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Abstract
Stencil computations are the basis to solve many problems related to Partial Differential Equa-
tions (PDEs). Obtaining the best performance with such numerical kernels is a major issue as
many critical parameters (architectural features, compiler flags, memory policies, multithread-
ing strategies) must be finely tuned. In this context, auto-tuning methods have been extensively
used to improve the overall performance. However, the complexity of current architectures and
the large number of optimizations to consider reduce the efficiency of this approach. This pa-
per focuses on the use of Machine Learning to predict the performance of stencil kernels on
multi-core architectures. Low-level hardware counters (e.g. cache-misses and TLB misses) on a
limited number of executions are used to build our predictive model. We have considered two
different kernels (7-point Jacobi and seismic wave modelling) to demonstrate the effectiveness
of our approach. Our results show that performance can be predicted and that the best input
configuration for stencil problems can be obtained by simulations of hardware counters and
performance measurements.
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1 Introduction

Stencil computations lie at the heart of many problems in areas as diverse as electromagnetics,
fluid dynamics or geophysics. The trend for High Performance Computing (HPC) applications
is to pay a higher cost in order to optimize the overall performance. This comes from the
complexity of many interdependent factors (non-uniform memory access, vectorization, com-
piler optimizations, memory policies) at an architectural level that may severely influence the
application’s behavior. This is particularly true for stencil numerical kernels that are usually
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memory-bound. Although a large body of literature on the optimization of this class of appli-
cations is available, predicting the performance on current architectures remains a challenge.

On the one hand, application tuning represents the classical methodology to squeeze the
performance on multi-core architectures. Unfortunately, this approach leads to the exploration
of a huge set of parameters, thus limiting its interest on complex platforms. In this context,
several heuristics or frameworks have been proposed to speed up the process of finding the best
configuration for stencil applications [3, 13, 15].

On the other hand, Machine Learning (ML) is a comprehensive methodology for optimiza-
tion that could be applied to find patterns on a large set of input parameters. Recently, ML
algorithms have been used on HPC systems under different situations. In [2] the authors pro-
posed an ML-based approach to automatically infer a suitable thread mapping strategy for
a given application. In [17] the authors used ML algorithms to select the best job scheduling
algorithm on heterogeneous platforms whereas in [1] the authors proposed an ML-based scheme
to select the best I/O scheduling algorithm for different applications and input parameters.

In this paper, we describe the procedure to build a suitable ML-based performance model for
two classical numerical kernels: 7-point Jacobi and seismic wave modelling. This model allows
us to simulate the performance behavior of stencil computations on multi-core architectures.
The proposed model can be integrated in auto-tuning frameworks to find the best configuration
for a given stencil application.

The paper is organized as follows. Section 2 provides the fundamentals of stencils under
study. Section 3 describes the methodology of our ML-based approach. Section 4 presents
experiment configuration, simulation performance, and model accuracy. Finally, Section 5
describes related works, and Section 6 concludes this paper.

2 Stencil models

From the numerical analysis point of view, stencil-based computations often arise when dis-
cretizing Partial Differential Equations (PDEs). For instance, the Finite-Difference Meth-
ods (FDMs) computational procedure consists in using the neighboring points in the north-
south, east-west and forward-backward directions to evaluate the current grid point in the case
of a three-dimensional Cartesian grid. The algorithm then moves to the next point applying
the same stencil computation until the entire spatial grid has been traversed. The number of
points used in each direction depends on the order of the approximation. In this context, a
standard metric available to characterize a stencil kernel is the Arithmetic Intensity (AI), which
is a measure of floating-point operations (FLOPS) performed by a given code section relative
to the amount of memory accesses (bytes) that are required to support those operations. In
this work, we study two well-known stencil kernels:

1. 7-point Jacobi: This numerical kernel is known to be severely memory-bound as we
need seven reads to compute and write the current grid point. The lower-bound of AI of
this kernel is 0.18.

