Fig. 7).

In the current study, ⁴He concentrations ranged from near ASW values (\sim 37.49 x10⁻⁶ cm³ 532 STP/L) up to 0.357 cm³ STP/L, similar to the range observed in other parts of the Appalachian 533 Basin (Darrah et al., 2015). All of the samples displayed ³He/⁴He ratios that decreased from 534 1.021 R_A (ASW values plus small contributions from the in-growth of tritiogenic ³He; Table 2) 535 to a uniformly crustal isotopic composition of $0.0166R_A$ (where R_A = the ratio of air=1.39 x 10⁻⁶) 536 with increasing $[{}^{4}\text{He}]$ and ${}^{4}\text{He}/{}^{20}\text{Ne}$ (Fig. 8). Note that this trend is largely consistent with other 537 538 areas in the NAB, with the exception that the WV dataset do not show any evidence for a subset 539 of samples with an anomalous mantle-derived composition as was seen in northeastern PA (Darrah et al., 2015b). The 20 Ne/ 22 Ne and 21 Ne/ 22 Ne values ranged from 9.757 to 9.914 and 540

541 0.0276 to 0.0310, respectively. These values are within 1.4% and 7.3% of the anticipated airsaturated water values, respectively. The small increase in ²¹Ne/²²Ne reflects minor contributions 542 of nucleogenic ²¹Ne*, which is significantly higher in Type 2 and Type 3 waters as compared to 543 Type 1. Similarly, 40 Ar/ 36 Ar and 38 Ar/ 36 Ar values ranged from 294.50 to 308.77 and 0.1781 to 544 545 0.1909, respectively. These values are within 4.5% and 1.3% of the anticipated air-saturated water values, respectively. The small increase in ⁴⁰Ar/³⁶Ar reflects minor contributions of 546 radiogenic ⁴⁰Ar*, which is significantly higher in Type 2 and Type 3 waters, as compared to 547 548 Type 1.

549

4.3 Spatial and statistical relationship between hydrogeological location and groundwater geochemistry

552 Previous studies have identified valley bottoms as an area with high occurrences of 553 naturally saline, hydrocarbon-rich groundwater. Eight out of ten Type 3 drinking-water wells, 554 were located less than 750m from the same valley bottom in the northwest corner of Doddridge 555 County. The remaining Type 3 well (WV-503) was located in the valley bottom of an adjacent 556 valley in west Tyler County. Both of these valleys intersect the Burchfield Syncline that runs 557 through the study area. Seven of the Type 2 waters were also found within 750m of a valley 558 bottom in northwest Doddridge County. The remaining Type 2 wells were located between 1,016 559 and 8,241 m distance to a valley bottom.

560 The correlations of Cl (r=0.36, p<0.05) and Br/Cl (r=0.37, p<0.05) to valley bottoms 561 were not high, but higher Cl concentrations and Br/Cl ratios were recorded in groundwater wells 562 located closest to valley bottoms (Fig. S8). CH₄ and C₂H₆ concentrations were also weakly 563 correlated with proximity to valley bottoms (r=0.15, p<0.05 and r=0.16, p<0.05 respectively). 564 The C_1/C_2 + ratio, on the other hand, was negatively correlated with distance to a valley bottoms (i.e. the ratio increased further away from the valley bottom) (r=0.4, p<0.05). The N_2 and ${}^{36}Ar$ 565 566 concentrations of groundwater from this study were also negatively correlated to valley bottoms 567 (r= -0.13, p<0.05 and r= -0.24, p<0.05), with the lowest concentrations in groundwater wells 568 closest to valley bottoms (Fig. S8). The carbon stable isotopes of methane showed no correlation 569 with distance from valley bottoms (p=0.23). Tritium showed no correlation with distance to a 570 valley bottom.

571 The noble gases concentrations and gas ratios were also correlated with distance to valley 572 bottoms (Fig. S8). For example, the ⁴He (r = 0.33, p<0.05), the ⁴He/CH₄ (r=0.42, p<0.05), and the ²⁰Ne/³⁶Ar (r=0.39, r<0.05) were all weakly, but significantly correlated with proximity to 573 574 valley bottoms so that higher values occurred in groundwater wells close to valley bottoms and 575 are associated with more saline samples (Fig. S8). However, it is important to note that there is 576 significant overlap between distances to the Burchfield Syncline and valley bottom in the current data set. Although the trends in ²⁰Ne/³⁶Ar and ³⁶Ar could relate to gas-water interactions in the 577 578 presence of a relatively low volume of free-gas phase hydrocarbons or the migration of an 579 exogenous hydrocarbon-phase in the valley bottom, the lack of coherent fractionation between 20 Ne/ 36 Ar and N₂/Ar suggests that phase-partioning during fluid migration from depth to the 580 581 shallow aquifer is more likely.

582

4.4 Spatial and statistical relationship between conventional and unconventional energy development and water quality

585 We did not observe any relationship between Cl and proximity of the drinking-water 586 wells to the nearest shale gas drilling sites for any of the water types (r=0.04, p=0.70; Fig. 9). A 587 Kruskal-Wallis test found that Cl concentrations in drinking-water wells <1km from a shale gas 588 well pad were statistically indistinguishable to values in drinking-water wells >1 km away from a 589 well pad (p=0.88). CH₄ concentrations did not increase with proximity to the nearest shale gas 590 drilling sites (r = 0.10, p=0.89; Fig. 9), and the CH₄ concentrations in wells located <1km from 591 drilling were statistically indistinguishable from concentrations >1km from drilling (p=0.51). However, the carbon isotopes of CH_4 ($\delta^{13}C-CH_4$) had a weak correlation with distance to a shale 592 593 gas well (r=0.28, p<0.05), with significantly more negative values of δ^{13} C-CH₄ in drinking-water 594 wells <1km from a well pad (mean = -66.4‰) than those located >1km from a well pad (mean = -59.8‰, p<0.05). Conversely, there was no significant correlation between δ^{13} C-C₂H₆ and 595 596 distance to a shale-gas well (r=0.124, p=0.73). The C_1/C_2 + ratio had no relationship with 597 proximity to a shale-gas well (p=0.38) (Fig. 9). However, the C_1/C_2 + ratios were significantly 598 higher than either the Marcellus or other productive natural gas horizons in the region or 599 groundwater wells that experienced fugitive gas contamination in northeastern PA or elsewhere. 600 Additionally, mean C_1/C_2 + ratios in wells <1 km were not significantly different to the mean 601 ratios in wells >1 km from a shale-gas well (p=0.60).

602 The only other parameter that showed a weak, but significant correlation to distance from oil and gas wells and valley bottoms was 87 Sr/ 86 Sr (r=0.32, p<0.05 and r=0.41, p<0.05). The 603 ⁸⁷Sr/⁸⁶Sr ratio increased in drinking-water wells with increasing distance from a shale-gas well 604 and from valley bottoms (Fig. 9). Saline groundwater wells (both Type 2 and Type 3) within 605 1km of a well pad had significantly lower 87 Sr/ 86 Sr ratios than wells located >1km from a well 606 607 pad (p<0.05, Kruskal-Wallis test). When considering all groundwater wells, there was no statistically significant difference in ⁸⁷Sr/⁸⁶Sr ratios in wells greater than or less than 1 km from a 608 609 well pad (p=0.24, Kruskal-Wallis test). No significant (p= >0.10) correlations were observed between distance from a shale-gas well and any other isotope or noble gas parameters (e.g., $\delta^{11}B$, 610 δ^7 Li, ¹³C-CH₄, ⁴He/CH₄, ³⁶Ar, ²⁰Ne/³⁶Ar, and ⁴He). There was also no correlation observed for 611 612 any parameters and number of shale-gas wells in a 1km radius.

613 It is also important to consider the legacy impact of other forms of conventional oil and gas development on water quality in the study area. Considering there are over 130,000 active, 614 615 plugged, or abandoned conventional oil and gas wells in West Virginia, the extensive 616 hydrocarbon production in West Virginia over the past 100 years could be a major influence on 617 water chemistry and contamination, especially compared to the relatively short period (~10 618 years) that hydraulic fracturing has been employed in the area. Only 7 of the 112-groundwater 619 wells sampled in this study were located more than 1 km from a conventional (active or inactive) well. The 36 Ar were weakly, positively correlated with distance to a conventional well (r=0.22, 620 621 p<0.05), but no other parameters showed any relationship with distance to the nearest 622 conventional gas well. There were no significant correlations between the geochemical and gas 623 parameters with the number of conventional wells within a 1km radius. The lack of correlations 624 suggests that conventional oil and gas wells do not play a role in affecting the groundwater 625 geochemistry in this study area in West Virginia, while a previous study in Colorado has 626 suggested stray gas contamination associated with conventional oil and gas wells (Sherwood et 627 al., 2016).

628

629 **4.5 Pre- and post-drilling groundwater quality**

The data indicate that none of the 17 Type 1 wells that were retested after the installation
of nearby shale gas wells showed any change in Cl as compared to the Cl measured in the initial
Type 1 baseline testing (slope=0.9; r=0.79; p<0.05; Fig. 10), even in those located near shale gas

633 drilling sites. However, some groundwater wells with Type 2 and 3 water showed both 634 significant increases and decreases in Cl after drilling, which are discussed further below. CH₄ 635 contents of wells collected after installation of nearby shale gas wells did not change for the 636 majority of the wells (for all 3 water types) relative to the baseline CH₄ data in wells collected prior to the shale gas drilling (slope=1.1; r=0.90; p<0.05; Fig. 10). Likewise, the δ^{13} C-CH₄ of 637 638 water collected after hydraulic fracturing was statistically indistinguishable to their respective values before drilling (slope=0.92, r=0.84; p<0.05; Fig. 10). δ^{13} C-C₂H₆ was only measured 639 before and after in four samples but the isotope ratios all fall close to the 1:1 line between the pre 640 641 and post-drilling samples.

642 These trends were also consistent for stable and noble gas isotopes (Fig. 10). Li and Sr 643 isotopes ratios showed no changes in groundwater sampled post-drilling (slope=0.96, r=0.89; p<0.05 and slope=0.87, r=0.84; p<0.05, respectively). Neither the abundance of ²⁰Ne nor 644 $CH_4/^{36}$ Ar changed significantly over time either (slope =1.1, r=0.90, p<0.05 and slope =1.1, 645 r=0.95, p<0.05, respectively), but other noble gas parameters did show some changes after 646 647 drilling (Fig. 10). The ${}^{4}\text{He}/{}^{20}\text{Ne}$ (slope = 0.97, r²=0.99, p<0.05), N₂ (slope =1.0, r²= 0.29, p<0.05), and 36 Ar (slope =1.0, r²=0.28, p<0.05) also do not show significant change with time, 648 but the variability was much higher. The 4 He/ 20 Ne is well WV-58, however, showed a dramatic 649 increase from 179 to 503. The ⁴He/CH₄ ratios showed little change in the saline samples 650 (slope=0.93, r^2 =0.50, p<0.05), but either a large increase (up to 2x) or large decrease (up to 5x) 651 652 in some of the freshwater samples (Fig. 10).

653 In two of the saline water samples (WV-36 and WV-38), we observed a >100% increase 654 in Cl following shale gas drilling and hydraulic fracturing (Table 1), yet no changes were observed in the overall chemical composition for well WV-36 or in the B, Li, and Sr isotopes 655 656 ratios of the saline groundwater collected after unconventional energy development. Groundwater in well WV-38 showed an increase in the Br/Cl ratio from Type 2 (Br/Cl=1.9x10⁻³) 657 to Type 3 (2.9 x10⁻³). None of the diagnostic gas tracers (e.g., CH₄, ⁴He, ⁴He/CH₄, ²⁰Ne/³⁶Ar, 658 ³⁶Ar) showed any marked changes between sampling before and after installation of shale gas 659 660 wells. One exception is a Type 1 well WV-3, which showed an increase in CH₄ from 2.8 to 21.0 661 ccSTP/L after hydraulic fracturing, which is above the U.S. Dept. of Interior advisory limit, and 662 yet did not correlate with an increase in Cl (Table 1) or other parameters. Despite the increase in

663 CH₄, the δ^{13} C-CH₄ for this drinking-water well was very negative (-93‰) and, like other gas 664 parameters (hydrocarbon composition, noble gases) did not change significantly through time.

665 **4.6. Surface water contamination**

A spill on January 3rd, 2014 at a well pad in Tyler County was characterized by high 666 667 salinity (Cl up to 18,000 mg/L), Br (278 mg/L), B (25.7 mg/L), Cr (679µg/L), and Sr (76 mg/L) (Table 3). The variations of Br/Cl=(6.8×10^{-3}), δ^{11} B (27%), δ^{7} Li (11%), and 87 Sr/ 86 Sr (0.70981) 668 669 were consistent with the composition of Marcellus flowback waters (Chapman et al., 2012; 670 Warner et al., 2014). We show that all of the downstream water collected at different dates had 671 elevated Cl compared to the upstream values (2 mg/L), and high Br/Cl ratios similar to the spill 672 waters (Fig. S9). Surface water directly adjacent to the spill site in Tyler County collected at two 673 dates had up to twice the upstream Cl values (14 and 21 mg/L) and Br/Cl ratios that reflect 674 mixing between the flowback and upstream surface water (Fig. S9). Run-off into Big Run Creek 675 and the surface water at the run-off point sampled in February (more than a month after the spill) 676 also had values that correspond to a mixing line between the flowback and upstream creek values (Fig. S9), indicating continued contamination of the stream from the spilled water. The δ^{11} B and 677 678 δ^7 Li values in the run-off to Big Run creek were consistent with values in WV flowback (27 and 679 14‰, respectively).

680 Surface water was also sampled near two disposal (i.e., injection) wells known to accept 681 OGW; these surface waters also showed evidence of contamination. At both injection well sites, 682 the oil and gas wastewater are stored in holding ponds prior to injection. Here, we sampled 683 streams running adjacent to the injection pad and storage ponds, along with background surface 684 water in the area. Two small streams directly downstream of the injection well in Lochgully and 685 surface holding ponds had high Cl (mean = 470 mg/L), Sr (2 mg/L), Ba (2 mg/L), and Br/Cl (2.6 x 10⁻³), as well as δ^{11} B (20‰) that are consistent with the Devonian-age brine (Warner et al., 686 687 2014). The injection well was permitted in 2002 and renewed for another five years in 2007. The 688 surface storage ponds were closed in 2014, after we sampled in October 2013. Likewise, surface 689 water next to the Hall injection well site in Ritchie Co. had elevated Cl (87 mg/L compared to an upstream of 16 mg/L) and Br/Cl (4.4 x 10^{-3}) and low Na/Cl (0.60) indicating possible 690 691 contamination from the injection well site (Fig. S9). The Hall injection well is much recent and 693

694

5. DISCUSSION

695 **5.1 Tracing the source of the salinity and hydrocarbons in groundwater**

696 The complex geology and tectonic history of the Northern Appalachian Basin (NAB) has 697 led to diverse groundwater quality in the shallow aquifers. Saline groundwater in the NAB 698 aquifers is relatively common and is frequently associated with the presence of hydrocarbon 699 gases. However, findings of elevated salts and CH₄ in drinking-water wells near oil and gas 700 development have prompted concerns about groundwater quality impacts from unconventional 701 exploration of the Marcellus Shale. In some areas, stray gas from leaky, faulty, or damaged wells 702 has been identified, but hydrocarbon-rich saline groundwater has typically only been associated 703 with naturally occurring migration of deep formation brines (Darrah et al., 2014; Jackson et al., 704 2013b; Warner et al., 2012; Warner et al., 2013b). The timeline data in this study show that 705 saline and hydrocarbon-rich groundwater was present in drinking-water wells prior to 706 unconventional oil and gas development in the region, and the inorganic and gas geochemistry of 707 both fresh and saline groundwater generally went unchanged in the first three years post-708 development in the suite of samples evaluated in this study. These observations suggest a natural 709 source of hydrocarbon-rich brine mixing with shallow, young meteoric groundwater rather than 710 contamination from nearby unconventional oil and gas development.

711 Salinity in the groundwater wells in the study area was lower (maximum Cl ~ 2,400 712 mg/L) compared to groundwater sampled in northeastern Pennsylvania (Cl up to ~4,000 mg/L); 713 however the range of Cl concentrations was very similar to the results of groundwater wells 714 analyzed within the study area in a pre-existing 1982 study (Shultz, 1984). Additionally, the 715 frequency of saline water wells was consistent with this historical data. Type 2 and Type 3 saline waters had Ca-Na-Cl composition with $Br/Cl>1.5x10^{-3}$ that differ from the Type 1 fresh water 716 717 with Ca-Na-HCO₃ composition, which is consistent with the brine compositions in Devonian-age 718 produced waters in the NAB (Chapman et al., 2012; Dresel and Rose, 2010; Haluszczak et al., 719 2013; Warner et al., 2012). Ca-Na-Cl type water was also reported in the 1984 study, further 720 supporting the presence of brine in groundwater prior to shale gas development in West Virginia 721 (Shultz, 1984). The higher Br/Cl found in Type 3, but not in Type 2 water, with ratios up to

 $~4x10^{-3}$ are similar to the ratios reported in Marcellus flowback water and accidental spills in northern West Virginia (Fig. 4; Ziemkiewicz and He, 2015; Harkness et al., 2015). Additionally, Type 3 waters were not present in groundwater sampled prior to shale gas development in the study area; however, it was detected in groundwater located more than 2 km from a shale-gas well.

727 Our data show that both Cl and Br/Cl ratios decrease with increasing elevation. Thus, the 728 data show that saline waters with high Br/Cl ratios (mainly Type 3 waters) are more likely to 729 occur in valley bottoms in this study area (Fig. S8). The relationships between salinity, brine 730 contribution and location at the valleys have been observed in other parts of the NAB 731 (Llewellyn, 2014; Warner et al., 2012). The increased fracturing in geologic formations below 732 these features can induce higher hydraulic permeability and promote migration of deep fluids 733 into the shallow aquifers, which supports natural migration of deep brines as the primary source 734 of saline water. Additionally, several previous studies have suggested that increased levels of 735 saline-rich and hydrocarbon-gas-rich fluids occur in valley bottoms assigned either based on 736 topography or distances to nearest stream or river (Baldassare et al., 2013; Molofsky et al., 2013; 737 Darrah et al., 2015; Siegel et al., 2015; Warner et al., 2012). By comparison, other studies have 738 suggested the saline and hydrocarbon gas-rich fluids specifically occur within valley bottoms 739 related to the eroded cores of highly fractured anticlinal structures (e.g., Darrah et al., 2015). The 740 eroded cores of anticlines are not commonly observed in this region of WV because of the low amplitude nature of folding in this area. 741

742 CH_4 also had a significant relationship to valleys in the region (Fig. S6 and S7). 743 Hydrocarbon gases may result from *in-situ* microbial or thermogenic production, and/or the 744 migration of hydrocarbons from an exogenous biogenic or thermogenic source (e.g., Darrah et 745 al., 2015). In general, results from this study are consistent with previously observed 746 relationships between CH₄ and elevated salinity. The strong correlation between Cl and CH₄ in 747 groundwater, particularly for Type 2 water (r =0.76, p<0.05), suggests that elevated CH_4 is 748 mainly arriving in the shallow groundwater along with a migrated brine (Fig. 4). Importantly, the 749 high CH₄ (>1 ccSTP/L) identified in groundwater wells is associated with elevated salinity, but 750 not with distance to shale gas wells (Fig. 9), which appears to preclude an anthropogenic source 751 for both hydrocarbon gases and salts. Historical data from WV also shows naturally high CH₄ 752 (up to 21 ccSTP/L), and thus the values that were observed in this study do not appear atypical

for historical groundwater in the region (White and Mathes, 2006). Similar to what was shown by Darrah et al (2014; 2015b), we find that although CH₄ concentrations increase with Cl content until the point of methane saturation in groundwater. As CH₄ concentrations approach the saturation level (i.e., "bubble point" or CH₄ partial pressure of 1atm (p(CH₄)=1atm) of methane (35-40 cm³ STP/L) in groundwater at 1atm and 10°C for groundwater, there is a noticeable "roll over" in the plot of CH₄ versus Cl (Fig. 6). This roll over demonstrates how the conditions of gas saturation in water regulate the concentrations of CH₄ in groundwater.