2. Seismic Wave: This numerical kernel corresponds to the discretization of the elastody-
namics equation and is of great importance both for seismic hazard assessment as well as
for the oil and gas industry. In our case, we consider a standard fourth order in space
and second order in time approximation. This algorithm corresponds to the evaluation
of six stress components (three in the diagonal direction and three off-diagonal) and 3
velocity components. Algorithm 1 provides a synthetic view of the computation of one of
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Algorithm 1: Pseudo-code of the stress component (σxx) in the Seismic Wave kernel.

for i = 1 to Nx do
for j = 1 to Ny do
for k = 1 to Nz do
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the diagonal components, where i, j, k represent a tensor field component in Cartesian
coordinates (x, y, z), and V and σ represent the velocity and stress fields, respectively.
The overall procedure is composed of two consecutive triple nested loops (stress and veloc-
ity) with interdependence between the computation of the components. The arithmetic
intensity is close to 1.30 in this case. A detailed description of the numerical modeling of
seismic waves on multi-core platforms is presented in [8, 12].

2.1 Implementation

We evaluate two distinct implementations of the previously described kernels:

1. Naive: This implementation corresponds to the standard exploitation of the triple nested
loops coming from the three spatial dimensions. This allows for a straightforward usage
of OpenMP directives to parallelize the computation.

2. Blocking: This implementation exploits space tiling techniques. The main idea is to
exploit the inherent data reuse available in the triple nested loops of the kernel by ensuring
that data remains in cache across multiple uses.

The naive version allows to validate our ML-based methodology in a straightforward way
as the set of parameters to be tuned is reduced. The blocking version is much more challenging
because finding the best shape or size for the tiles remains an open research topic [11]. We
reuse insights and optimizations described in [8] in order to build robust implementations.

3 Machine Learning Methodology

In this section we describe our ML methodology which relies on support vector machines (SVM).
First, we present the feature vectors considered in our study and we discuss how they are
supported by SVMs. Finally, we describe our ML model.

3.1 Feature vectors

We considered three sets of vectors, which are described below:

3



 Víctor Martínez et al. / Procedia Computer Science 108C (2017) 305–314 307Performance Improvement of Stencil Computations

for Multi-core Architectures V. Mart́ınez et. al.

memory-bound. Although a large body of literature on the optimization of this class of appli-
cations is available, predicting the performance on current architectures remains a challenge.

On the one hand, application tuning represents the classical methodology to squeeze the
performance on multi-core architectures. Unfortunately, this approach leads to the exploration
of a huge set of parameters, thus limiting its interest on complex platforms. In this context,
several heuristics or frameworks have been proposed to speed up the process of finding the best
configuration for stencil applications [3, 13, 15].

On the other hand, Machine Learning (ML) is a comprehensive methodology for optimiza-
tion that could be applied to find patterns on a large set of input parameters. Recently, ML
algorithms have been used on HPC systems under different situations. In [2] the authors pro-
posed an ML-based approach to automatically infer a suitable thread mapping strategy for
a given application. In [17] the authors used ML algorithms to select the best job scheduling
algorithm on heterogeneous platforms whereas in [1] the authors proposed an ML-based scheme
to select the best I/O scheduling algorithm for different applications and input parameters.

In this paper, we describe the procedure to build a suitable ML-based performance model for
two classical numerical kernels: 7-point Jacobi and seismic wave modelling. This model allows
us to simulate the performance behavior of stencil computations on multi-core architectures.
The proposed model can be integrated in auto-tuning frameworks to find the best configuration
for a given stencil application.

The paper is organized as follows. Section 2 provides the fundamentals of stencils under
study. Section 3 describes the methodology of our ML-based approach. Section 4 presents
experiment configuration, simulation performance, and model accuracy. Finally, Section 5
describes related works, and Section 6 concludes this paper.