760 By comparison to previous studies of the NAB, samples from this study area have lower C_2H_6 concentrations (higher C_1/C_2 +) on average and much more negative $\delta^{13}C$ -CH₄ values. 761 Although the Type 2 and Type 3 waters display heavier δ^{13} C-CH₄ than Type 1 on average, the 762 more negative δ^{13} C-CH₄ signature in the saline groundwater of Type 2 and Type 3 indicates 763 764 significant biogenic contributions of methane in all groundwater samples (Fig. 6), which is different from the more thermogenic-dominated (i.e., enriched in δ^{13} C-CH₄,) sources of 765 766 hydrocarbon gases in groundwater from other regions of the Appalachian Basin (Baldassare et 767 al., 2014; et al., 2014c; Jackson et al., 2013a; Molofsky et al., 2013; Osborn et al., 2011). 768 Nonetheless, saline Type 3 groundwater samples showed positive linear correlations between CH₄ and δ^{13} C-CH₄ (r=0.60, p<0.05) with Cl (r= 0.67, p<0.05; Fig. 6). Similar correlations were 769 770 observed in earlier studies for the northeastern part of the Appalachian Basin, and are consistent 771 with post-genetic fractionation during migration of CH₄-rich brines to shallow aquifers (Darrah 772 et al., 2015b; Darrah et al., 2014).

While δ^{13} C-CH₄ <-55‰ and elevated C₁/C₂+ can readily be interpreted as biogenic, as 773 774 opposed to thermogenic in origin, the persistent presence of ethane (and in some cases propane). 775 elevated helium, and the presence of methane with a more enriched δ^{13} C-CH₄ have a less certain 776 mode of formation (Fig. 6). The most confounding issue with the interpretation of a biogenic 777 source of natural gases in this study area is the low, but persistent presence of higher aliphatic 778 hydrocarbons such as ethane, propane, and in some samples trace amounts of butane and 779 pentane. Further, the abundance of these higher order aliphatic hydrocarbons increases with increasing salinity and helium content, and is associated with a general increase in $\delta^{13}C$ -CH₄ 780 781 (discussed below) (Table 2; Fig. 6; 8). This trend is consistent with the presence of a mixture of 782 thermogenic hydrocarbon gas in samples from this area (Darrah et al., 2014; 2015). Moreover, although there is a broad range of δ^{13} C-C₂H₆ (approximately -39 to -34 per mil) in groundwater 783

from Types 1, 2, and 3, ethane and isotopic values of δ^{13} C-C₂H₆ are consistent with the expected composition of thermogenic gases derived from either marine (e.g., shale) or terrestrial (e.g., coal) organic matter (Faber and Stahl, 1984; Whiticar et al., 1994) throughout all sample types (Figure 6E).

788 In order to find a consistent explanation for all of the geochemical observations, we must 789 first consider the series of geochemical processes that may change the molecular and isotopic 790 composition of natural gas. Given the persistent presence of thermogenic natural gas, we start 791 with the evolution of hydrocarbon stable isotopes during thermal maturation. During the 792 generation of hydrocarbon gases by the thermocatalytic degradation of marine or terrestrial 793 organic matter, there is an approximately linear, temperature-dependent relationship between the δ^{13} C values of methane, ethane, propane, and higher aliphatic hydrocarbons (Faber and Stahl, 794 795 1984; Whiticar et a., 1985; Whiticar and Faber, 1986; Whiticar et al., 1994). Since only stable carbon isotopes of methane and ethane were available in the current study, we plot δ^{13} C-CH₄ vs. 796 797 δ^{13} C-C₂H₆ and the temperature-dependent relationship between these parameters, illustrated by 798 the green line in Figure 6E. The classic interpretation of this plot is that samples that fall above 799 the line represent mixing of various thermogenic components or methane oxidation, whereas 800 samples that fall below the line indicate the addition of biogenic methane (Whiticar et al., 1994). 801 Note that all of the samples fall below the line, indicating a significant mixture of biogenic 802 methane with an apparently ubiquitous, and in this case, relatively low proportion of natural gas 803 derived from a thermogenic source (Figure 6E).

Because δ^{13} C-CH₄ and δ^{13} C-C₂H₆ values are expected to increase with increasing thermal 804 805 maturity (Faber and Stahl, 1984; Whiticar et a., 1985; Whiticar and Faber, 1986; Whiticar et al., 1994), decreasing δ^{13} C-CH₄ paired with the extent of increase in C₁/C₂+ ratios may appear to be 806 807 inconsistent with the anticipated trends for hydrocarbon maturation. However, we suggest that 808 one potential parsimonious explanation may relate to a multiple stage process that progresses as 809 follows: (1) initially a thermogenic natural gas migrates to shallow aquifers over geological time; (2) the range of δ^{13} C-C₂H₆ can be accounted for by *either* a) differences in the thermal maturity 810 of natural gas that migrates to shallow aquifers over time (increasing the $\delta^{13}C$ -C₂H₆ with a 811 812 progressive increase in thermal maturity); b) the migration of multiple sources of thermogenic 813 natural gas (e.g., shale gas plus thermogenic gas derived from coals); or c) aerobic oxidation of 814 hydrocarbons after introduction to oxic/anoxic boundaries in shallow aquifers (Darrah et al.,

815 2015b); followed by (3) mixing with biogenic methane in the shallow subsurface following816 methanogenesis.

817 This processes would involve (1) the migration of a thermogenic natural gas with relatively enriched values of δ^{13} C-CH₄ and δ^{13} C-C₂H₆ and relatively low C₁/C₂+ (as compared to 818 819 groundwater geochemical composition observed in this study); (2) the C_1/C_2 + composition of 820 this natural gas would increase during fluid migration, potentially by a combination of solubility 821 fractionation and aerobic oxidation during migration to the shallow aquifers (producing a range of progressivley enriched δ^{13} C-CH₄ and δ^{13} C-C₂H₆ and elevated C₁/C₂+); (3) mixing of 822 823 thermogenic natural gases from either multiple sources or natual gas from varying thermal 824 maturities, potentially followed by aerobic oxidation (both which would further increase the range of δ^{13} C-CH₄ and δ^{13} C-C₂H₆ and elevate C₁/C₂+); followed by (4) the introduction of 825 biogenic methane with depleted δ^{13} C-CH₄ (¹²C enriched) and elevated C₁/C₂+, but without 826 additional changes in δ^{13} C-C₂H₆. 827

Based on the summation of data, we hypothesize that the persistent occurrence of ethane (and in some cases propane) and the ethane with this isotopic δ^{13} C-C₂H₆ values ranging from -39 to -34 ‰ reflect an unambiguous presence of thermogenic natural gas that apparently migrated to the shallow aquifers, followed by the addition of biogenic methane. In combination, these coupled processes produce a distinguished geochemical composition of natural gas composed of a mixture of both post-genetically altered thermogenic natural gas and biogenic methane.

In support of this *ad hoc* hypothesis, is the presence of highly elevated [⁴He], ⁴He/CH₄, and ²⁰Ne/³⁶Ar (discussed further below) in the gas-rich end-member with relatively elevated δ^{13} C-CH₄ and δ^{13} C-C₂H₆. The majority of the data can be accounted for by simple two component mixing between a biogenic end-member and a thermogenic end-member that previously experienced post-genetic modification that increased the C₁/C₂+ ratio without major changes in the δ^{13} C-CH₄ or δ^{13} C-C₂H₆; these conditions can be met by solubility partitioning during hydrocarbon gas migration (depicted by the dashed red line in Figure 6D).

In addition to the natural gas, this study investigates the origin of the saline groundwater. Boron and Li isotope variations in the saline groundwater reflect intensive water-rock interactions, which is consistent with this hypothesis. Thus, we hypothesize that the saline water originated from Upper Devonian brines with $\delta^{11}B > 40\%$ and low B/Cl (Warner et al., 2014), but was modified through extensive water-rock interactions to form saline groundwater with lower

 δ^{11} B of Type 2 and Type 3 water (Fig. 5). The high correlation of B/Cl with Na/Cl for Type 3 846 847 water suggests that the B modification was induced by base-exchange reactions with the coal and shale rocks that also compose the aquifer, with typically lower $\delta^{11}B$ (i.e., $\delta^{11}B\sim 15\%$ in 848 desorbable B from marine clays; Spivack and Edmond, 1987). The δ^7 Li values in the 849 850 groundwater wells mimic the composition of the Upper Devonian produced waters (Warner et 851 al., 2014), which suggests lower contribution of Li from water-rock interaction. Nonetheless, 852 these isotopic values were higher than the δ^7 Li fingerprints of the Marcellus flowback water 853 $(\delta^7 \text{Li} < 10; \text{ Fig. 5})$, which is consistent with the lack of evidence for contamination from 854 unconventional energy development (Phan et al., 2016; Warner et al., 2014).

855 The ⁸⁷Sr^{/86}Sr ratios in groundwater from the study area were less radiogenic than the typical high ⁸⁷Sr/⁸⁶Sr measured in Upper Devonian brines (>0.716) and slightly higher than the 856 ⁸⁷Sr/⁸⁶Sr Marcellus flowback and produced waters (0.71121±0.0006) and spill water reported in 857 858 this study (0.70981; Table 3; Fig. 5; Chapman et al., 2012; Warner et al., 2012). The 859 groundwater data are also different from the composition of Marcellus-like saline groundwater in northeastern PA reported by Warner et al. (2012). ⁸⁷Sr/⁸⁶Sr ratios reported for coals from the 860 861 Pittsburgh, Allegheny and Kanawha formations in West Virginia (Vengosh et al., 2013) and 862 Pennsylvania (Chapman et al., 2012), as well as leaching of U.S coals (Brubaker et al., 2013; 863 Ruhl et al., 2014; Spivak-Birndorf et al., 2012), had a range of 0.70975 to 0.71910. Both leaching experiments of WV surface rocks and streams that discharged from valley fills in WV 864 found that coal-bearing rocks have ⁸⁷Sr/⁸⁶Sr ratio ~0.7124 (Vengosh et al., 2013), which is 865 866 similar to the values measured in groundwater in this study. This similarity suggests that the 867 deep-source of saline groundwater has interacted with the coal units imbedded in the deep or 868 surface geology, causing the observed isotopic shift from the original isotope composition of the 869 brine. Wunsch (1992) presented a hypothesis that groundwater in the lower NAB likely migrates 870 along coal seams that have higher permeability than the interbedded shale layers found through 871 shallow aquifers in the region. This preferential flowpath would induce intensive interaction with 872 coal seams.

873 Overall, the integration of the isotope systematics of Sr, B, and Li in the investigated 874 groundwater suggests that the saline groundwater originated from the Appalachian brines, but 875 was modified by interactions with the local coal-bearing aquifer rocks. The difference in Br/Cl 876 ratios of Type 2 and 3 could be related to a different origin of the source brines. Produced waters 877 from different geological formations in northern Appalachia have shown large variations in 878 Br/Cl ratios, reflecting different degrees of evaporation and/or later modification by halite 879 dissolution (Chapman et al., 2012; Dresel and Rose, 2010; Warner et al., 2012). The long-term 880 migration of these presumably two different brine sources to the shallow aquifer in WV has 881 involved interactions with the rock formations and modification of the original composition. In 882 any case, the Li and Sr isotope compositions of the saline groundwater of Type 2 and 3 are 883 different from those of the Marcellus brines and spill waters collected in this study, and clearly 884 rule out the possibility of contamination from flowback or produced waters associated with 885 unconventional energy development in the area. This interpretation is further strengthened by the 886 fact that the chemistry of the saline groundwater prior to the shale gas drilling in the area was not 887 modified throughout time following shale gas drilling and hydraulic fracturing.

888 **5.2 Determining transport mechanisms using noble gas geochemistry**

889 Geochemical studies in other regions of the NAB (northeast Pennsylvania, eastern 890 Kentucky) identified mixing of shallow groundwater with possible deep brines with chemistry 891 similar to that found in the Marcellus Shale (Warner et al., 2012). The flow paths that allow the 892 migration from depth was attributed to a combination of deep high hydrodynamic pressure and 893 enhanced natural flow paths (i.e. fracture zones) (Engelder et al., 2009). This model is 894 particularly relevant in valleys due to increased regional discharge to lower hydrodynamic 895 pressure in the valleys and greater fracturing and thus permeability of the subsurface in valleys. 896 The presence of naturally occurring flow paths for fluid migration is important as it suggests 897 there are connective pathways between shallow groundwater and oil and gas bearing formations 898 that could allow for migration of hydraulic fracturing fluids. Noble gas studies in the 899 Appalachian region support the model for long-range migration of hydrocarbon-rich brines over 900 geological time from depth and mixing with shallow groundwater (Darrah et al., 2015; Darrah et 901 al., 2014).

The abundance of dissolved atmospheric (ASW) gases (i.e., ²⁰Ne, ³⁶Ar, N₂) can also help to constrain the behavior of hydrocarbon gases (Aeschbach-Hertig et al., 2008; Gilfillan et al., 2009; Holocher et al., 2002; Holocher et al., 2003; Solomon et al., 1992). Previous research has shown that quantitative "stripping" of air-saturated water noble gases provide evidence for 906 fugitive gas contamination in some shallow drinking-water wells (Darrah et al., 2014). In 907 contrast, *none* of the samples in this study, collected before or after shale gas drilling showed 908 evidence for stripping or fugitive gas contamination (Fig. 7). The most obvious deviations from 909 ASW composition in this study include concomitantly elevated levels of ⁴He, ²⁰Ne, CH₄, and 910 C_2H_6 , which generally correspond to increasing salinity (Fig. 8 and S6) as was observed 911 previously (Darrah et al., 2014; 2015).

912 The extent of "bubble enrichment" or "excess air" entrainment observed here is common 913 in many aquifers (Aeschbach-Hertig et al., 2008; Heaton and Vogel, 1981) and reflects normal 914 equilibration between the atmosphere and meteoric water during groundwater recharge. These 915 findings were as expected for a typical shallow aquifer and consistent with an absence of obvious 916 evidence for extensive gas-water interactions in this dataset (i.e., stripping related to fugitive gas 917 contamination) (Weiss, 1971a, b). One noticeable difference from previous studies, is the lower 918 36 Ar, on average, for samples with the elevated CH₄ concentrations in Types 2 and 3, which 919 suggests the addition of CH₄ may have induced minor two-phase effects (gas-liquid interactions) 920 during transport in the aquifer (Fig. 7).

Noble gas isotopes and ³H data also provide additional insights for the origin of the 921 922 different water types. Similar to other studies, all water types apparently reflect contributions 923 from relatively young meteoric water as demonstrated by the presence of statistically indistinguishable (p<0.05) quantities of 3 H (half-life ~12.4 years) in all three subsets. In general, 924 Type 1 water samples appear to reflect relatively young (3 H-active; <~80 years), low-CH₄, and 925 low salinity groundwater. By comparison, both Type 2 and 3 waters contain lower ³H levels 926 927 (mean ${}^{3}H = 4.5$ compared to 5.9 for the whole dataset), and thus indicate the likely migration of 928 an old exogenous fluid into, and subsequent mixing with, fresh water in shallow aquifers on 929 undetermined time scales. For these reasons, we conclude that the salinity and the majority of the 930 dissolved CH₄ reflect the migration of a deeper, exogenous source of CH₄-rich brines into the 931 shallow aquifers over geological time coupled with the additation of methanogenic methane in 932 the shallow subsurface. This argument conflicts with models of elevated CH₄ controlled by 933 hydrodynamic pressure (Molofsky et al., 2013; Siegel et al., 2015a) and instead suggests that 934 valley bottoms with higher hydraulic permeability induced from higher fault and fracture intensity along deformational features, which may result in preferential pathways for the 935 936 migration of deep fluids to shallow aquifers.

937 Important distinctions between Type 2 and 3 waters include the resolvable differences in the ⁴He/CH₄ and ²⁰Ne/³⁶Ar ratios, which suggests a longer range of fluid transport for Type 3 938 waters (Fig. 8). We interpret the noble gas differences as the result of the migration of a deeper 939 940 source for Type 3 waters relative to Type 2 waters, potentially from an organic-rich shale-like 941 source rock. This distinction is supported by the relatively higher Br/Cl of Type 3 groundwater, 942 indicating a brine-rich source. This mechanism is consistent with the other geochemical and 943 isotope differences observed between Type 2 and Type 3 waters. The B/Cl and Na/Cl ratios and δ^{11} B suggest that the Devonian brines that formed Type 3 waters had fewer interactions with the 944 945 shallow aguifer host rocks relative to Type 2 waters.

Although we do observe a general trend of concomitantly increasing 4 He and 4 He/ 20 Ne 946 and low ³He/⁴He in samples that are rich in Cl and CH₄, we also found significant scatter in these 947 948 relationships within the current dataset (Fig. 8 and S6). These data provide an important 949 parameter by which to differentiate Types 2 and 3 from Type 1, but do not distinguish Types 2 and 3 from each other. All Type 3 and the majority of Type 2 samples do display elevated ⁴He, 950 ²⁰Ne, and ⁴He/²⁰Ne, and low ³He/⁴He in samples rich in Cl and CH₄, which is largely consistent 951 952 with an exogenous crustal/radiogenic source of natural gas to the aquifer (i.e., a source of He 953 external to the present aquifer lithologies) (Fig. 8 and S6).

By comparison to the He-rich samples, with a few exceptions, the majority of Type 1 and a subset of Type 2 samples have air saturated water-like ${}^{3}\text{He}/{}^{4}\text{He}$ values that decrease with increasing ${}^{4}\text{He}$ content, but does not decrease with increasing CH₄ or Cl levels (Fig. 8). This trend appears to reflect a variable mixture between air-saturated water and crustal helium at moderate CH₄ and Cl levels, which is consistent with a larger component of younger, biogenic CH₄.

960 The ⁴He in groundwater, reflects a combination of: (1) atmospheric inputs; (2) *in-situ* production of ⁴He from α -decay of U-Th in the aquifer rocks; (3) the release of ⁴He that 961 962 previously accumulated in detrital grains; and (4) the flux from exogenous sources (Solomon et al., 1996; Zhou and Ballentine, 2006). The proportion of ⁴He from atmospheric inputs can be 963 964 readily estimated from the abundance of other air-saturated water gases and the in situ 965 production from α -decay can be determined by measuring the U and Th of aquifer rocks (Table 2). The steady-state production and accumulation for ⁴He in aquifer minerals (dominated by 966 quartz and clay grains) was estimated as $<2.94 \times 10^{-9}$ cm³ STP/L of water/vr. Additionally, we 967

968 estimate that maximum release of radiogenic helium into aquifer waters that previously 969 accumulated in crustal minerals over geologic time by conducting step-wise heating experiments on aquifers minerals to be on the order of $\sim 0.71 \times 10^{-6}$ cm³ STP/L/yr. 970

Based on these estimates, we find that the 4 He that we observed (up to 0.36 cm 3 STP/L) 971 972 in the CH₄-rich and high salinity samples greatly exceeds the viable combined concentrations from ⁴He_{ASW}, the maximum ⁴He_{in-situ} production, and the expected release from ⁴He that 973 974 previously accumulated in aquifers minerals, unless we assume a groundwater age of greater than 1.4 million years. Because of the consistent presence of ${}^{3}H$ (with a half-life of 12.3 years) 975 observed in groundwater from this study (2.48 to 8.48 ³H units overall and 3.67 to 5.11 in Type 3 976 977 waters), in combination with water isotopes that are consistent with the post-glacial (post-978 Pleistocene) local meteoric water line (Fig. S4), we suggest that these groundwater samples 979 represent a mixture between young meteoric water and an exogenous source of hydrocarbon-rich 980 diluted brines in the shallow subsurface. We conclude that Type 3 waters unambiguously require 981 an exogenous source of ⁴He that mixes with relatively fresh meteoric water, while Type 2 waters 982 likely reflect a mixture of both components. Clearly, on average the majority of Type 1 samples appear to reflect shallow, relatively young meteoric water with some exceptions that have higher 983 984 ⁴He and lower ${}^{3}\text{He}/{}^{4}\text{He}$.

985 In addition to ⁴He, other noble gas data are consistent with the hypothesized migration of 986 an exogenous fluid. In others parts of the Appalachian Basin, we previously interpreted strong 987 correlations between ratios of thermogenic to air-saturated water gases to each other and to 988 increasing salt content as variable additions of a thermogenic hydrocarbon gas-rich brine (dominated by CH_4 with minor C_2H_6 and other crustal components such as ⁴He) to ³H-active, and 989 hence, relatively recent meteoric water (dominated by ASW components such as N_2 and ${}^{36}Ar$) in 990 991 shallow groundwater conditions (Darrah et al., 2014; Darrah et al., 2015b). Although the 992 collection of geochemical data likely indicates a different origin for these gases in this study area 993 (i.e., coal beds or a lower thermal maturity shale gas), in combination, the data suggests the 994 coherent migration of hydrocarbon gases, salts, and radiogenic helium from deeper exogenous 995 sources.

996

997 5.4. Surface water impacts due to release of wastewater

998

The clear evidence for surface water contamination at two injection well sites and from

999 the flowback spill in Tyler County, provide the basis for a geochemical "contaminated" 1000 fingerprint that can be compared to the groundwater geochemistry in the study area. The 1001 flowback spill water was associated with high salinity, high Br/Cl ratios and isotope ratios that 1002 were similar to Marcellus flowback values reported in previous studies (Chapman et al., 2012; Warner et al., 2014). The spill water was also characterized by relatively high $\delta^{11}B$ (>27‰) and 1003 low $\delta^7 \text{Li}$ (<15‰) values that are similar to the values found in Marcellus flowback and are 1004 1005 distinct from the Upper Devonian produced waters from conventional oil and gas wells. Water 1006 samples collected 1.5 and 8 months after the spill show a continued release of flowback water to 1007 the environment, with pools of water showing elevated salinity, Br/Cl ratios and Marcellus-like 1008 isotope signatures. At 1.5 months after the spill, flowback-like water with elevated salinity, Li, 1009 B, Ba, Sr, and other metals was found still running off into Big Run Creek and downstream of 1010 the spill site in Big Run Creek. These samples had elevated concentrations of various inorganic components compared to the upstream values, although the absolute concentrations levels were 1011 1012 below any ecological or drinking water standards.

The δ^{11} B values of the spill water from the Lochgully injection well sites were ~20%, 1013 1014 which could reflect mixing of flowback water with surface water, or that the OGW released from 1015 the storage ponds at the Lochgully site could be a mixture of both Upper Devonian produced 1016 waters and Marcellus flowback. The streams running through the Lochgully site connect 1017 downstream to Wolf Creek, which is a major drinking water source in the area. Other than 1018 elevated Ba and Sr, no other trace elements contamination was found in the two small streams. 1019 The surface water adjacent to the Hall injection well had elevated Cl, Br, Na, B, Sr and Ba 1020 compared to the background surface water, which indicates possible contamination from the 1021 OGW spills downstream from the injection well. These samples were collected during the winter 1022 and there could be seasonal variations in the contribution of OGW to the environment.

1023 Overall, the surface water chemistry at these spill sites is consistent with the composition 1024 of the Marcellus flowback, providing a strong evidence for contamination due to disposal and 1025 storage of hydraulic fracturing fluids in West Virginia. The δ^7 Li values of the leaking flowback 1026 fluid at the Tyler County site were lower compared to the regional saline groundwater in this 1027 study, while the δ^{11} B values were higher. This suggests that the B and Li isotope values in water 1028 contaminated from unconventional activities should be distinct from naturally occurring brine salinization. These findings further support the conclusions from the time series data that the
saline groundwater found in the study site is not a result of releases of OGW from
unconventional oil and gas drilling activity in the area.

1032

6. CONCLUSIONS

1033 Similar to other areas in the Appalachian Basin, the occurrence of CH₄-rich, saline 1034 groundwater in shallow aquifers was found to be a widespread phenomenon and likely a result of 1035 natural migration of deep brine- and natural gas-rich fluids combined with shallow water-rock 1036 interactions. This three-year study has monitored the geochemical variations of drinking-water 1037 wells before and after the installation of nearby shale gas wells, and provides a clear indication 1038 for the lack of groundwater contamination and subsurface impact from shale-gas drilling and 1039 hydraulic fracturing with the temporal resolution offered by the study. Saline groundwater was 1040 ubiquitous throughout the study area before and after shale gas development, and the 1041 groundwater geochemistry in this study was consistent with historical data reported in the 1042 1980's. We observed significant relationships of Cl and Br/Cl ratios with tectonic and 1043 topographic structures, but not with distance to shale gas wells. The variations of B, Li, and Sr 1044 isotopes ratios in the groundwater samples were not consistent with the signature of hydraulic 1045 fracturing fluids, but rather reflect upflow of Devonian-age brines that have migrated to the 1046 shallow aquifers and were modified by water-rock interactions.

1047 Additional evidence comes from the relative distributions of hydrocarbon gases and air-1048 saturated water gases. Unlike previous studies that have identified fugitive gas contamination in 1049 groundwater near shale gas wells in the northeastern part of the Appalachian Basin, we did not observe significant deviations of $CH_4/{}^{36}Ar$ (gas to water ratio) or ${}^{4}He/{}^{20}Ne$ (thermogenic to air-1050 saturated water ratio) relative to Cl concentration (Fig. 10). While we did observe a subset of 1051 samples with elevated CH₄ at low Cl concentrations, these samples all had very low δ^{13} C-CH₄, 1052 which is consistent with microbial CH_4 and display near air-saturated water levels of ⁴He (Darrah 1053 1054 et al., 2015). The occurrence of ethane and propane and the carbon isotope ratios of ethane 1055 indicate that thermogenic gas contributes to the overall mixture of natural gas in the shallow 1056 aquifers of WV. However, groundwater from this study area is dominated by biogenic CH₄. 1057 Importantly, it appears that both biogenic and migrated thermogenic gases in the shallow 1058 groundwater are unrelated to shale gas development.

The abundance of dissolved air-saturated water parameters and ⁴He, further support this 1059 1060 interpretation. With the exception of four samples that have significant excess air (denoted by highly elevated ³⁶Ar), the only notable deviations from normal Henry's Law equilibrium values 1061 are the significant excesses of ⁴He and ²⁰Ne in CH₄- and the salt-rich groundwater samples noted 1062 1063 above. Both of these components are likely enriched in these aquifers by the migration of 1064 exogenous CH₄- and salt-rich fluids, and potentially altered by minor gas-water interactions in aquifer systems. Importantly, we did observe lower abundances of ³⁶Ar and N₂, on average, in 1065 samples with higher CH₄ and Cl content, and thus we do not observe any evidence for 1066 1067 quantitative stripping of air-saturated water noble gases. Additionally, because the N₂/Ar does not fractionation coherently with ²⁰Ne/³⁶Ar, we conclude that the phase-partioning that enriches 1068 ⁴He and ²⁰Ne likely reflects migration of natural gas derived from an exogenous source. These 1069 1070 data also suggest that gas-water interactions occur at exceedingly lower volumes of gas with 1071 respect to water, which further supports our observation for the lack of fugitive gas 1072 contamination in the current study area.

1073 Trace metals, such as As, that are associated with potential health impacts also showed no 1074 correlation with proximity to shale gas activities. Arsenic concentrations exceeding national 1075 drinking water standards were detected also in wells tested before shale gas development. Wells 1076 containing higher As concentrations were generally located in two regions of the study area, and 1077 occurred in all 3 types of water, which points to natural (i.e., geogenic) sources of arsenic in the 1078 aquifer. This observation is important for evaluating possible contamination processes because 1079 some previous studies have associated elevated As with contamination from hydraulic fracturing 1080 activities (Fontenot et al., 2013). Our data rules this out for this study area.

1081 It is clear from this and previous studies that risks to water resources from shale gas 1082 development vary within and between basins. Stray gas contamination has been identified in 1083 northeastern Pennsylvania and Texas (Darrah et al., 2014; Jackson et al., 2013), but not in 1084 northeastern West Virginia (this study) or Arkansas (Warner et al., 2013b). However, surface 1085 water impacts from spills and accidental release do seem to occur in all areas with hydraulic 1086 fracturing such as Pennsylvania (Vengosh et al., 2014) and North Dakota (Lauer et al., 2016). 1087 The integrated geochemical data presented herein rule out stray gas or brine contamination from 1088 shale gas development in this study area. In contrast, we observed surface water contamination at

1089	three sites that originated directly from surface spills associated with unconventional oil and gas
1090	activities. The chemistry of the spill water was identical to the composition of the Marcellus
1091	flowback and/or produced waters. These results clearly demonstrate the advantage of integrated
1092	geochemical tools for delineating the environmental effects of energy development, in addition
1093	to geospatial analysis. The study also shows that surface processes like spills have immediate
1094	effects, while groundwater quality is not impacted, even in a time scale of three years conducted
1095	in this study. Future studies should adapt these and similar geochemical tools to evaluate the
1096	long-term effects of intensive shale gas development in the NAB and other basins, and address
1097	the potential for groundwater contamination over longer periods of time.
1098	
1099	FUNDING
1100	This study was supported by grants from the National Science Foundation (grants number EAR-
1101	1441497 and 1249255) and the Natural Resources Defense Council (NRDC).
1102	
1103	CONFLICT OF INTEREST
1104	The authors have no conflicts of interest to declare.
1105	ACKNOWLEDGMENTS
1106	We gratefully acknowledge Mirijana Beram, Diane Pitcock and the Doddridge County
1107	Watershed Association for their generous help with recruiting homeowners and field
1108	logistics. We thank Gary Dwyer for trace element analysis, Jon Karr for stable isotope analysis,
1109	Nancy Lauer, Eleanor Kern, William K. Eymold for fieldwork and sample processing, and
1110	Andrew Kondash for GIS mapping.
1111	
1112	
1113	
1114	
1115	

1116 Figures Captions

1117

1118 Fig. 1. Stratigraphic column of the carboniferous aquifers in the study area based on (Martin,

- 1119 1998) showing interbedded layers of sandstone, limestone and coal.
- 1120

Fig. 2. Location of private drinking-water wells and spill sites sampled in northwestern West Virginia, superimposed on the local surface geology. Shale-gas wells and the direction and length of lateral drills are also shown. The Arches Fork anticline (AFA) that divides Doddridge County is show in green, while Burchfield Syncline to the north and Robbison Syncline to the south of the AFA are shown in blue (Hennen, 1912; Ryder et al., 2012). No known faults are described in the study area.

1127

1128 Fig. 3. Ternary diagrams that display the relative percent of (A) cations, and (B) anions in 1129 groundwater samples in the study region. Type 1 groundwater (circles) is characterized as Ca-1130 Na-HCO₃ type water, while Type 2 (triangles) and 3 (squares) are Ca-Na-Cl type water. 1131 Historical data from West Virginia collected in 1982 (orange hexagons) shows the presence of 1132 both fresh and saline-type groundwater prior to shale-gas development in the region and could be 1133 the result of natural mixing (Shultz, 1984). The abundance of methane is preserved by using a 1134 blue-red color intensity scale, where methane concentrations of 0 ccSTP/L are blue and range up 1135 to red for $[CH_4] > 40 \text{ ccSTP/L}$. For samples from which methane was not analyzed, data is shown 1136 with a grey symbol. The same color and label scheme is used for groundwater in all subsequent 1137 figures.

1138

1139 Fig. 4. Bromide (A), Ca (B), Na (C), Mg (D), dissolved inorganic carbon (DIC) (E), and SO₄ (F) 1140 versus chloride (Cl) concentrations in low-Cl Type 1 water and high-Cl Type 2 and Type 3 1141 groundwater from the study area. Significant (p<0.05) positive linear correlations were found for 1142 Br (r = 0.79), Na (r = 0.62), and DIC (r = 0.35) with Cl concentrations. Type 2 and Type 3 1143 groundwater had lower Na/Cl ratios but no significant difference was found in the Na/Cl ratio 1144 between Type 2 and Type 3 wells. Water types 2 and 3 had high Br/Cl (>0.0015) ratios with a 1145 strong linear correlation between Br and Cl (r = 0.97 and r = 0.56), but with different Br/Cl 1146 ratios, reflecting of mixing of freshwater with different brine-like sources.

1147 1148

1149 Fig. 5. Boron (A), lithium (B), and strontium (B) isotope and elemental variations in groundwater from the study area. δ^{11} B values in the saline water types were high compared to 1150 the low-saline groundwater of Type 1 but lower than the composition of Upper Devonian brines, 1151 1152 and likely reflect contribution of deep-source brines modified by water-rock interactions with ¹¹B-depleted rocks. δ^7 Li values, particularly in Type 2 and Type 1 waters, were mostly consistent 1153 with values found in Upper Devonian brines, but not in the Marcellus Formation brines. The 1154 ⁸⁷Sr/⁸⁶Sr rations in the groundwater samples were indistinguishable between the water types, and 1155 1156 were more consistent with values found in Appalachian coals (0.70975 to 0.71910) than the 1157 Devonian age brines (Chapman et al., 2012; Vengosh et al., 2013).

1158

Fig. 6. Variations of methane (CH₄) (A) and ethane (C₂H₆) (B) concentrations, δ^{13} C-CH₄ values (C) versus chloride concentrations; C₁/C₂+ hydrocarbon ratios versus δ^{13} C-CH₄ (D); δ^{13} C-CH₄ versus δ^{13} C-C₂H₆ (E); and C₁/C₂+ ratios versus δ^{13} C-C₂H₆ (F) in groundwater analyzed in this

study. The majority of groundwater samples had δ^{13} C-CH₄ <-55‰ and elevated C₁/C₂+ that can 1162 be interpreted as biogenic. However, the positive correlations of CH₄ and higher order 1163 hydrocarbons (C₂H₆) with Cl, the occurrence of higher order hydrocarbons, and the heavy δ^{13} C-1164 1165 C_2H_6 all suggest the coherent migration of a gas-rich, saline fluid from deeper formations into shallow aquifers, which is consequently diluted and presumably oxidized by meteoric water. 1166 Maximum CH₄ concentration is constrained by the upper level (saturation = 40 ccSTP/L at 10° C 1167 and 1 atm) for CH₄, resulting in an observed "roll over" as CH₄ concentrations approach 1168 saturation levels for shallow groundwater. No significant variations in the δ^{13} C-CH₄ values of the 1169 groundwater were observed between different water types, with biogenic and thermogenic 1170 1171 signatures found in all three water types. The persistent presence of ethane and the values of δ^{13} C-C₂H₆ indicate a uniform background of thermogenic natural gas derived from Type II 1172 (marine organic matter-shale) or Type III (terrestrial organic matter-coal) kerogen through the 1173 1174 study area. However, water samples with more enriched δ^{13} C-CH₄ (>-55‰) have a reduction in 1175 the total amount of hydrocarbons and high C_1/C_2 + in the residual hydrocarbon-phase, which 1176 could reflect post-genetic modification of hydrocarbons by migration or oxidation.

1177

Fig. 7. 20 Ne (A), N₂ (B), and CH₄ (C) versus 36 Ar and CH₄ versus 20 Ne/ 36 Ar (D) in the shallow groundwater wells in the study area. All Type 1 samples have 36 Ar and N₂ within 14% of the 1178 1179 temperature-dependent ASW solubility line, while the subset of methane-rich samples showed 1180 noticeably elevated excess ²⁰Ne. In contrast, none of the samples in this study, collected before 1181 or after shale gas drilling showed clear evidence for stripping or fugitive gas contamination. One 1182 noticeable difference from previous studies is the lower ³⁶Ar on average for the samples with 1183 1184 elevated CH₄ concentrations in Types 2 and 3, which suggests the addition of CH₄ may have induced minor two-phase effects (gas-liquid interactions) in the aquifer. Note also the elevated 1185 ²⁰Ne/³⁶Ar in samples with high CH₄; these values indicate significant two-phase migration during 1186 1187 transport to shallow aquifers.

1188

Fig. 8. 3 He/⁴He versus Cl (A), 4 He/²⁰Ne (B), CH₄ (C), and 13 C-CH₄ (D); 4 He/CH₄ versus 20 Ne/³⁶Ar (E); and 4 He/²⁰Ne versus 4 He/³⁶Ar (F) in shallow groundwater samples in the study area. A general trend of concomitantly increasing 4 He and low 3 He/⁴He in samples rich in Cl and CH₄ suggest a source of 4 He external to the aquifer formation, likely due to an exogenous crustal/radiogenic source of natural gas to the aquifer. These data trends clearly distinguish sample Types 2 and 3 from Type 1 (p<0.01), but not from each other, and are consistent with the migration of a hypothesized exogenous, two-phase fluid, potentially of thermogenic origin, to these aquifer systems.

1197

1198

1199 Fig. 9. Variations of Cl (A), δ^{13} C-CH₄ (B), CH₄ (C), C₁/C₂+ ratio (D), ⁸⁷Sr/⁸⁶Sr ratios (E), and ⁴He/CH₄ (F) across the study area in relation to distance to the nearest shale gas well (m). No 1201 statistically significant relationships were observed between any of these geochemical tracers 1202 and distance to the nearest gas well were observed. However, the carbon isotopes of CH₄ (δ^{13} C-1203 CH₄) and C₁/C₂+ ratios had weak correlations with distance to the nearest shell gas wells shale 1204 gas well (r=0.28, p<0.05 and r=0.27, p<0.05, respectively). ⁸⁷Sr/⁸⁶Sr ratios were also 1205 significantly correlated with distance to the nearest shale gas well (r=0.40, p<0.04).