2 Stencil models

From the numerical analysis point of view, stencil-based computations often arise when dis-
cretizing Partial Differential Equations (PDEs). For instance, the Finite-Difference Meth-
ods (FDMs) computational procedure consists in using the neighboring points in the north-
south, east-west and forward-backward directions to evaluate the current grid point in the case
of a three-dimensional Cartesian grid. The algorithm then moves to the next point applying
the same stencil computation until the entire spatial grid has been traversed. The number of
points used in each direction depends on the order of the approximation. In this context, a
standard metric available to characterize a stencil kernel is the Arithmetic Intensity (AI), which
is a measure of floating-point operations (FLOPS) performed by a given code section relative
to the amount of memory accesses (bytes) that are required to support those operations. In
this work, we study two well-known stencil kernels:

1. 7-point Jacobi: This numerical kernel is known to be severely memory-bound as we
need seven reads to compute and write the current grid point. The lower-bound of AI of
this kernel is 0.18.

2. Seismic Wave: This numerical kernel corresponds to the discretization of the elastody-
namics equation and is of great importance both for seismic hazard assessment as well as
for the oil and gas industry. In our case, we consider a standard fourth order in space
and second order in time approximation. This algorithm corresponds to the evaluation
of six stress components (three in the diagonal direction and three off-diagonal) and 3
velocity components. Algorithm 1 provides a synthetic view of the computation of one of

2

Performance Improvement of Stencil Computations

for Multi-core Architectures V. Mart́ınez et. al.

Algorithm 1: Pseudo-code of the stress component (σxx) in the Seismic Wave kernel.

for i = 1 to Nx do
for j = 1 to Ny do
for k = 1 to Nz do

σn+1
xx (i, j, k) = σn

xx(i, j, k)
+A1[a1(V

n
x (i+ 1

2 , j, k)− V n
x (i− 1

2 , j, k)) + a2(V
n
y (i, j + 1

2 , k)− V n
y (i, j − 1

2 , k)) +

a3(V
n
z (i, j, k + 1

2 )− V n
z (i, j, k − 1

2 ))]
+B1[a1(V

n
x (i+ 3

2 , j, k)− V n
x (i− 3

2 , j, k)) + a2(V
n
y (i, j + 3

2 , k)− V n
y (i, j − 3

2 , k)) +

a3(V
n
z (i, j, k + 3

2 )− V n
z (i, j, k − 3

2 ))]
end for

end for
end for

the diagonal components, where i, j, k represent a tensor field component in Cartesian
coordinates (x, y, z), and V and σ represent the velocity and stress fields, respectively.
The overall procedure is composed of two consecutive triple nested loops (stress and veloc-
ity) with interdependence between the computation of the components. The arithmetic
intensity is close to 1.30 in this case. A detailed description of the numerical modeling of
seismic waves on multi-core platforms is presented in [8, 12].

2.1 Implementation

We evaluate two distinct implementations of the previously described kernels:

1. Naive: This implementation corresponds to the standard exploitation of the triple nested
loops coming from the three spatial dimensions. This allows for a straightforward usage
of OpenMP directives to parallelize the computation.

2. Blocking: This implementation exploits space tiling techniques. The main idea is to
exploit the inherent data reuse available in the triple nested loops of the kernel by ensuring
that data remains in cache across multiple uses.

The naive version allows to validate our ML-based methodology in a straightforward way
as the set of parameters to be tuned is reduced. The blocking version is much more challenging
because finding the best shape or size for the tiles remains an open research topic [11]. We
reuse insights and optimizations described in [8] in order to build robust implementations.

3 Machine Learning Methodology

In this section we describe our ML methodology which relies on support vector machines (SVM).
First, we present the feature vectors considered in our study and we discuss how they are
supported by SVMs. Finally, we describe our ML model.

3.1 Feature vectors

We considered three sets of vectors, which are described below:

3



308 Víctor Martínez et al. / Procedia Computer Science 108C (2017) 305–314Performance Improvement of Stencil Computations

for Multi-core Architectures V. Mart́ınez et. al.