- 1206
- 1207

- 1208 Fig. 10. Relationships between Cl (A), CH₄ (B), C₂H₆ and heavier aliphatic hydrocarbons (C), 1209 δ^7 Li (D), 87 Sr/ 86 Sr (E), δ^{13} C-CH₄ (F), 4 He/ 20 Ne (G), CH₄/ 36 Ar (H), and 4 He/CH₄ (I) in shallow 1210 groundwater wells before and after shale gas drilling and hydraulic fracturing in the study area. 1211 Dash lines represent a 1:1 line, indication no change in time. All of these geochemical tracers 1212 showed no changes in groundwater sampled post-shale gas development as compared to baseline 1213 values, indicating no impact from shale gas development.
- 1214

1215	REFERENCES
1216	
1217	Aeschbach-Hertig W., El-Gamal H., Wieser M. and Palcsu L. (2008) Modeling excess air
1218	and degassing in groundwater by equilibrium partioning with a gas phase. Water
1219	Resour. Res. 44, W08449.
1220	Bain G.a.F. (1972) Water Resources of teh Little Kanawha River basin, West
1221	Virginia: West Virginia Geological and Economic Survey Basin Bulletin 2. 122.
1222	Baldassare F.J., McCaffrey M.A. and Harper J.A. (2014) A geochemical context for stray gas
1223	investigations in the northern Appalachian Basin: Implications of analyses of natural
1224	gases from Neogene-through Devonian-age strata. AAPG Bull. 98, 341-372.
1225	Ballentine C.J., Burgess R. and Marty B., 2002. Tracing fluid origin, transport and
1226	interaction in the crust. In Noble Gases in Geochemistry and Cosmochemistry (eds. D.
1227	Porcelli, Ballentine, C.J. and R.Wieler, R.). pp. 539-614.
1228	Ballentine C.J., Onions R.K., Oxburgh E.R., Horvath F. and Deak J. (1991) Rare-gas
1229	constraints on hydrocarbon accumulation, crustal degassing, and groundwater-
1230	flow in the Pannonian Basin ESPL 105, 229-246.
1231	Ballentine C.J. and O'Nions R.K. (1994) The use of He, Ne, and Ar isotopes to study
1232	hydrocarbon related fluid provenance, migration, mass balance in sedimentary
1233	basins. In Geofluids: Origin, migration, and mass balance in sedimentary basins
1234	(ed. J. Parnell). 78 , 347-361.
1235	Bernard B.B., Brooks J.M.and Sackett W.M. (1976) Natural gas seepage in the Gulf of
1236	Mexico. <i>ESPL</i> 31 , 48-54.
1237	Bernard B.B., 1978. Light hydrocarbons in marine sediments. Texas A&M University,
1238	College Station, TX.
1239	Brett C.E., Goodman W.M., LoDuca S.T. and Lehmann D.F., 1996. Upper Ordovician
1240	and Silurian strata in western New York: Sequences, cycles and basin dynamics,
1241	Upper Ordovician and Silurian sequence stratigraphy and depositional
1242	environments in western New York: A field guide for the James Hall
1243	Symposium: Rochester, University of Rochester, pp. 71-120.
1244	Busch K.W. and Busch M.A., 1997. Cavity Ringdown Spectroscopy: An Ultratrace
1245	Absorption Measurement Technique American Chemical Society Symposium
1246	Series. Oxford Press.
1247	Capo R.C., Stewart B.W., Rowan E.L., Kohl C.A.K., Wall A.J., Chapman E.C.,
1248	Hammack R.W. and Schroeder K.T. (2014) The strontium isotopic evolution of
1249	Marcellus Formation produced waters, southwestern Pennsylvania. Int. J. Coal
1250	<i>Geol.</i> 126 , 57-63.
1251	Cathles L.M. (1990) Scales and effects of fluid-flow in the upper crust. Science 248, 323-
1252	329.
1253	Chapman E.C., Capo R.C., Stewart B.W., Kirby C.S., Hammack R.W., Schroeder K.T.
1254	and Edenborn H.M. (2012) Geochemical and strontium isotope characterization
1255	of produced waters from Marcellus Shale natural gas extraction. Environ. Sci.
1256	<i>Tech</i> 46 , 3545-3553.
1257	Clayton C. (1991) Carbon isotope fractionation during natural gas generation from
1258	kerogen Mar. Petrol. Geol. 8, 232-240.
1259	Coleman D.D., Risatti J.B., Schoell, M. (1981) Fractionation of carbon and hydrogen isotopes by
1260	methane oxidising bacteria. Geochim. Cosmochim. Acta 45, 1033-1037.

- 1261 Cuoco E., Tedesco D., Poreda R.J., Williams J.C., De Francesco S., Balagizi C. and
 1262 Darrah T.H. (2013) Impact of volcanic plume emissions on rain water chemistry
 1263 during the January 2010 Nyamuragira eruptive event: Implications for essential
 1264 potable water resources. J. Hazard. Mater. 244, 570-581.
- 1265 Darrah T.H. and Poreda R.J. (2012) Evaluating the accretion of meteoritic debris and
 1266 interplanetary dust particles in the GPC-3 sediment core using noble gas and
 1267 mineralogical tracers. *Geochim. Cosmochim. Acta* 84, 329-352.
- 1268 Darrah T.H., Tedesco D., Tassi F., Vaselli O., Cuoco E., and Poreda R.J. (2013) Gas chemistry
 1269 of the Dallol region of the Danakil depression in the Afar region of the northern-most
 1270 East African Rift. *Chemical Geology* 339, 16-29.
- 1271 Darrah T.H., Vengosh A., Jackson R.B., Warner N.R. and Poreda R.J. (2014) Noble
 1272 gases identify the mechanisms of fugitive gas contamination in drinking-water
 1273 wells overlying the Marcellus and Barnett Shales. *PNAS* 111, 14076-14081.
- 1274 Darrah T.H., Jackson R.B., Vengosh A., Warner N.R. and Poreda R.J. (2015a) Noble
 1275 Gases: A New Technique for Fugitive Gas Investigation in Groundwater.
 1276 *Groundwater* 53, 23-28.
- 1277 Darrah T.H., Jackson R.B., Vengosh A., Warner N.R., Whyte C.J., Walsh T.B., Kondash
 1278 A.J. and Poreda R.J. (2015b) The evolution of Devonian hydrocarbon gases in
 1279 shallow aquifers of the northern Appalachian Basin: insights from integrating
 1280 noble gas and hydrocarbon geochemistry. *Geochim. Cosmochim. Acta* 170.
- 1281 Dresel P.E. and Rose A.W. (2010) Chemistry and origin of oil and gas well brines in
 1282 western Pennsylvania. *Open-File Report OFOG* 10, 01.00.
- 1283 Dubacq B., Bickle M.J., Wigley M., Kampman N., Ballentine C.J. and Lollar B.S. (2012)
 1284 Noble gas and carbon isotopic evidence for CO 2-driven silicate dissolution in a
 1285 recent natural CO 2 field. *ESPL* 341, 10-19.
- Eckhardt D.A.V. and Sloto R.A., 2012. Baseline groundwater quality in national park
 units within the Marcellus and Utica Shale gas plays, New York, Pennsylvania,
 and West Virginia, 2011. US Geological Survey, Washington, DC.
- Engelder T., Lash G.G. and Uzcátegui R.S. (2009) Joint sets that enhance production
 from Middle and Upper Devonian gas shales of the Appalachian Basin. AAPG
 Bull 93, 857-889.
- Engle M.A. and Rowan E.L. (2014) Geochemical evolution of produced waters from
 hydraulic fracturing of the Marcellus Shale, northern Appalachian Basin: A
 multivariate compositional data analysis approach. *Int. J. Coal Geol.* 126, 45-56.
- Etiope G, Baciu CL, Schoell M (2011) Extreme methane deuterium, nitrogen and helium
 enrichment in natural gas from the Homorod seep (Romania) *Chemical Geology* 280, 8996.
- Faill R.T. (1997a) A geologic history of the north-central Appalachians; Part 1,
 Orogenesis from the Mesoproterozoic through the Taconic Orogeny. *Am. J. Sci.* **297**, 551-619.
- Faill R.T. (1997b) A geologic history of the north-central Appalachians; Part 2, The
 Appalachian Basin from the Silurian through the Carboniferous. *Am. J. Sci.* 297,
 729-761.
- Faber E and Stahl W (1984) Geochemical surface exploration for hydrocarbon in the Norht Sea.
 AAPG Bull. 68, 363-386.
- 1306 Fontenot B.E., Hunt L.R., Hildenbrand Z.L., Carlton Jr D.D., Oka H., Walton J.L.,

1307	Hopkins D., Osorio A., Bjorndal B. and Hu Q.H. (2013) An evaluation of water
1308	quality in private drinking water wells near natural gas extraction sites in the
1309	Barnett Shale Formation. Environ. Sci. Tech. 47, 10032-10040.
1310	Gilfillan S.M.V., Sherwood Lollar B., Holland G., Blagburn D., Stevens S., Schoell M.,
1311	Cassidy M., Ding Z.J., Zhou Z., Lacrampe-Couloume G. and Ballentine C.J.
1312	(2009) Solubility trapping in formation water as dominant CO2 sink in natural gas
1313	fields. <i>Nature</i> 458 , 614-618.
1314	Haluszczak L.O., Rose A.W. and Kump L.R. (2013) Geochemical evaluation of flowback
1315	brine from Marcellus gas wells in Pennsylvania, USA. App. Geochem. 28, 55-61.
1316	Harkness J.S., Dwyer G.S., Warner N.R., Parker K.M., Mitch W.A. and Vengosh A.
1317	(2015) Iodide, bromide, and ammonium in hydraulic fracturing and oil and gas
1318	wastewaters: Environmental implications. Environ. Sci. Tech 49, 1955-1963.
1319	Heaton T.H.E. and Vogel J.C. (1981) Excess air in groundwater. J. of Hydrol. 50, 201-
1320	216.
1321	Heilweil V.M., Grieve P.L., Hynek S.A., Brantley S.L., Solomon D.K. and Risser D.W.
1322	(2015) Stream measurements locate thermogenic methane fluxes in groundwater
1323	discharge in an area of shale-gas development. Environ. Sci. Tech. 49, 4057-4065.
1324	Hennen R.V., 1912. Doddridge and Harrison counties. WVGES, Wheeling News Litho.
1325	Co. Wheeling, WV.
1326	Holocher J., Peeters F., Aeschbach-Hertig W., Hofer M., Brennwald M., Kinzelbach W.
1327	and Kipfer R. (2002) Experimental investigations of the formation of excess air
1328	in quasi-saturated porous media. Geochim. Cosmochim. Acta 66, 4103-4117.
1329	Holocher J., Peeters F., Aeschbach-Hertig W., Kinzelbach W. and Kipfer R. (2003)
1330	Kinetic model of gas bubble dissolution in groundwater and its implications for
1331	the dissolved gas composition. Environ. Sci. Tech. 37, 1337-1343.
1332	Hunt A.G., Darrah T.H. and Poreda R.J. (2012) Determining the source and genetic
1333	fingerprint of natural gases using noble gas geochemistry: A northern
1334	Appalachian Basin case study. AAPG Bull. 96, 1785-1811.
1335	Isotech. (2011) Collection of groundwater samples from domestic and municipal water
1336	wells for dissolved gas analysis, in: Isotech Laboratories, Chicago, IL.
1337	Jackson R.B., Vengosh A., Darrah T.H., Warner N.R., Down A., Poreda R.J., Osborn
1338	S.G., Zhao K.G. and Karr J.D. (2013) Increased stray gas abundance in a subset
1339	of drinking water wells near Marcellus shale gas extraction. PNAS 110,
1340	11250-11255.
1341	Jackson R.B., Vengosh A., Carey J.W., Davies R.J., Darrah T.H., O'Sullivan F. and
1342	Pétron G. (2014) The environmental costs and benefits of fracking. Annu. Rev.
1343	Env. Resour. 39 , 327-362.
1344	Kampbell D.H. and Vandegrift S.A. (1998) Analysis of dissolved methane, ethane, and
1345	ethylene in ground water by a standard gas chromatographic technique. J.
1346	<i>Chromatogr. Sc.</i> 36 , 253-256.
1347	Kang, M., Christian, S., Celia, M.A., Mauzerall, D.L., Bill, M., Miller, A.R., Chen, Y., Conrad,
1348	M.E., Darrah. T.H., and Jackson, R.B., (2016) Identification and characterization of high
1349	methane-emitting abanddoned oil and gas wells. PNAS 113, 13636-13641.
1350	Kessler J.D., Reeburgh W.S. and Tyler S.C. (2006) Controls on methane concentration
1351	and stable isotope (delta H-2-CH4 and delta C-13-CH4) distributions in the water
1352	columns of the Black Sea and Cariaco Basin. Global Biogeochem. l Cy. 20, 366-

	375.
1354	Lauer N.E., Harkness J.S. and Vengosh A. (2016) Brine Spills Associated with
1355	Unconventional Oil Development in North Dakota. Environ. Sci. Tech. 50, 5389-
1356	5397.
1357	Lautz L.K., Hoke G.D., Lu Z., Siegel D.I., Christian K., Kessler J.D. and Teale N.G.
1358	(2014) Using discriminant analysis to determine sources of salinity in shallow
1359	groundwater prior to hydraulic fracturing. <i>Environ. Sci. Tech.</i> 48 , 9061-9069.
1360	Lindsey B.D., Falls W.F., Ferrari M.J., Zimmerman T.M., Harned D.A., Sadorf E.M. and
1361	Chapman M.J. (2006) Factors affecting occurrence and distribution of selected
1362	contaminants in ground water from selected areas in the Piedmont Aquifer
1363	System, eastern United States, 1993-2003. USGS, Washington, DC.
1364	Llewellyn G.T. (2014) Evidence and mechanisms for Appalachian Basin brine migration
1365	into shallow aquifers in NE Pennsylvania, U.S.A. Hydrogeol. J. 22, 1055-1066.
1366	Martin W.D. (1998) Geology of the Dunkard Group (Upper Pennsylvanian-Lower
1367	Permian) in Ohio, West Virignia, and Pennsylvania Bulletin 73, Columbus, OH.
1368	p. 49.
1369	Milici R.C. and de Witt Jr W. (1988) The Appalachian Basin. The Geology of North
1370	America 2 , 427-469.
1371	Millot R., Guerrot C. and Vigier N. (2004) Accurate and High - Precision Measurement
1372	of Lithium Isotopes in Two Reference Materials by MC - ICP - MS. Geostand.
1373	Geoanal. Res. 28, 153-159.
1374	Molofsky L.J., Connor J.A., Wylie A.S., Wagner T. and Farhat S.K. (2013) Evaluation of
1375	Methane Sources in Groundwater in Northeastern Pennsylvania. <i>Ground Water</i> 51,
1376	333-349.
1376 1377	333-349. Moritz A., Helie J.F., Pinti D.L., Larocque M., Barnetche D., Retailleau S., Lefebvre R.
1376 1377 1378	333-349.Moritz A., Helie J.F., Pinti D.L., Larocque M., Barnetche D., Retailleau S., Lefebvre R. and Gelinas Y. (2015) Methane Baseline Concentrations and Sources in Shallow
1376 1377 1378 1379	333-349.Moritz A., Helie J.F., Pinti D.L., Larocque M., Barnetche D., Retailleau S., Lefebvre R. and Gelinas Y. (2015) Methane Baseline Concentrations and Sources in Shallow Aquifers from the Shale Gas-Prone Region of the St. Lawrence Lowlands
1376 1377 1378 1379 1380	 333-349. Moritz A., Helie J.F., Pinti D.L., Larocque M., Barnetche D., Retailleau S., Lefebvre R. and Gelinas Y. (2015) Methane Baseline Concentrations and Sources in Shallow Aquifers from the Shale Gas-Prone Region of the St. Lawrence Lowlands (Quebec, Canada). <i>Environ. Sci. Tech.</i> 49, 4765-4771.
1376 1377 1378 1379 1380 1381	 333-349. Moritz A., Helie J.F., Pinti D.L., Larocque M., Barnetche D., Retailleau S., Lefebvre R. and Gelinas Y. (2015) Methane Baseline Concentrations and Sources in Shallow Aquifers from the Shale Gas-Prone Region of the St. Lawrence Lowlands (Quebec, Canada). <i>Environ. Sci. Tech.</i> 49, 4765-4771. Osborn S.G., Vengosh A., Warner N.R. and Jackson R.B. (2011) Methane
1376 1377 1378 1379 1380 1381 1382	 333-349. Moritz A., Helie J.F., Pinti D.L., Larocque M., Barnetche D., Retailleau S., Lefebvre R. and Gelinas Y. (2015) Methane Baseline Concentrations and Sources in Shallow Aquifers from the Shale Gas-Prone Region of the St. Lawrence Lowlands (Quebec, Canada). <i>Environ. Sci. Tech.</i> 49, 4765-4771. Osborn S.G., Vengosh A., Warner N.R. and Jackson R.B. (2011) Methane contamination of drinking water accompanying gas-well drilling and hydraulic
1376 1377 1378 1379 1380 1381 1382 1383	 333-349. Moritz A., Helie J.F., Pinti D.L., Larocque M., Barnetche D., Retailleau S., Lefebvre R. and Gelinas Y. (2015) Methane Baseline Concentrations and Sources in Shallow Aquifers from the Shale Gas-Prone Region of the St. Lawrence Lowlands (Quebec, Canada). <i>Environ. Sci. Tech.</i> 49, 4765-4771. Osborn S.G., Vengosh A., Warner N.R. and Jackson R.B. (2011) Methane contamination of drinking water accompanying gas-well drilling and hydraulic fracturing. <i>PNAS</i> 108, 8172-8176.
1376 1377 1378 1379 1380 1381 1382 1383 1384	 333-349. Moritz A., Helie J.F., Pinti D.L., Larocque M., Barnetche D., Retailleau S., Lefebvre R. and Gelinas Y. (2015) Methane Baseline Concentrations and Sources in Shallow Aquifers from the Shale Gas-Prone Region of the St. Lawrence Lowlands (Quebec, Canada). <i>Environ. Sci. Tech.</i> 49, 4765-4771. Osborn S.G., Vengosh A., Warner N.R. and Jackson R.B. (2011) Methane contamination of drinking water accompanying gas-well drilling and hydraulic fracturing. <i>PNAS</i> 108, 8172-8176. Phan T.T., Capo R.C., Stewart B.W., Macpherson G.L., Rowan E.L. and Hammack R.W.
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385	 333-349. Moritz A., Helie J.F., Pinti D.L., Larocque M., Barnetche D., Retailleau S., Lefebvre R. and Gelinas Y. (2015) Methane Baseline Concentrations and Sources in Shallow Aquifers from the Shale Gas-Prone Region of the St. Lawrence Lowlands (Quebec, Canada). <i>Environ. Sci. Tech.</i> 49, 4765-4771. Osborn S.G., Vengosh A., Warner N.R. and Jackson R.B. (2011) Methane contamination of drinking water accompanying gas-well drilling and hydraulic fracturing. <i>PNAS</i> 108, 8172-8176. Phan T.T., Capo R.C., Stewart B.W., Macpherson G.L., Rowan E.L. and Hammack R.W. (2016) Factors controlling Li concentration and isotopic composition in formation
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386	 333-349. Moritz A., Helie J.F., Pinti D.L., Larocque M., Barnetche D., Retailleau S., Lefebvre R. and Gelinas Y. (2015) Methane Baseline Concentrations and Sources in Shallow Aquifers from the Shale Gas-Prone Region of the St. Lawrence Lowlands (Quebec, Canada). <i>Environ. Sci. Tech.</i> 49, 4765-4771. Osborn S.G., Vengosh A., Warner N.R. and Jackson R.B. (2011) Methane contamination of drinking water accompanying gas-well drilling and hydraulic fracturing. <i>PNAS</i> 108, 8172-8176. Phan T.T., Capo R.C., Stewart B.W., Macpherson G.L., Rowan E.L. and Hammack R.W. (2016) Factors controlling Li concentration and isotopic composition in formation waters and host rocks of Marcellus Shale, Appalachian Basin. <i>Chem. Geol.</i> 420,
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387	 333-349. Moritz A., Helie J.F., Pinti D.L., Larocque M., Barnetche D., Retailleau S., Lefebvre R. and Gelinas Y. (2015) Methane Baseline Concentrations and Sources in Shallow Aquifers from the Shale Gas-Prone Region of the St. Lawrence Lowlands (Quebec, Canada). <i>Environ. Sci. Tech.</i> 49, 4765-4771. Osborn S.G., Vengosh A., Warner N.R. and Jackson R.B. (2011) Methane contamination of drinking water accompanying gas-well drilling and hydraulic fracturing. <i>PNAS</i> 108, 8172-8176. Phan T.T., Capo R.C., Stewart B.W., Macpherson G.L., Rowan E.L. and Hammack R.W. (2016) Factors controlling Li concentration and isotopic composition in formation waters and host rocks of Marcellus Shale, Appalachian Basin. <i>Chem. Geol.</i> 420, 162-179.
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388	 333-349. Moritz A., Helie J.F., Pinti D.L., Larocque M., Barnetche D., Retailleau S., Lefebvre R. and Gelinas Y. (2015) Methane Baseline Concentrations and Sources in Shallow Aquifers from the Shale Gas-Prone Region of the St. Lawrence Lowlands (Quebec, Canada). <i>Environ. Sci. Tech.</i> 49, 4765-4771. Osborn S.G., Vengosh A., Warner N.R. and Jackson R.B. (2011) Methane contamination of drinking water accompanying gas-well drilling and hydraulic fracturing. <i>PNAS</i> 108, 8172-8176. Phan T.T., Capo R.C., Stewart B.W., Macpherson G.L., Rowan E.L. and Hammack R.W. (2016) Factors controlling Li concentration and isotopic composition in formation waters and host rocks of Marcellus Shale, Appalachian Basin. <i>Chem. Geol.</i> 420, 162-179. Revesz K.M., Breen K.J., Baldassare A.J. and Burruss R.C. (2010) Carbon and hydrogen
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389	 333-349. Moritz A., Helie J.F., Pinti D.L., Larocque M., Barnetche D., Retailleau S., Lefebvre R. and Gelinas Y. (2015) Methane Baseline Concentrations and Sources in Shallow Aquifers from the Shale Gas-Prone Region of the St. Lawrence Lowlands (Quebec, Canada). <i>Environ. Sci. Tech.</i> 49, 4765-4771. Osborn S.G., Vengosh A., Warner N.R. and Jackson R.B. (2011) Methane contamination of drinking water accompanying gas-well drilling and hydraulic fracturing. <i>PNAS</i> 108, 8172-8176. Phan T.T., Capo R.C., Stewart B.W., Macpherson G.L., Rowan E.L. and Hammack R.W. (2016) Factors controlling Li concentration and isotopic composition in formation waters and host rocks of Marcellus Shale, Appalachian Basin. <i>Chem. Geol.</i> 420, 162-179. Revesz K.M., Breen K.J., Baldassare A.J. and Burruss R.C. (2010) Carbon and hydrogen isotopic evidence for the origin of combustible gases in water-supply wells in
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390	 333-349. Moritz A., Helie J.F., Pinti D.L., Larocque M., Barnetche D., Retailleau S., Lefebvre R. and Gelinas Y. (2015) Methane Baseline Concentrations and Sources in Shallow Aquifers from the Shale Gas-Prone Region of the St. Lawrence Lowlands (Quebec, Canada). <i>Environ. Sci. Tech.</i> 49, 4765-4771. Osborn S.G., Vengosh A., Warner N.R. and Jackson R.B. (2011) Methane contamination of drinking water accompanying gas-well drilling and hydraulic fracturing. <i>PNAS</i> 108, 8172-8176. Phan T.T., Capo R.C., Stewart B.W., Macpherson G.L., Rowan E.L. and Hammack R.W. (2016) Factors controlling Li concentration and isotopic composition in formation waters and host rocks of Marcellus Shale, Appalachian Basin. <i>Chem. Geol.</i> 420, 162-179. Revesz K.M., Breen K.J., Baldassare A.J. and Burruss R.C. (2010) Carbon and hydrogen isotopic evidence for the origin of combustible gases in water-supply wells in north-central Pennsylvania. <i>App. Geochem.</i> 25, 1845-1859.
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391	 333-349. Moritz A., Helie J.F., Pinti D.L., Larocque M., Barnetche D., Retailleau S., Lefebvre R. and Gelinas Y. (2015) Methane Baseline Concentrations and Sources in Shallow Aquifers from the Shale Gas-Prone Region of the St. Lawrence Lowlands (Quebec, Canada). <i>Environ. Sci. Tech.</i> 49, 4765-4771. Osborn S.G., Vengosh A., Warner N.R. and Jackson R.B. (2011) Methane contamination of drinking water accompanying gas-well drilling and hydraulic fracturing. <i>PNAS</i> 108, 8172-8176. Phan T.T., Capo R.C., Stewart B.W., Macpherson G.L., Rowan E.L. and Hammack R.W. (2016) Factors controlling Li concentration and isotopic composition in formation waters and host rocks of Marcellus Shale, Appalachian Basin. <i>Chem. Geol.</i> 420, 162-179. Revesz K.M., Breen K.J., Baldassare A.J. and Burruss R.C. (2010) Carbon and hydrogen isotopic evidence for the origin of combustible gases in water-supply wells in north-central Pennsylvania. <i>App. Geochem.</i> 25, 1845-1859. Rice D.D. and Claypool G.E. (1981) Generation, accumulation, and resource potential of
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392	 333-349. Moritz A., Helie J.F., Pinti D.L., Larocque M., Barnetche D., Retailleau S., Lefebvre R. and Gelinas Y. (2015) Methane Baseline Concentrations and Sources in Shallow Aquifers from the Shale Gas-Prone Region of the St. Lawrence Lowlands (Quebec, Canada). <i>Environ. Sci. Tech.</i> 49, 4765-4771. Osborn S.G., Vengosh A., Warner N.R. and Jackson R.B. (2011) Methane contamination of drinking water accompanying gas-well drilling and hydraulic fracturing. <i>PNAS</i> 108, 8172-8176. Phan T.T., Capo R.C., Stewart B.W., Macpherson G.L., Rowan E.L. and Hammack R.W. (2016) Factors controlling Li concentration and isotopic composition in formation waters and host rocks of Marcellus Shale, Appalachian Basin. <i>Chem. Geol.</i> 420, 162-179. Revesz K.M., Breen K.J., Baldassare A.J. and Burruss R.C. (2010) Carbon and hydrogen isotopic evidence for the origin of combustible gases in water-supply wells in north-central Pennsylvania. <i>App. Geochem.</i> 25, 1845-1859. Rice D.D. and Claypool G.E. (1981) Generation, accumulation, and resource potential of biogenic gas <i>AAPG Bull.</i> 65, 5-25.
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393	 333-349. Moritz A., Helie J.F., Pinti D.L., Larocque M., Barnetche D., Retailleau S., Lefebvre R. and Gelinas Y. (2015) Methane Baseline Concentrations and Sources in Shallow Aquifers from the Shale Gas-Prone Region of the St. Lawrence Lowlands (Quebec, Canada). <i>Environ. Sci. Tech.</i> 49, 4765-4771. Osborn S.G., Vengosh A., Warner N.R. and Jackson R.B. (2011) Methane contamination of drinking water accompanying gas-well drilling and hydraulic fracturing. <i>PNAS</i> 108, 8172-8176. Phan T.T., Capo R.C., Stewart B.W., Macpherson G.L., Rowan E.L. and Hammack R.W. (2016) Factors controlling Li concentration and isotopic composition in formation waters and host rocks of Marcellus Shale, Appalachian Basin. <i>Chem. Geol.</i> 420, 162-179. Revesz K.M., Breen K.J., Baldassare A.J. and Burruss R.C. (2010) Carbon and hydrogen isotopic evidence for the origin of combustible gases in water-supply wells in north-central Pennsylvania. <i>App. Geochem.</i> 25, 1845-1859. Rice D.D. and Claypool G.E. (1981) Generation, accumulation, and resource potential of biogenic gas <i>AAPG Bull.</i> 65, 5-25. Rowe D. and Muehlenbachs K. (1999) Isotopic fingerprints of shallow gases in the
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394	 333-349. Moritz A., Helie J.F., Pinti D.L., Larocque M., Barnetche D., Retailleau S., Lefebvre R. and Gelinas Y. (2015) Methane Baseline Concentrations and Sources in Shallow Aquifers from the Shale Gas-Prone Region of the St. Lawrence Lowlands (Quebec, Canada). <i>Environ. Sci. Tech.</i> 49, 4765-4771. Osborn S.G., Vengosh A., Warner N.R. and Jackson R.B. (2011) Methane contamination of drinking water accompanying gas-well drilling and hydraulic fracturing. <i>PNAS</i> 108, 8172-8176. Phan T.T., Capo R.C., Stewart B.W., Macpherson G.L., Rowan E.L. and Hammack R.W. (2016) Factors controlling Li concentration and isotopic composition in formation waters and host rocks of Marcellus Shale, Appalachian Basin. <i>Chem. Geol.</i> 420, 162-179. Revesz K.M., Breen K.J., Baldassare A.J. and Burruss R.C. (2010) Carbon and hydrogen isotopic evidence for the origin of combustible gases in water-supply wells in north-central Pennsylvania. <i>App. Geochem.</i> 25, 1845-1859. Rice D.D. and Claypool G.E. (1981) Generation, accumulation, and resource potential of biogenic gas <i>AAPG Bull.</i> 65, 5-25. Rowe D. and Muehlenbachs K. (1999) Isotopic fingerprints of shallow gases in the Western Canadian Sedimentary Basin: Tools for remediation of leaking heavy oil
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395	 333-349. Moritz A., Helie J.F., Pinti D.L., Larocque M., Barnetche D., Retailleau S., Lefebvre R. and Gelinas Y. (2015) Methane Baseline Concentrations and Sources in Shallow Aquifers from the Shale Gas-Prone Region of the St. Lawrence Lowlands (Quebec, Canada). <i>Environ. Sci. Tech.</i> 49, 4765-4771. Osborn S.G., Vengosh A., Warner N.R. and Jackson R.B. (2011) Methane contamination of drinking water accompanying gas-well drilling and hydraulic fracturing. <i>PNAS</i> 108, 8172-8176. Phan T.T., Capo R.C., Stewart B.W., Macpherson G.L., Rowan E.L. and Hammack R.W. (2016) Factors controlling Li concentration and isotopic composition in formation waters and host rocks of Marcellus Shale, Appalachian Basin. <i>Chem. Geol.</i> 420, 162-179. Revesz K.M., Breen K.J., Baldassare A.J. and Burruss R.C. (2010) Carbon and hydrogen isotopic evidence for the origin of combustible gases in water-supply wells in north-central Pennsylvania. <i>App. Geochem.</i> 25, 1845-1859. Rice D.D. and Claypool G.E. (1981) Generation, accumulation, and resource potential of biogenic gas <i>AAPG Bull.</i> 65, 5-25. Rowe D. and Muehlenbachs K. (1999) Isotopic fingerprints of shallow gases in the Western Canadian Sedimentary Basin: Tools for remediation of leaking heavy oil wells. <i>Org. Geochem.</i> 30, 861-871.
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396	 333-349. Moritz A., Helie J.F., Pinti D.L., Larocque M., Barnetche D., Retailleau S., Lefebvre R. and Gelinas Y. (2015) Methane Baseline Concentrations and Sources in Shallow Aquifers from the Shale Gas-Prone Region of the St. Lawrence Lowlands (Quebec, Canada). <i>Environ. Sci. Tech.</i> 49, 4765-4771. Osborn S.G., Vengosh A., Warner N.R. and Jackson R.B. (2011) Methane contamination of drinking water accompanying gas-well drilling and hydraulic fracturing. <i>PNAS</i> 108, 8172-8176. Phan T.T., Capo R.C., Stewart B.W., Macpherson G.L., Rowan E.L. and Hammack R.W. (2016) Factors controlling Li concentration and isotopic composition in formation waters and host rocks of Marcellus Shale, Appalachian Basin. <i>Chem. Geol.</i> 420, 162-179. Revesz K.M., Breen K.J., Baldassare A.J. and Burruss R.C. (2010) Carbon and hydrogen isotopic evidence for the origin of combustible gases in water-supply wells in north-central Pennsylvania. <i>App. Geochem.</i> 25, 1845-1859. Rice D.D. and Claypool G.E. (1981) Generation, accumulation, and resource potential of biogenic gas <i>AAPG Bull.</i> 65, 5-25. Rowe D. and Muehlenbachs K. (1999) Isotopic fingerprints of shallow gases in the Western Canadian Sedimentary Basin: Tools for remediation of leaking heavy oil wells. <i>Org. Geochem.</i> 30, 861-871. Ruhl L.S., Dwyer G.S., Hsu-Kim H., Hower J.C. and Vengosh A. (2014) Boron and Sedimentary Basin: Tools for remediation of leaking heavy oil wells. <i>Org. Geochem.</i> 30, 861-871.
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1200	 333-349. Moritz A., Helie J.F., Pinti D.L., Larocque M., Barnetche D., Retailleau S., Lefebvre R. and Gelinas Y. (2015) Methane Baseline Concentrations and Sources in Shallow Aquifers from the Shale Gas-Prone Region of the St. Lawrence Lowlands (Quebec, Canada). <i>Environ. Sci. Tech.</i> 49, 4765-4771. Osborn S.G., Vengosh A., Warner N.R. and Jackson R.B. (2011) Methane contamination of drinking water accompanying gas-well drilling and hydraulic fracturing. <i>PNAS</i> 108, 8172-8176. Phan T.T., Capo R.C., Stewart B.W., Macpherson G.L., Rowan E.L. and Hammack R.W. (2016) Factors controlling Li concentration and isotopic composition in formation waters and host rocks of Marcellus Shale, Appalachian Basin. <i>Chem. Geol.</i> 420, 162-179. Revesz K.M., Breen K.J., Baldassare A.J. and Burruss R.C. (2010) Carbon and hydrogen isotopic evidence for the origin of combustible gases in water-supply wells in north-central Pennsylvania. <i>App. Geochem.</i> 25, 1845-1859. Rice D.D. and Claypool G.E. (1981) Generation, accumulation, and resource potential of biogenic gas <i>AAPG Bull.</i> 65, 5-25. Rowe D. and Muehlenbachs K. (1999) Isotopic fingerprints of shallow gases in the Western Canadian Sedimentary Basin: Tools for remediation of leaking heavy oil wells. <i>Org. Geochem.</i> 30, 861-871. Ruhl L.S., Dwyer G.S., Hsu-Kim H., Hower J.C. and Vengosh A. (2014) Boron and strontium isotopic characterization of coal combustion residuals: validation of the strontium isotopic characterization of coal combustion residuals: validation of strontium isotopic characterization of coal combustion residuals: validation of the strontium isotopic characterization of coal combustion residuals: validation of the strontium isotopic characterization of coal combustion residuals: validation of the strontium isotopic characterization of coal combustion residuals: validation of the strontium isotopic characterization of coal combustion residuals: validation of the strontium isotopic characterization o

1399 Ryder R.T., Trippi M.H., Swezey C.S., Crangle Jr R.D., Hope R.S., Rowan E.L. and 1400 Lentz E.E. (2012) Geologic Cross Section CC'Through the Appalachian Basin 1401 from Erie County, North-central Ohio, to the Valley and Ridge Province, Bedford 1402 County, South-central Pennsylvania. USGS, Washington, DC. 1403 Schedl A., McCabe C., Montanez I.P., Fullagar P.D. and Valley J.W. (1992) Alleghenian 1404 regional diagenesis: A response to the migration of modified metamorphic fluids 1405 derived from beneath the Blue Ridge-Piedmont thrust sheet. J. Geol., 339-352. 1406 Schoell M. (1980) The hydrogen and carbon isotopic composition of methane from 1407 natural gases of various origins. Geochim. Cosmochim. Acta 44, 649-661. Schoell M. (1983) Genetic characterization of natural gases. AAPG Bull. 67, 2225-2238. 1408 1409 Schoell M. (1988) Multiple origins of methane in the earth Chem. Geol.71, 1-10. 1410 Schon S.C. (2011) Hydraulic fracturing not responsible for methane migration. PNAS 1411 **108**, E664-E664. 1412 Sharma S. and Baggett J.K. (2011) Application of carbon isotopes to detect seepage out 1413 of coalbed natural gas produced water impoundments. App Geochem. 26, 1423-1414 1432. 1415 Sharma S., Mulder M.L., Sack A., Schroeder K.and Hammack R. (2014) Isotope 1416 approach to assess hydrologic connections during Marcellus Shale drilling. 1417 Ground Water 52, 424-433. 1418 Sherwood O.W., Rogers, J.D., Lackey G., Burke T.L., Osborn S.G., Ryan J.N. (2016) 1419 Groundwater methane in relation to oil and gas development and shallow coal seams in 1420 the Denver-Julesburg Basin of Colorado. PNAS 113(30), 8391-8396. 1421 Shultz R. (1984). Ground-Water Hydrology of the Minor Tributary Basins of the Ohio 1422 River, West Virginia, prepared in cooperation with the West Virginia Department 1423 of Natural Resources Publication X-WVDNR-6. U.S. Geological Survey, Washington, 1424 DC. 1425 Siegel D.I., Azzolina N.A., Smith B.J., Perry A.E. and Bothun R.L. (2015a) Methane 1426 Concentrations in Water Wells Unrelated to Proximity to Existing Oil and Gas 1427 Wells in Northeastern Pennsylvania. Environ. Sci. Tech. 49, 4106-4112. 1428 Siegel D.I., Smith B., Perry E., Bothun R. and Hollingsworth M. (2015b) Pre-drilling 1429 water-quality data of groundwater prior to shale gas drilling in the Appalachian 1430 Basin: Analysis of the Chesapeake Energy Corporation dataset. App. Geochem. 1431 **63**, 37-57. 1432 Solomon D.K., Poreda R.J., Schiff S.L. and Cherry J.A. (1992) Tritium and He-3 as 1433 groundwater age tracers in the Borden aquifer. Water Resour. Res. 28, 741-755. 1434 Solomon D.K., Poreda R.J., Cook P.G. and Hunt A. (1995) Site characterization using H-1435 3/He-3 groundwater ages, Cape Cod, MA. Ground Water 33, 988-996. 1436 Solomon D.K., Hunt A. and Poreda R.J. (1996) Source of radiogenic helium 4 in shallow 1437 aquifers: Implications for dating young groundwater. Water Resour. Res. 32, 1438 1805-1813. 1439 Spivack A.J. and Edmond J.M. (1987) Boron isotope exchange between seawater and the 1440 oceanic crust. Geochim. Cosmochim. Acta 51, 1033-1043. 1441 Spivak-Birndorf L.J., Stewart B.W., Capo R.C., Chapman E.C., Schroeder K.T. and 1442 Brubaker T.M. (2012) Strontium isotope study of coal utilization by-products interacting with environmental waters. J. Environ. Qual. 41, 144-154. 1443 1444 US Energy Information Association. (2014) Annual Energy Outlook 2014. U.S.