Table 1: Input vector for each algorithm.

Naive Blocking

Number of threads
Scheduling policy
Chunk size

Number of threads
Scheduling policy
Chunk size
Block size X
Block size Y

1. Input Vector: It is defined by the parameters listed in Table 1. We considered different
parameters available in OpenMP such as the number of threads, the loop scheduling
policy (static or dynamic), and the chunk size (which defines how many loop iterations
will be assigned to each thread at a time). Moreover, we considered the size blocks in the
X and Y domains in the blocking implementation. The vertical direction is preserved in
order to maximize the efficiency of prefetching mechanisms.

2. Hardware Counters Vector: We used the PAPI library to collect information from
hardware counters. We considered the following metrics as the most relevant ones: L3
total cache misses (PAPI L3 TCM event), data translation lookaside buffer misses
(PAPI TLB DM event), and total cycles (PAPI TOT CYC event).

3. Performance Vector: The output vector, which uses billions of floating-point operations
per second (GFLOPS) and execution time as performance characterization metrics.

3.2 Hardware Counters Behavior

Figure 1 illustrates how the performance of the 7-point Jacobi kernel is affected by the input
variables and their relations with hardware counters. Each point represents one experiment. For
instance, Figure 1(a) shows that the scheduling policy creates two separated sets when GFLOPS
values are related with L3 cache misses. The same behavior is observed in Figure 1(b) for the
chunk size when GFLOPS values are observed with respect to total number of cycles. The
situation is rather different when GFLOPS are observed with respect to the amount of TLB
data misses.

(a) L3 cache misses when vary-
ing the scheduling policy.

(b) Total cycles when varying the
chunk size.

(c) TLB data misses when vary-
ing the number of threads.

Figure 1: Hardware counters when running the 7-point Jacobi (blocking implementation) on
the Node 1 platform. This platform is detailed in Section 4.1.
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3.3 Machine Learning Model

The proposed ML model is based on SVM, which is a supervised ML approach introduced
in [4] and extended to regression problems where support vectors are represented by kernel
functions [7]. The main idea of SVMs is to expand hyperplanes through the output vector. It
has been employed to classify non-linear problems with non-separable training data by a linear
decision surface (i.e. hardware counters behavior in previous section).

Our ML model was built on top of three consecutive layers, where output values of a layer
are used as input values of the next layer (Figure 2). The input layer contains the configuration
values from the input vector. The hidden layer contains three SVMs that take values from the
input vector to simulate the behavior of hardware counters presented in the previous section.
Finally, the output layer contains one SVM that takes each simulated value from the hidden
layer to obtain the corresponding GFLOPS and execution time values (the latter are derived
from an exponential fitting).

Fit

Maximum

Minimum

Input
vector

Log

SVM L3 CM

SVM TLB DM

SVM Cycles

SVM Gflops

Time

HWC LayerInput Layer Output Layer

Training Set

Test Set Searching

Performance

Figure 2: Flowchart of the proposed ML-based model.

4 Experiments

In this section we describe our experimental testbed and present the data analysis and results.

4.1 Experimental Testbed

We used two multi-core platforms to carry out the experiments. Their hardware configurations
are shown in Table 2.

Table 2: Experimental testbed configurations.

Node 1 Node 2
Processor Xeon E5-2650 Xeon E5-4650
Clock (GHz) 2.0 2.7
Cores 8 8
Sockets 2 4
Threads 16 32
L3 cache size (MB) 20 20

5



 Víctor Martínez et al. / Procedia Computer Science 108C (2017) 305–314 309Performance Improvement of Stencil Computations

for Multi-core Architectures V. Mart́ınez et. al.

Table 1: Input vector for each algorithm.