1445 Department of Energy, Washington, DC. 1446 US Geological Survey. (2011) National field manual for the collection of water-quality 1447 data. USGS, Washington, D.C. 1448 Vengosh A., Lindberg T.T., Merola B.R., Ruhl L., Warner N.R., White A., Dwyer G.S. 1449 and Di Giulio R.T. (2013) Isotopic imprints of mountaintop mining contaminants. 1450 Environ. Sci. Tech. 47, 10041-10048. 1451 Vengosh A. (2014) Salinization and Saline Environments. In *Treatise on Geochemistry* 1452 Second Edition (eds. H.D. Holland and K.K. Turekian) Elsevier, Oxford. pp. 325-378. 1453 Vengosh A., Jackson R.B., Warner N., Darrah T.H. and Kondash A. (2014) A critical 1454 review of the risks to water resources from unconventional shale gas 1455 development and hydraulic fracturing in the United States Environ. Sci. Tech. 48, 8334-1456 8348. 1457 Wanty R.B. and Kharaka Y.K., 1997. USGS Research on Saline Waters Co-Produced 1458 with Energy Resources. US Geological Survey. 1459 Warner N.R., Jackson R.B., Darrah T.H., Osborn S.G., Down A., Zhao K.G., White A. 1460 and Vengosh A. (2012) Geochemical evidence for possible natural migration of 1461 Marcellus Formation brine to shallow aquifers in Pennsylvania. PNAS 109, 1462 11961-11966. 1463 Warner N.R., Christie C.A., Jackson R.B. and Vengosh A. (2013a) Impacts of shale gas wastewater disposal on water quality in Western Pennsylvania. Environ. Sci. Tech. 47, 1464 1465 11849–11857 1466 Warner N.R., Kresse T.M., Hays P.D., Down A., Karr J.D., Jackson R.B. and Vengosh 1467 A. (2013b) Geochemical and isotopic variations in shallow groundwater in areas of the 1468 Fayetteville Shale development, north-central Arkansas. App. Geochem. 35, 207-220. 1469 Warner N.R., Darrah T.H., Jackson R.B., Millot R., Kloppmann W. and Vengosh A. 1470 1471 (2014) New tracers identify hydraulic fracturing fluids and accidental releases 1472 from oil and gas operations. Environ. Sci. Tech. 48, 12552-12560. 1473 Weiss R. (1971a) Effect of salinity on the solubility of argon in water and seawater. 1474 Deep-Sea Res. 17, 721. 1475 Weiss R. (1971b) Solubility of helium and neon in water and seawater. J. Chem. Eng. 1476 Data 16, 235. 1477 White J.S. and Mathes M.V. (2006) Dissolved-gas concentrations in ground water in 1478 West Virginia, 1997-2005. USGS Numbered Series 156. 1479 Whiticar M.J., Faber E. and Schoell M. (1985) Hydrogen and carbon isotopes of C-1 to 1480 C-5 alkanes in natural gases. AAPG Bull. 69, 316-316. 1481 Whiticar M.J. and Faber E. (1986) Methane oxidation in sediment and water column 1482 environments-isotope evidence. Org. Geochem. 10, 759-768. 1483 Whiticar MR, Faber E, Whelan JK, and Simoneit BRT (1994) Thermogenic and bacterial 1484 hydrocarbon gases (Free and sorbed) in Middle Valley, Juan De Fuca Ridge, LEG 139 1485 Proceedings of the Ocean Drilling Program, Scientific Results, 139, 467-477. 1486 Wunsch D.R. (1992) Ground-water geochemistry and its relationship to the flow system 1487 at an unmined site in the eastern Kentucky coal field. Kentucky Geological Survey 1488 Thesis Series 5. 1489 WVGES, 2012. WVGES References about Devonian Shales. 1490 Wyrick G.G. and Borchers J.W. (1981). Hydrologic effects of stress-relief fracturing in

- 1491 an Appalachian valley. USGS Water Supply Paper 2177.
- 1492 Zhou Z. and Ballentine C.J. (2006) He-4 dating of groundwater associated with hydrocarbon
 1493 reservoirs. *Chem. Geol.* 226, 309-327.
- Ziemkiewicz P.F. and He Y.T. (2015) Evolution of water chemistry during Marcellus Shale gas
 development: A case study in West Virginia. *Chemosphere* 134, 224-231

1496

1 Tables

1 2

Sample ID	Type	C0.	to well (m)	(mg/L)	(x10 ⁻³)	$(x10^{-3})$	(mg/L)	(‰)	(mg/L)	(ppb)	(x10 ⁻³)	31/ Sr	(x10 ⁻³)	(‰)	(x10 ⁻³)	(‰)
WV-1a	1	DD	3104	3		49.0	289	-16.50	0.17	6.95	31.7		86.4		10.5	
WV-1b	1	DD	3104	3		48.5	278		0.31	6.27	48.5		76.1		11.3	
WV-2a	1	DD	1485	1		39.1	146		0.19	28.45	56.2		47.6		9.2	
WV-2b	1	DD	1485	2		26.3	143		0.19	26.76	36.3		27.6		5.4	16
WV-3a	1	DD	1951	2		41.4	253	-14.54	0.33	20.69	49.9		35.9		11.3	
WV-3b	1	DD	1951	3		44.5	250		0.37	24.86	54.6		24.3		9.3	
WV-4	1	DD	513	3		13.1	193	-15 74	0.69	5.67	61.3		22.6		8.2	
WV 5	1	DD	513	0		29	167	14.02	0.74	0.50	21.8		5.2		1.0	
WV -J	1	DD	1027	,		2.0	107	-14.92	0.74	9.59	120.8		5.2		1.9	
WV -0	1	DD	1937	1		23.8	195	-15.01	0.50	0.07	150.8		164		21.0	
W V-/	1	DD	1944	1		4.8	42	-15.90	0.05	0.07	46.0		164		1.8	
wv-sa	1	DD	599	3		27.5	229	-11.85	0.46	2.40	96.7		50.1		17.6	
WV-8b	1	DD	599	12		20.9	504	-15.21	0.05	11.59	1.3		48.9		3.2	
WV-8c	1	DD	599	3		31.1	227		0.44	1.85	73.3		36.6		12.6	
WV-10a	1	DD	939	21		6.6	172	-16.93	0.25	7.45	4.5		12.2		2.0	
WV-10b	1	DD	939	11		48	836	-15.90	0.06	6.59	4.2		51.5		6.3	
WV-10c	1	DD	939	20		10	292	-18.4	0.25	8.25	4.7	0.7130	12.6		2.1	18
WV-11	1	DD	488	5		13.0	174	-15.44	0.43	8.27	24.3		23.8		6.2	
WV-11b	1	DD	488	5		7.1	145		0.41	6.25	24.0		14.1		4.9	
WV-11c	1	DD	488	4		15.3	161		0.39	6.42	32.2		20.7		6.8	
WV-12	1	DD	491	5		13.9	174		0.42	7.82	26.0		26.7		6.8	
WV-21	1	DD	1032	23		6.5	298	-19.88	0.37	0.71	4.9		12.2		2.2	
WV-22	1	DD	69	8		11.5	228	-20.17	0.00	1.02	31.0		24.1		6.3	
WV-25	2	DD		51	1.8	4.2	344	-17.29	0.52	2 33	5.5	0.7126	7.2	20	1.1	18
WV-279	1	DD	752	20	1.0	13.7	446	-14.27	0.09	0.54	1.9	0.7120	16.3	20	1.0	10
WV-27b	1	DD	752	25		11.8	440	-13.3	0.13	0.63	1.5	0.7130	12.4		1.9	10
WV 200	2		1420	52	1.6	0.2	471	-15.5	0.13	6.40	<0.1	0.7150	7.2		0.1	19
WW -2.9a	-	DD	1420	22	1.0	0.5	374	-15.58	0.02	4.52	<0.1		7.5		0.1	
W V-29b	1	DD	1421	32		0.1	323.93		0.02	4.55	<0.1		8.0		<0.1	20
WV-29c	1	DD	1420	45		6.9	396	-14.9	0.00	3.86	0.0		8.0		0.8	20
WV-31a	1	DD	893	5		19.9	219	-15.92	0.64	0.03	47.4		44.7		11	
WV-31b	1	DD	893	5		21.0	172		0.53	0.04	50.3		48.9		11.9	
WV-32a	1	DD	1576	1		6.6	65	-19.08	0.18	0.33	47.4		67.1		8.2	
WV-32b	1	DD	1576	1		6.2	62		0.14	0.25	39.1		30.6		6.1	
WV-33	1	DD	542	1		40.9	319	-17.73	0.66	7.31	206.6		116		26.1	
WV-36a	2	DD	757	159	1.7	6.6	619	-4.27	0.28	11.82	1.6	0.7128	3.9	26	0.9	20
WV-36b	3	DD	757	58	3.1	1.0	322	-8.5	0.55	13.26	3.0	0.7129	2.3		0.1	
WV-36c	2	DD	757	696	1.9	1.3	632		0.00	7.73	0.3	0.7128	0.8	25	0.2	20
WV-37a	2	DD	1126	793	1.7	0.1			0.53	0.00	0.3		0.3		0.1	
WV-37b	2	DD	1126	83	2.5	3.4	328	-17.8	0.00	0.35	0.4	0.7128	3.9		0.7	20
WV-38a	2	DD	1677	110	2.2	2.4	312	-14.94	0.50	3.62	1.3		3.5	23	1.0	
WV-38b	3	DD	1677	660	3.3	1.0	323	-14.7	0.33	3.33	0.2	0.7128	0.7		0.2	18
WV 200	1	DD	1085	32		6.9	278 22	19 20	0.14	10.55	28	0.7120	6.0	16	0.7	15
w v-59a	1	DD	1085	32		0.8	378.23	-16.39	0.14	10.55	2.0	0.7129	0.0	10	0.7	15
WV-39b	1	DD	1085	32		2.9	373.00	-14.2	0.57	10.80	11.7	0.7129	5.8	13	1.9	15
WV-39c	1	DD	1085	42		3.2	172.00		0.57	7.20	8.8		4.2		1.2	
W/W 40a	1	DD	1251	20		67	220	17.22	0.29	0.67	10.6	0.7120	0.6	17	17	17
w v -+0a	1	DD	1551	29		5.7	558	-17.22	0.58	0.07	10.0	0.7129	9.0	17	1.7	17
WV-40b	1	DD	1351	19		< 0.1	334		0.24	0.53	16.1		14.3		2.3	
WV-40c	1	DD	1351	20		7.5	340	-16.9	0.32	0.60	16.1	0.7129	14.0		2.4	18
WV-419	1	DD	038	4		5.0	245	-18.62	0.68	1.05	72.7		167	18	3.8	
W V-414		DD	750	-		5.0	245	-10.02	0.00	1.05	12.1		10.7	10	5.0	
WV-41b	1	DD	938	5		6.5	235		0.82	1.26	75.7		21.9		4.2	
WV-51a	3	DD	212	347	7.6	0.4	203	-14.7	2.08	37.26	1.7	0.7128	0.5		0.2	13
WV-51b	3	DD	212	172	3.6	0.8	230	-18.0	0.91	41.79	2.0	0.7128	1.0		0.3	
111-510	5	DD	212	172	5.0	0.0	250	-10.0	0.91	41.77	2.0	0.7120	1.0		0.5	
WV-52a	3	DD	61	540	3.9	1.5	448	-16.8	4.22	1.04	0.2	0.7127	1.2	20	0.2	20
WV-52b	2	DD	61	337	2.4	1.6	387	-17.1	0.00	2.54	0.2	0.7127	1.9	21	0.2	20
WV-53	1	DD	861	41		13	149.00	-14.3	0.38	3.16	3.0	0.7133	24		0.6	14
									0.50	5.10	5.0				0.0	
WV-54	1	DD	903	31		5.9	314.84	-17.3	0.11	18.93	1.2	0.7130	12.1	16	1.0	20
WV-55b	1	DD	1677	3		26.6	214		0.42	0.38	62.8		81.7		8.6	
WV-55c	1	DD	1677	4		17.6	216		0.33	0.71	38.4		38.8		4.0	
		55	2122			2.6	210	15.0	0.55		30.1	0.5100	0.0		0.0	10
WV-56	1	DD	2133	38		5.0	240.02	-17.9	0.40	1.65	3.6	0.7129	8.9	14	0.8	18
WV-57	1	DD	2133	6		14.8	210		0.35	2.04	20.2		39.7		3.9	
WV-58a	3	DD	2167	773	87	1.0	252	-53	2 74	0.62	14	0.7132	0.5	18	0.2	16
WAV EQL	2	DD	2167	000	2.7	0.0	252	07	2.71	2.20	1.2	0.7122	0.0	22	0.2	10
W V-58D	3	DD	2167	900	3.7	0.9	258	-8.7	3.39	2.30	1.2	0.7132	0.4	22	0.2	20
W V-59	2	DD	2135	80	2.2	4.8	480	-12.7	0.08	3./1	0.5	0.7129	/.1	19	0.4	20
W V-600	1	DD	2165	28		5.0	282	-19.7	0.05	4.90	0.4		13.0	17	0.7	21
WV-60c	1	DD	2165	29		7.4	298	-21.5	0.00	3.71	0.4		14.7		0.7	21
WV-61	1	DD	2222	30		2.4	193.84	-16.4	0.57	14.62	6.8	0.7121	6.6		1.0	18
WV-62b	1	DD	2107	17		4.2	191		0.58	6.82	9.8		10.0		1.4	
WV-62c	1	DD	2107	13		7.1	168		0.47	6.06	9.8		11.2		1.4	
WV-63	1	DD	2088	21		3.3	199		0.68	6.77	11.7		7.1		1.6	
WV-64a	3	DD	2258	383	4.2	1.2	251	-19.0	1.09	1.10	1.2	0.7130	1.4		0.2	18
WV-64b	3	DD	2258	509	3.4	1.2		-20.4	1.98	26.21	1.6	0.7130	0.9	18	0.2	18
WV-65	1	DD	1533	15		4.1	195		0.42	1.87	10.8		7.8		2.0	
WV-66b	1	DD	495	3		5.1	128		0.08	1.10	27.7		6.1		10.3	
WV-66c	1	DD	495	5		3.4	148		0.10	0.24	21.1		4.2		8.0	
WV-101b	2	DD	744	88	0.5	2.5	277		0.24	1.84	1.1	0.7129	2.8		0.4	21
WV-101c	2	DD	744	80	0.2	2.6	287	-18.8	0.18	2.19	1.2	0.7129	3.5		0.4	21
W/V 102	∠ 1	םם	727	8	0.2	2.0	207	-10.0	0.10	2.17	18.5	0.7147	10.1		27	21
W V-102	1	עע	131	8		5.8	204		0.50	5.41	10.0		10.1		2.1	

WV-103	1	DD	737	11		10.8	191		0.02	6.57	<0.1		7.4		0.2 10.4	
WV-104	1	DD	1514	2		36.5	221		0.66	1.99	58.6		84.2			
107		DD	012	0		16.0	260		0.20	0.02			22.6		5.0	
WV-105	1	DD	813	9		16.0	260		0.29	0.03	8.2		33.5		5.0	
WV-106	1	H DD	2107	2		39.0	313		0.42	0.44	200.0		47.9		10.2	
WW 1085	1	DD	2107	3		4.9	221		0.04	1.22	209.0		25.0		0.8	
WW 108-	1	DD	755			24.0	246		0.17	1.22	22.0		26.0		2.0	
WV 100b	1	DD	020	3		24.0	240		0.21	0.00	71.0		22.4		10.7	
WV-1090	1	DD	929	3		30.0	232		0.78	0.00	96.7		46.8		13.0	
WV-110	1	т	526	2		3.0	238		0.17	1.05	28.3		36.6		0.7	
WV-111	1	т	503	3		24.5	199		0.10	7.92	26.5		50.9		3.9	
WV-112	1	DD.	1223	2		20.4	201		0.52	4.82	120.0		28.0		15.8	
WV-113	1	DD	1265			0.9	118		0.21	0.26	5.6		20.0		7.5	
WV-116b	2	DD	5180	79	2.5	3.1	350		0.07	9.86	0.2		3.6		0.5	20
WV-116c	2	DD	5180	73	2.1	4.4	370	-18.5	0.04	12.10	0.2	0.7130	4.4	17	0.6	19
WV-117	1	DD	378	12		1.3	92		0.55	4.01	8.9		8.2		0.9	
WV-300	1	DD	1658	1		47.1	279		0.31	0.12	414.0		280		45.3	
WV-301b	1	DD	650	28		4.7	236	-13.1	0.57	9.48	8.8	0.7128	10.3		2.0	14
WV-301c	1	DD	650	48		3.2	249.00	-15.2	0.35	19.39	2.9	0.7128	6.7		0.9	17
WV-302b	1	DD	516	27		2.8	177	-18.1	0.59	19.18	7.2	0.7128	4.5		1.2	14
WV-302c	1	DD	516	2		28.0	169		0.47	22.83	61.1	0.7128	42.7		12.3	14
WV-303b	1	DD	552	14		3.9	154		0.45	12.96	14.3		10.1		2.8	
WV-303c	1	DD	552	18		3.0	160		0.46	9.84	10.5		5.0		2.0	
WV-304	1	DD	457	7		9.7	193		0.95	3.47	56.3		16.8		4.2	
WV-305	1	DD	542	<1		159.7	154		0.39	10.71	481.5		461		90.2	
WV-306	1	DD	542	<1		5.4	361		0.04	0.14	18.7		90.2	23	3.1	
WV-308	1	DD	1701	1		57.6	194		0.67	0.59	393.3		107		41.2	
WV-309	1	DD	1932	14		4.0	305		0.26	0.10	4.8		28.4		2.3	
WV-311	1	DD	1587	<1		169.8	161		0.75	1.39	1355		576		103.9	
WV-312	1	DD	1408	<1		47.1	186		0.33	0.04	586.0		223		56.5	
WV-313	2	DD	906	59	1.8	1.9	334		0.09	1.27	0.4	0.7127	12.6	16	0.8	20
WV-314b	2	Н	389	2366	2.2	0.3	161	-14.4	0.77	4.39	0.5	0.7129	0.2	20	0.2	19
WV-314c	2	Н	389	2232	1.8	0.9	492	-14.8	2.88	3.69	0.5	0.7129	0.2	17	0.2	19
WV-315	1	DD	2125	1		47.7	424		0.18	2.81	129.3		65.6		18.4	
WV-316	1	DD	2196	9		27.0	483		0.01	4.69	2.3		52.1		4.7	
WV-317	2	DD	2336	54	1.8	5.0	361	-14.8	0.02	4.92	1.2	0.7125	9.2	19	1.1	20
WV-318	1	DD	1114	1		8.0	56		0.04	0.00	30.5		40.4		3.3	
WV-319	1	DD	1117	<1		38.9	132		0.10	0.18	301.8		216		28.8	
WV-320	1	DD	912	2		73.1	246		0.00	16.83	<0.1		92.2		0.1	
WV-321	1	DD	830	5		3.7	261		0.39	0.44	85.6		17.3		20.8	
WV-322	1	DD	744	3		4.3	214		0.00	6.82	0.6		12.3		4.3	
WV-323	1	н	1025	47		2.3	252.00	-16.8	0.19	0.79	9.2	0.7133	2.7	13	1.1	16
WV-324b	1	н	964	24		2.3	188	-1/.1	0.43	0.30	1.4	0.7131	5.8		1.4	15
WV 225	1	п	904	37		0.8	221	-19.5	0.44	0.54	4.7		1.0		0.8	
WV 226	1	и и	467	3		10.4	221		0.36	9.90	69.9		33.4		5.4	
WV 227	1	D	407	5		12.8	200		0.20	1.12	01.1		52.4		11.4	
WV-329	1	R	925	3		18.2	230		1.13	4.85	181.7		86.0		15.6	
WV-400	1	т	261	3		4.9	114		0.10	0.17	29.1		45.4		3.3	
WV-401	1	т	874	2		62.3	287	-18.4	0.12	0.17	84.5		134		14.3	
WV-412	1	DD	141	26		8.3	322	-16.2	0.00	0.28	< 0.1		8.3		0.1	
WV-414	1	DD	912	6		22.6	246		0.21	0.43	20.9		35.0		5.3	
WV-417	1	DD	1177	21		12.3	400	-15.2	0.24	2.45	8.9	0.7127	20.1		2.5	
WV-427	1	R	615	5		22.9	337	-19.7	0.92	27.89	92.5		34.0		8.8	
WV-428	1	R	402	7		33.8	248	-18.9	0.22	15.58	10.7		64.9		5.4	
WV-429	1	DD	277	1		131.3	256	-20.6	0.10	3.50	25.1		273		25.1	
WV-435	1	Н	184	3		< 0.1	218		0.39	1.60	78.6		23.9		10.9	
WV-501	1	W	521	5		5.8	239		0.38	2.60	21.1		52.2		4.8	
WV-502	1	W	772	17		2.6	159		0.25	0.31	9.3		7.2		0.6	
WV-503	3	W	675	159	3.1	0.9	145	-19.6	1.41	15.70	1.8	0.7129	0.6		0.2	16
WV-504	1	Т	478	5		5.3	193		0.24	2.58	34.7		23.8		4.5	
WV-505	1	DD	1806	5		38.0	328	-11.2	0.00	0.47	15.6		77.0		7.9	
WV-511	1	Н	334	2		10.9	206		0.45	0.71	98.3		34.0		13.0	
WV-512	1	Н	393	28		1.3	262	-19.5	0.80	3.01	11.3		2.3		0.8	
WV-514	1	Н	840	6		1.9	340	-17.9	0.02	0.00	27.5		14.4		7.9	
WV-515	1	DD	1161	37		5.7	330.00	-21.2	0.52	1.37	7.4	0.7128	5.8		1.3	16
WV-516	1	DD	847	22		3.4	239	-21.4	0.79	8.13	14.1	0.7129	6.7		1.7	11
WV-517	1	DD	883	21		11.4	289	-18.0	0.09	0.00	1.9	0.7126	14.6	15	2.9	20
WV-519	1	DD	1397	20		1.9	224	-16.7	0.15	0.00	18.1		6.8		2.8	
WV-602	1	R		1		113.0	311		0.32	10.72	99.0		155		33.8	

^aTimeline samples are labeled alphabetically (a = pre-drill, b or c are consecutive samples post-drill). ^bCounty: DD=Doddridge, H=Harrison, R=Ritchie, T=Tyler, W=Wetzel

14	Table 2. Dissolved hydrocarbon gas chemistry for groundwater samples. Blank entries indicate
15	no analysis for that constituent.

no unui j	[CH4]	[C2H4]	[C3Hs]	[i-C ₄ H ₁₀]	[n-C ₄ H ₁₀]	[i-C5H12]	[n-C5H12]	0.10	δ ¹³ C-CH₄	δ ¹³ C-C ₂ H ₆
Sample ID*	(ccSTP/L)	(ccSTP/L)	(ccSTP/L)	(ccSTP/L)	(ccSTP/L)	(ccSTP/L)	(ccSTP/L)	C_1/C_2+	(‰)	(%)
WV-1a	0.34	2.81E-05	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	12048	-70.90	
WV-1b	0.09	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.			
WV-2a WV-2b	0.01	b.d.1. b.d.1	b.d.1. b.d.l	b.d.1.	b.d.1.	b.d.1.	b.d.1.			
WV-3a	2.74	1.96E-04	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	14025	-93.25	
WV-3b	15.33	1.22E-03	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	12578	-91.14	-34.2
WV-4	0.13	1.04E-05	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	12547	-70.03	
WV-5	0.04	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	1 (022	07.54	
WV-6	0.59	3.70E-05	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	16022	-87.56	
WV-8a	0.00	b.d.1.	b.d.1.	b.d.1.	b.d.1.	b.d.1.	b.d.1.		-73.61	
WV-8b	0.15	1.71E-05	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	8746	-59.55	
WV-8c	0.02	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.		-70.15	
WV-10a	0.39	3.95E-05	b.d.l.	b.d.l.	b.d.1.	b.d.l.	b.d.1.	9767	-67.62	
WV-10b	0.07	6.24E-06	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	11343	-64.19	
WV-100	0.23	1.85E-05 3.54E-05	b.d.l.	b.d.1.	b.d.1.	b.d.1.	b.d.l.	12140	-09.84	
WV-11b	0.41	3.10E-05	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	13065	-95.95	
WV-11c	0.19	1.44E-05	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	13145	-77.55	
WV-12	0.28	2.81E-05	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	9880	-95.40	
WV-21	2.48	2.24E-04	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	11031	-50.59	
WV-22	0.97	1.69E-04	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	5750	-35.06	
WV-27a	8.81	1 54E-03	3 45E-06	b.d.1.	b.d.1.	b.d.1.	b.d.1.	5703	-62.85	-35.6
WV-27b	7.81	1.27E-03	3.44E-05	b.d.l.	b.d.l.	b.d.l.	b.d.l.	5985	-61.89	-36.2
WV-29a	2.39	6.01E-04	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	3968	-69.41	
WV-29b	0.92	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.		-66.85	
WV-29c	2.36	4.75E-04	4.31E-06	b.d.l.	b.d.l.	b.d.l.	b.d.l.	4924	-59.36	
WV-31a	0.99	8.15E-05	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	12145	-57.74	
WV-310	0.02	b.d.1.	b.d.1.	b.d.1.	b.d.1.	b.d.1.	b.d.1.		-33.40	
WV-32b	0.02	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.		-40.43	
WV-33	0.37	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.		-95.08	
WV-36a	27.99	1.42E-02	6.64E-05	b.d.l.	b.d.l.	b.d.l.	b.d.l.	1959	-64.35	-38.6
WV-36b	29.89	1.29E-02	6.65E-04	4.21E-07	3.85E-07	b.d.l.	b.d.l.	2201		-38.0
WV-36c	18.45	8.55E-03	1.65E-05	b.d.l.	b.d.l.	b.d.l.	b.d.l.	2154	-66.63	-38.6
WV-37h	4.44	9.82E-04	5.24E-07	b.d.1.	b.d.1.	b.d.1.	b.d.1.	4322	-67.30	
WV-38a	13.41	5.27E-03	4.55E-05	b.d.l.	b.d.l.	b.d.l.	b.d.1.	2522	-65.07	-36.8
WV-38b	12.78	5.12E-03	9.56E-05	b.d.l.	b.d.l.	b.d.l.	b.d.l.	2453	-61.20	-38.2
WV-39a	0.00	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.		-31.91	
WV-39b	0.02	b.d.l.	b.d.l.	b.d.l.	b.d.1.	b.d.l.	b.d.1.			
WV-390 WV-40a	0.n.r. 0.58	d.n.r. 6 58E-05	d.n.r. b.d.l	d.n.r. b.d.l	d.n.r. b.d.l	d.n.r. b.d.l	d.n.r. b.d.l	8765	-63 73	
WV-40b	3.15	2.87E-04	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.1.	10988	05.75	
WV-40c	1.62	1.64E-04	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	9896		
WV-41a	0.00	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.			
WV-41b	0.00	b.d.l.	b.d.l.	b.d.l.	b.d.1.	b.d.l.	b.d.l.	6500	-67.46	
WV-51a WV-51b	1.84	2.78E-04 1.84E-04	1.46E-06 3.14E-07	b.d.l.	b.d.l.	b.d.l.	b.d.l.	6580 7423	-82.80	
WV-52a	9.26	1.81E-04	1.36E-05	b.d.l.	b.d.l.	b.d.l.	b.d.l.	5086	-79.65	-37.0
WV-52b	6.66	1.38E-03	6.21E-05	b.d.l.	b.d.l.	b.d.l.	b.d.l.	4617	-76.90	
WV-53	0.03	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.		-71.82	
WV-54	0.01	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.		-59.05	
WV-55b WV-55c	2.05	1.43E-04 4.82E-07	b.d.l. b.d.l	b.d.l.	b.d.l.	b.d.l.	b.d.l.	14326	-58.48	
WV-56	0.01	4.82E-07	b.d.1.	b.d.1.	b.d.1.	b.d.1.	b.d.1.	12950		
WV-57	0.02	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.		-19.23	
WV-58a	25.52	8.50E-03	2.01E-05	b.d.l.	b.d.l.	b.d.l.	b.d.l.	2995	-50.69	-37.1
WV-58b	28.82	9.22E-03	4.25E-06	b.d.l.	b.d.l.	b.d.l.	b.d.l.	3123	-47.89	-37.6
WV-59	8.45	1.41E-03	4.95E-06	b.d.l.	b.d.l.	b.d.l.	b.d.l.	5961	-67.77	
WV-600	4.16	b.d.1.	b.d.1.	b.d.1.	b.d.1.	b.d.1.	b.d.1.		-57.07	
WV-61	2.28	3.48E-04	1.59E-06	b.d.l.	b.d.l.	b.d.l.	b.d.l.	6518	-49.33	-38.8
WV-62b	1.19	9.01E-05	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	13258	-46.26	
WV-62c	0.64	b.d.l.	b.d.l.	b.d.l.	b.d.1.	b.d.1.	b.d.l.		-47.31	
WV-63	0.03	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	1010	70 70	
WV-64a	2.05	4.43E-04	1.26E-06	b.d.l.	b.d.l.	b.d.l.	b.d.l.	4612	-78.70	
vv v-04D WV-65	5.08 0.01	7.70E-04 h.d.l	7.55E-05 hdl	0.d.l. h d l	0.d.1. h d 1	0.a.i. h.d l	0.d.1. h d 1	4520	-75.07	
WV-66b	0.00	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.		-65.11	
WV-66c	0.00	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.		-72.46	
WV-101b	0.27	5.06E-05	b.d.l.	b.d.l.	b.d.1.	b.d.1.	b.d.l.	5365	-44.23	
WV-101c	0.24	3.68E-05	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	6524	-47.59	
WV-102 WV 102	0.16	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	12625	-77.31	
WV-105	0.14	1.10E-05 h.d.l	b.d.1.	0.d.l. h d l	0.d.1. h d 1	0.a.i. h.d l	0.d.1. h d 1	12025	-73.18	
WV-104	5.72	3.63E-04	b.d.l.	b.d.l.	b.d.l.	b.d.1.	b.d.l.	15749	-78.45	-35.0
WV-106	0.04	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.		,	22.0
WV-107	0.00	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.1.	b.d.l.			
WV-108b	0.01	b.d.l.	b.d.l.	b.d.l.	b.d.1.	b.d.1.	b.d.l.		-50.26	
WV-108c	0.00	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.		40.00	
WV-109b	0.07	b.d.l.	b.d.l.	b.d.l.	D.d.l.	b.d.l.	D.d.l.		-48.88	
WV-110	0.04	b.d.1.	b.d.l.	b.d.l.	b.d.l.	b.d.1.	b.d.l.		-57.05	

WV-111	0.04	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.		-71.44	
WV-112	0.01	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.			
WV-113	0.06	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.			
WV-116b	0.96	3.20E-04	6.16E-06	b.d.l.	b.d.l.	b.d.l.	b.d.l.	2932	-58.38	
WV-116c	0.65	1.99E-04	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	3257	-55.76	
WV-117	0.07	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.		-91.36	
WV-300	0.00	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.			
WV-301b										
WV-301c	6.66	4.92E-04	7.47E-07	b.d.l.	b.d.l.	b.d.l.	b.d.l.	13527	-69.11	
WV-302b	2.02	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.1.			
WV-302c	0.02	b d l	b d l	b d l	b d l	b d l	b d l			
WV-303b	1.05	1.17E-04	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	8975		
WV-303c	0.24	2.52E-05	b d l	b d l	b d l	b d l	b d l	9357		
WV-304	2.65	2.80E-04	b.d.l	b d l	b d l	bdl	bd1	9457		
WV-305	4 37	bd1	b.d.l	b d l	b d l	bdl	bd1	2107		
WV-306	0.02	b.d.1.	b.d.l.	b.d.1.	b.d.1.	b.d.l.	b.d.1.			
WV 209	2.24	2 22E 04	b.d.1.	b.d.1.	b.d.1.	b.d.1.	b.d.1.	0645		
WV-300	2.24	2.17E-04	b.d.1.	b.d.1.	b.d.1.	b.d.l.	b.d.1.	9845		
WV 211	0.04	2.17L-04	b.d.1.	b.d.1.	b.d.1.	b.d.1.	b.d.1.	7045		
WW 212	0.04	b.d.1.	b.d.1.	b.d.1.	b.d.1.	b.d.i.	b.d.1.			
WV-312	0.22	5 OOF 02	0.0.1. 2.24E-05	b.d.1.	b.d.1.	D.d.1.	0.d.1.	1020		
WV-515	7.41	5.99E-03	2.34E-05	D.d.I.	D.d.1.	D.d.1.	D.d.1.	1232		20.0
WV-514D	30.87	3.70E-02	1.42E-04	2.08E-00	2.24E-06	4.65E-07	4.32E-07	992	CD 45	-39.0
W V-514C	21.46	1.95E-02	9.55E-05	5.55E-07	6.21E-07	D.d.1.	D.d.1.	1097	-69.45	-38.3
WV-315	0.03	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	0570		25.1
WV-316	6.85	7.16E-04	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	9568		-35.1
WV-317	9.16	9.28E-03	7.95E-05	b.d.l.	b.d.l.	b.d.l.	b.d.l.	979		
WV-318	0.03	b.d.l.	b.d.l.	b.d.l.	b.d.1.	b.d.l.	b.d.l.			
WV-319	0.03	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.1.	b.d.l.			
WV-320	2.14	2.20E-04	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	9752		
WV-321	1.87	1.38E-04	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	13615		
WV-322	0.09	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.			
WV-323	5.20	2.05E-03	5.68E-07	b.d.l.	b.d.l.	b.d.l.	b.d.l.	2540		
WV-324b	1.65	1.90E-04	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	8714		
WV-324c	0.03	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.		-40.38	
WV-325	0.57	4.91E-05	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	11548		
WV-326	2.36	3.59E-04	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	6579		
WV-327	3.14	2.77E-04	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	11355		
WV-329	1.35	1.09E-04	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	12355		
WV-400	0.07	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.1.		-34.36	
WV-401	0.00	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.			
WV-412	2.60	5.07E-04	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	5136	-60.93	
WV-414	0.02	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.		-48.40	
WV-417	0.29	3.26E-05	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	8780	-65.30	
WV-427	0.02	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.		-70.68	
WV-428	0.02	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.		-51.72	
WV-429	0.01	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.		-54.78	
WV-435	0.01	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.			
WV-501	0.74	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.		-63.74	
WV-502	0.01	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.		-54.28	
WV-503	0.70	5.95E-05	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	11727	-60.40	
WV-504	0.08	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.		-52.95	
WV-505	1.12	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.		-58.55	
WV-511	0.00	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.		-58.67	
WV-512	0.00	b.d.l.	b.d.l.	b.d.l.	b.d.1.	b.d.1.	b.d.1.		-68.27	
WV-514	0.00	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.		-61.49	
WV-515	0.89	b d l	b d l	b d l	b d l	b d l	b d l		-59.03	
WV-516	1 99	b.d.1	bd1	hdl	bdl	bdl	hdl		-74 17	
WV-517	1.77	bdl	b d l	b d l	b.d.l.	b d l	b.d.l.		-60.94	
WV-519	0.19	b.d.1	bd1	hdl	bdl	bdl	hdl		-66 24	
WV-602	0.01	bdl	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.		00.24	
·· · · 002	0.01	<i>D</i> .U.I.	0.0.1.	0.d.1.	0.d.1.	0.d.1.	0.0.1.			

17 18

^aTimeline samples are labeled alphabetically (a = pre-drill, b or c are consecutive samples post-drill).

Sample	[N ₂]	[⁴ He]	[²⁰ Ne]	[³⁶ Ar]	³ He/ ⁴ He	²⁰ Ne/ ²² Ne	40Ar/36Ar	³⁸ Ar/ ³⁶ Ar	²⁰ Ne/ ³⁶ Ar	⁴ He/CH ₄	3H
ID*	(ccSTP/L)	(x10 ⁻⁰ ccSTP/L)	(x10° ccSTP/L)	(x10 ⁻⁰ ccSTP/L)	(R/Ra)	0.801	205.1	0.1806	0.165	(x10 ⁻⁰)	(T.U.)
WV 1b	13.00	40.5	109.8	1051.4	0.964	9.801	295.1	0.1890	0.165	520.2	
WV-29	10.04	43.0	174.7	895.4	0.901	9.811	295.7	0.1901	0.139	7002	
WV-2h	16.95	39.5	169.0	1234.5	1.021	9 781	295.5	0.1869	0.137	18453	
WV-3a	11.70	62.1	143.6	952.5	0.842	9 790	295.6	0.1886	0.151	22.6	
WV-3b	12.62	87.6	163.6	1069.1	0.851	9.772	295.4	0.1855	0.153	5.7	
WV-4	10.46	47.7	146.9	936.1	0.965	9,808	295.5	0.1881	0.157	366	
WV-5	13.78										
WV-6	11.95	45.2	136.0	946.3	1.014	9.815	295.8	0.1905	0.144	76.2	
WV-7	10.95	42.2	162.5	1004.4	1.006	9.785	296.4	0.1864	0.162	9894	
WV-8a	16.43	61.3	361.7	1346.6	0.871	9.782	295.3	0.1891	0.269	3648	5.4
WV-8b	15.48	67.1	342.1	1341.6	0.881	9.777	295.6	0.1897	0.255	450.0	6.3
WV-8c	15.99	57.5	358.0	1376.0	0.861	9.796	295.1	0.1894	0.260	3672	7.0
WV-10a	13.03	51.5	181.7	1044.5	0.912	9.791	295.3	0.1886	0.174	133.3	6.1
WV-10b	12.68	47.7	172.7	1032.0	0.905	9.804	295.7	0.1887	0.167	674.3	7.7
W V-10c	12.43	41.6	183.4	1023.4	0.921	9.776	295.2	0.1876	0.179	184.8	
WV-11a	14.55	81.1	183.5	1087.5	0.920	9.820	294.8	0.1857	0.169	217.5	47
WV-11c	14.94	70.0	186.7	1036.4	0.875	9.802	295.7	0.1857	0.180	368.4	7.0
WV-12	14.65	72.2	192.1	1118 3	0.902	9.802	295.7	0.1874	0.172	259.6	7.0
WV-21	11.56	63.4	141.2	962.8	0.946	9.791	295.7	0.1867	0.147	25.6	
WV-22	10.67	63.5	135.5	974.4	0.834	9.814	295.7	0.1866	0.139	65.5	
WV-25	12.64	6746.0	261.1	1020.3	0.045	9.863	295.4	0.1865	0.256	83284	
WV-27a	11.41	6315.0	402.4	897.9	0.021	9.817	299.0	0.1866	0.448	716.7	
WV-27b	9.84	5269.8	289.6	998.2	0.020	9.821	301.6	0.1896	0.290	675.1	4.7
WV-29a	10.26	8451.1	135.0	878.2	0.022	9.821	295.8	0.1904	0.154	3543	
WV-29b	10.97	7245.7	150.7	981.2	0.042	9.764	295.6	0.1897	0.154	7904	7.0
WV-29c	11.02	5146.7	158.4	944.3	0.036	9.771	295.6	0.1884	0.168	2181	
WV-31a	12.65	48.0	150.1	986.1	0.985	9.779	295.5	0.1879	0.152	48.5	5.0
WV-31b	14.21	79.5	153.4	1148.5	0.940	9.802	296.2	0.1896	0.134	58.7	
WV-32a	13.97	82.1	147.0	1131.3	0.841	9.777	295.7	0.1877	0.130	5334	
WV-32b	14.68	71.2	143.1	1020.5	0.831	9.795	295.3	0.1871	0.140	22631	
WV-33	17.07	48.0	157.2	1257.2	1.006	9.792	295.4	0.1896	0.125	129.7	
WV-36a	10.09	91451.7	506.5	926.3	0.021	9.827	307.4	0.1890	0.547	3268	
WV-36b	10.41	101214.1	568.5	831.9	0.019	9.851	306.2	0.1866	0.683	3387	
WV-36c	10.78	96874.4	498.5	947.4	0.023	9.830	303.4	0.0186	0.526	5250	
WV-37a	11.32	3979.7	261.1	942.0	0.030	9.781	297.1	0.1874	0.277	895.6	2.6
WV 280	10.25	4020.7	234.7	903.7	0.050	9.769	290.1	0.1877	0.243	5008	3.5
WV-38b	12.45	54658.0	438.5	1074.6	0.019	9.762	299.1	0.1870	0.361	4276	2.5
WV-39a	14.16	868.0	219.4	1120.1	0.106	9.796	295.9	0.0187	0.196	242776	2.0
WV-39h	13.59	961.4	206.8	1095.9	0.104	9.802	296.1	0.1904	0.189	47129	3.5
WV-39c											
WV-40a	12.05	128.1	169.2	1056.6	0.781	9.821	295.7	0.1904	0.160	222.3	
WV-40b	11.87	102.1	176.5	1033.9	0.792	9.802	295.1	0.1867	0.171	32.4	
WV-40c	12.02	119.7	163.6	1030.3	0.831		295.1	0.1874	0.159	73.7	5.1
WV-41a	11.99	61.2	146.1	946.8	0.871	9.777	295.7	0.1890	0.154	28588	
WV-41b	14.15	61.1	149.5	1148.6	0.970	9.761	296.4	0.1869	0.130	74099	4.1
WV-51a	13.87	4789.7	394.6	892.3	0.023	9.824	297.1	0.1874	0.442	2600	
WV-51b	14.24	6021.4	385.5	964.4	0.020	9.831	298.0	0.1841	0.400	4408	4.7
WV-52a	10.72	357154.6	601.1	769.3	0.019	9.851	298.5	0.1904	0.781	38558	5.1
WV-52b	9.98	298647.5	442.7	887.6	0.018	9.871	299.0	0.1877	0.499	44836	6.2
WV-53	12.14	436.4	172.7	1222.4	0.084		295.6	0.1901	0.141	16543	
W V-54	10.90	102.4	132.5	961.5	0.098	0.781	295.8	0.1899	0.138	20.4	2.2
WV 55c	12.13	41.7	152.4	927.1	0.874	9.781	295.7	0.1890	0.145	20.4	3.2
WV-56	11.62	235.0	131.4	1031.8	0.554	9.700	295.5	0.1897	0.127	7054	
WV-57	20.50	200.4	151.4	1051.0	0.100		270.0	0.1050	0.127	1754	
WV-58a	12.46	214324.1	1196.8	1070.7	0.018	9.914	308.8	0.1891	1.118	8398	3.7
WV-58b	13.21	193214.7	384.1	1116.2	0.023	9.897	306.5	0.1886	0.344	6705	3.0
WV-59	11.57	1326.4	235.5	1007.9	0.031	9.805	297.6	0.1900	0.234	157.0	
WV-60b	14.75	127.8	153.5	927.6	0.832	9.795	295.5	0.1878	0.165	368.3	
WV-60c	14.22	502.3	224.4	1156.5	0.190	9.824	296.5	0.1901	0.194	120.8	
WV-61	10.41	7698.5	173.0	983.1	0.020		295.6	0.1875	0.176	3376	
WV-62b	14.02	72.2	132.1	919.2	0.847	9.791	295.4	0.1866	0.144	60.4	
WV-62c	14.52	63.4	190.2	999.6	0.920	9.804	294.6	0.1901	0.190	99.3	2.0
WV-63	12.14	53.5	129.9	990.3	0.861	9.780	295.3	0.1866	0.131	1776	
WV-64a	14.16	7255.0	239.4	966.4	0.021	9.779	297.4	0.1876	0.248	3538	
WV-64b	13.88	8967.7	249.5	963.6	0.031	9.761	298.4	0.1879	0.259	2439	
WV-65	12.14	49.8	142.2	996.4	0.924	9.799	295.4	0.1894	0.143	4387	
WV-66b	12.18	68.5	160.1	970.9	0.871	9.778	296.1	0.1904	0.165	27665	
WV-66c	13.55	67.1	161.2	1099.1	0.931	9.791	295.4	0.1884	0.147	20884	
wv-101b	12.14	978.6	204.6	8/3.0	0.030	9.790	297.1	0.1864	0.234	3606	5.7
w V-101c	11.97	1021.4	215.7	917.2	0.021	9.804	297.0	0.1843	0.235	4251	8.3
w v-102										371 7	
WV-103	11.15	51.6	137.4	907.5	0.911	9.787	295.0	0.1893	0.151	5/1.7	
WV-104											
WV-105	11.55	59.9	124.4	905.2	0.868		295.7	0.1904	0.137	10.5	
WV-106	13.49	43.5	136.0	1020.5	0.972	9.801	295.7	0.1864	0.133	1058	
WV-107											
WV-108b	14.24	79.5	182.4	1006.1	0.801	9.824	295.7	0.1876	0.181	6011	
WV-108c											
WV-109b	12.84	43.1	179.7	937.0	0.957	9.806	295.6	0.1894	0.192	605	
wV-109c	12.68	46.2	176.5	968.8	0.986	9.791	295.3	0.1867	0.182	3729	
WV-110	19.15	72.4	143.0	1326.1	0.931	9.785	295.2	0.1861	0.108	1827	

19	Table 3. Dissolved major and noble gas chemistry for groundwater samples. Blank entries
20	indicate no analysis for that constituent.

WV-111	13.54	43.7	153.0	964.6	0.979	9.799	295.4	0.1876	0.159	1001	4.7
WV-112	12.20	80.1	136.4	1030.4	0.803	9.821	295.4	0.1881	0.132	14195	4.4
WV-113	11.90										
WV-116b	12.01	815.4	249.6	932.6	0.196	9.802	296.1	0.1886	0.268	852.5	7.1
WV-116c	11.84	906.2	241.7	1089.0	0.163	9.790	298.0	0.1904	0.222	1399	2.7
WV-117	13.45										
WV-300											
WV-301b											
WV-301c	14.01	75.1	168.7	969.5	0.751	9.810	295.1	0.1890	0.174	11.3	4.7
WV-302b	12.96	103.2	192.2	1097.6	0.852	9.779	296.0	0.1876	0.175	51.1	3.0
WV-302c	12.35	63.1	171.6	1037.6	0.951	9.780	295.3	0.1869	0.165	2951	
WV-303b	12.75	54.7	175.4	1053.0	0.965	9.795	295.7	0.1898	0.167	51.9	
WV-303c	13.06	61.1	183.5	1009.3	0.981	9.776	295.0	0.1890	0.182	259.4	5.6
WV-304	10.69	53.6	128.8	933.4	0.822	9.767	294.5	0.1866	0.138	20.2	
WV-305											
WV-306	11.72	62.0	147.6	1018 6	0.020	0.021	205.6	0 10 12	0.145	22.7	
WV-308	11.72	55.2	147.5	1018.6	0.930	9.821	295.6	0.1845	0.145	23.7	
WV-309	12.00	68.4	138.0	962.1	0.831	9.804	295.6	0.1865	0.143	32.0	
WV-311	17.24	50.0	132.5	1232.4	0.981	0.011	295.7	0.1880	0.108	1259	7.0
WV 212	0.07	72156.4	260.5	988.0	0.973	9.811	293.0	0.1878	0.148	201.7	7.2
WV 214b	12.61	154214.6	452.4	900.4	0.019	9.831	301.5	0.1800	0.235	4193	2.1
WV 2140	12.01	242142.4	406.8	931.4	0.019	9.821	200.1	0.1890	0.440	11228	47
WV 215	12.05	46.2	400.8	923.2	0.019	9.842	299.4	0.1892	0.146	1711	5.2
WV 216	10.00	40.2	141.2	962.0	0.924	9.191	295.4	0.1885	0.140	8.2	9.1
WV-317	8.94	96548.4	204.7	902.9 702.3	0.023	9 794	295.4	0.1877	0.291	10536	2.7
WV-318	12.99	39.0	137.6	861.5	0.826	9.757	295.3	0.1875	0.160	1258	6.5
WV-319	11.49	60.0	137.0	930.8	0.964	9 764	295.5	0.1899	0.148	1250	5.0
WV-320	10.45	70.0	136.0	1036.6	0.921	9.800	295.6	0.1874	0.131	32.7	5.0
WV-321	10.59	42.5	138.0	1114.5	0.981	9.791	296.5	0.1886	0.124	22.7	7.5
WV-322	11.59	49.4	153.9	995.6	0.952	9.787	295.7	0.1877	0.155	568.3	3.5
WV-323	9.69	2154.4	163.4	825.9	0.037	9.842	295.4	0.1851	0.198	414.5	
WV-324b	12.87	90.2	157.2	963.8	0.687	9.786	295.3	0.1888	0.163	54.6	
WV-324c	13.24	206.2	214.5	1335.3	0.398	9.789	295.4	0.1899	0.161	7800	
WV-325	11.50	55.0	136.0	976.1	0.942	9.792	294.8	0.1886	0.139	97.0	
WV-326	11.50	53.5	161.6	946.8	0.942	9.821	295.7	0.1909	0.171	22.7	
WV-327	16.69	72.7	127.0	1233.6	0.694	9.831	295.6	0.1879	0.103	23.1	
WV-329	12.97	42.7	126.0	919.8	0.980	9.802	295.3	0.1881	0.137	31.6	8.4
WV-400	11.95	51.6	143.5	979.2	0.941	9.798	296.1	0.1882	0.147	767.8	6.0
WV-401	11.95	65.1	130.0	946.8	0.880	9.802	295.7	0.1879	0.137	30429	6.6
WV-412	13.84	8270.0	324.8	940.1	0.036	9.762	299.4	0.1874	0.345	3179	2.5
WV-414	11.98										
WV-417	11.64	61.4	147.0	907.1	0.765	9.801	294.8	0.1894	0.162	215.0	7.4
WV-427	12.50	47.0	132.0	941.8	0.964	9.805	295.9	0.1899	0.140	1922	
WV-428	10.15										
WV-429	12.14	51.2	124.5	972.4	0.894	9.795	295.6	0.1879	0.128	5697	
WV-435	11.29	49.0	163.4	919.8	0.962	9.797	295.7	0.1881	0.178	8999	7.5
WV-501	14.66	59.5	168.4	1221.2	0.981	9.795	295.1	0.1895	0.138	80.2	2.1
WV-502	19.65	37.5	358.0	1320.6	0.979	9.820	294.9	0.1905	0.271	6608	
WV-503	13.70	635.8	241.2	1153.3	0.045	9.795	296.5	0.1899	0.209	911.5	
WV-504	12.64	52.2	156.5	1010.6	0.964	9.790	295.4	0.1905	0.155	692.0	3.5
WV-505	13.75	76.4	146.5	1188.1	0.950	9.760	294.7	0.1897	0.123	68.2	
WV-511	11.82	80.0	146.2	1216.5	0.940	9.781	296.0	0.1891	0.144	2070.6	
WV-512	13.25	145.4	189.5	1157.1	0.846	9.801	295.5	0.1895	0.164	29786	4.1
WV-514	14.15	51.1	176.4	1192.6	0.960	9.764	295.0	0.1865	0.148	99770	2.4
WV-515	12.96	301.5	223.2	1279.5	0.405	9.804	296.5	0.1904	0.174	339.2	2.7
WV-516	13.06	197.9	189.6	1040.6	0.345	9.805	294.6	0.1879	0.182	99.5	2.7
WV-51/	14.05	59.5	1/9.5	1033.4	1.002	9.782	295.1	0.1870	0.174	35.1	2.5
WV 602	13.21	0/.4	154.0	1082.0	0.964	9.790	290.0	0.1880	0.145	340.0	1.9
w v-o02											

^aTimeline samples are labeled alphabetically (a = pre-drill, b or c are consecutive samples post-drill).

22 23

24 Table 4. Water chemistry for surface water associated with the flowback spill in Tyler County

and leaks from the two injection well sites. All ratios are in molar units. Blank entries indicate no

26 analysis for that constituent

Sample ID	Sample Descriptions	Date Sampled	Cl (mg/L)	Br/Cl (x10 ⁻³)	Li (ppb)	B (ppb)	V (ppb)	Cr (ppb)	As (ppb)	Se (ppb)	Sr (ppb)	Mo (ppb)	Ba (ppb)	δ ¹¹ B (‰)	δ ⁷ Li (‰)	⁸⁷ Sr/ ⁸⁶ Sr
WV Flowback n = 13	From Ziemkiewicz and	l He (2015)	42683	4.8				ND	0.08	ND	1365		515			
Tyler - 1	Spill water in Field	1/3/14	18087	6.8	14151	25737	221	679	50.0	282	769376	289	53119	27	11	0.7098
Tyler - 2	Spill water in Field	1/6/14	2133	4.0	841	1600	16.5	51.8	3.4	20.9	55009	25.1	1837	28	14	0.7096
Tyler - 3	Pool by well pad	1/6/14	1031	5.6	413	790	8.1	26.0	2.2	12.8	27067	29.9	975	27	14	0.7096
Tyler - 4	Creek at runoff point	1/6/14	14	3.9	2.65	14.9	0.3	0.7	0.1	0.7	210	3.4	35.3			0.7111
Tyler - 5	Creek upstream	1/6/14	2	ND	0.3	8.6	0.2	0.3	0.1	0.4	67.2	1.7	27.5			
Tyler - 6	Run-off into Creek	2/23/14	669	3.9	197	340	5.3	69.1	5.2	89.0	8269	ND	601.0			0.7098
Tyler - 7	Big Run Creek by pad	2/23/14	21	3.7	3.0	19.6	0.2	0.7	0.2	0.7	267	0.1	44.7			
Tyler - 8	Big Run Creek	2/23/14	6	2.7	0.5	10.0	0.2	0.3	0.2	0.5	74.3	ND	27.8			
Tyler - 9	Middle Island Creek	2/23/14	9	2.5	0.6	9.0	0.2	0.4	0.2	0.6	61.0	ND	27.7			
Tyler - 10	Effluent from well pad	8/29/14	918	4.5	2.2	233	4.9	14.4	3.7	7.0	12519	3.8	1102			0.7095
Lochgully -1	Downstream Creek 1	9/14/13	575	2.1	11.6	0.4	2.5	<dl< td=""><td><dl< td=""><td><dl< td=""><td>2068</td><td><dl< td=""><td></td><td>20</td><td></td><td></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td>2068</td><td><dl< td=""><td></td><td>20</td><td></td><td></td></dl<></td></dl<></td></dl<>	<dl< td=""><td>2068</td><td><dl< td=""><td></td><td>20</td><td></td><td></td></dl<></td></dl<>	2068	<dl< td=""><td></td><td>20</td><td></td><td></td></dl<>		20		
Lochgully -2	Downstream Creek 2	9/14/13	367	3.0	33.9	24.1	1.4	<dl< td=""><td><dl< td=""><td><dl< td=""><td>1296</td><td><dl< td=""><td></td><td></td><td></td><td></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td>1296</td><td><dl< td=""><td></td><td></td><td></td><td></td></dl<></td></dl<></td></dl<>	<dl< td=""><td>1296</td><td><dl< td=""><td></td><td></td><td></td><td></td></dl<></td></dl<>	1296	<dl< td=""><td></td><td></td><td></td><td></td></dl<>				
Hall - 1	Upstream	12/18/13	16	2.7	0.7	20.4	0.4	0.9	0.1	ND	302	ND	74.0			
Hall - 2	Downstream 1	12/18/13	95	4.4	1.0	48.8	1.0	2.7	0.2	0.6	617	ND	127			0.7113
Hall - 3	Downstream 2	12/17/13	80	3.2	0.7	38.7	0.9	2.3	0.2	ND	526	ND	106			0.7113
WV-327	Groundwater well	12/17/13	6	1.8	12.4	105	0.4	0.1	1.1	ND	1247	1.2	765			
WV-329	Groundwater well	12/17/13	3	2.7	10.1	89.0	ND	0.1	4.9	ND	1487	0.7	1450			

27 ND = value below detection

28

Age	Group	Unit	Generalized Geologic Section
Permian	kard	Waynesburg / Dunkard Interbedded sandstone and limestone	
	Dun	Mather Sandstone Waynesburg Coal	
nsylvanian	Monongahela	Monongahela Group	
e		Conemaugh Group	
ď.		Allegheny Group	(
		Pottsville Group	

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