Naive Blocking

Number of threads
Scheduling policy
Chunk size

Number of threads
Scheduling policy
Chunk size
Block size X
Block size Y

1. Input Vector: It is defined by the parameters listed in Table 1. We considered different
parameters available in OpenMP such as the number of threads, the loop scheduling
policy (static or dynamic), and the chunk size (which defines how many loop iterations
will be assigned to each thread at a time). Moreover, we considered the size blocks in the
X and Y domains in the blocking implementation. The vertical direction is preserved in
order to maximize the efficiency of prefetching mechanisms.

2. Hardware Counters Vector: We used the PAPI library to collect information from
hardware counters. We considered the following metrics as the most relevant ones: L3
total cache misses (PAPI L3 TCM event), data translation lookaside buffer misses
(PAPI TLB DM event), and total cycles (PAPI TOT CYC event).

3. Performance Vector: The output vector, which uses billions of floating-point operations
per second (GFLOPS) and execution time as performance characterization metrics.

3.2 Hardware Counters Behavior

Figure 1 illustrates how the performance of the 7-point Jacobi kernel is affected by the input
variables and their relations with hardware counters. Each point represents one experiment. For
instance, Figure 1(a) shows that the scheduling policy creates two separated sets when GFLOPS
values are related with L3 cache misses. The same behavior is observed in Figure 1(b) for the
chunk size when GFLOPS values are observed with respect to total number of cycles. The
situation is rather different when GFLOPS are observed with respect to the amount of TLB
data misses.

(a) L3 cache misses when vary-
ing the scheduling policy.

(b) Total cycles when varying the
chunk size.

(c) TLB data misses when vary-
ing the number of threads.

Figure 1: Hardware counters when running the 7-point Jacobi (blocking implementation) on
the Node 1 platform. This platform is detailed in Section 4.1.

4

Performance Improvement of Stencil Computations

for Multi-core Architectures V. Mart́ınez et. al.

3.3 Machine Learning Model

The proposed ML model is based on SVM, which is a supervised ML approach introduced
in [4] and extended to regression problems where support vectors are represented by kernel
functions [7]. The main idea of SVMs is to expand hyperplanes through the output vector. It
has been employed to classify non-linear problems with non-separable training data by a linear
decision surface (i.e. hardware counters behavior in previous section).

Our ML model was built on top of three consecutive layers, where output values of a layer
are used as input values of the next layer (Figure 2). The input layer contains the configuration
values from the input vector. The hidden layer contains three SVMs that take values from the
input vector to simulate the behavior of hardware counters presented in the previous section.
Finally, the output layer contains one SVM that takes each simulated value from the hidden
layer to obtain the corresponding GFLOPS and execution time values (the latter are derived
from an exponential fitting).

Fit

Maximum

Minimum

Input
vector

Log

SVM L3 CM

SVM TLB DM

SVM Cycles

SVM Gflops

Time

HWC LayerInput Layer Output Layer

Training Set

Test Set Searching

Performance

Figure 2: Flowchart of the proposed ML-based model.

4 Experiments

In this section we describe our experimental testbed and present the data analysis and results.

4.1 Experimental Testbed

We used two multi-core platforms to carry out the experiments. Their hardware configurations
are shown in Table 2.

Table 2: Experimental testbed configurations.

Node 1 Node 2
Processor Xeon E5-2650 Xeon E5-4650
Clock (GHz) 2.0 2.7
Cores 8 8
Sockets 2 4
Threads 16 32
L3 cache size (MB) 20 20

5



310 Víctor Martínez et al. / Procedia Computer Science 108C (2017) 305–314Performance Improvement of Stencil Computations

for Multi-core Architectures V. Mart́ınez et. al.

Based on these platforms, Table 3 details all the configurations available for our optimization
categories. As it can be noted, a brute force approach would be unfeasible, requiring more
than 2million simulations for the blocking implementation on Node 1 and more than 3million
simulations on Node 2.

Table 3: Optimizations set.

Optimization Parameters
Total configurations
Node 1 Node 2

Number of threads 1 8 12
Scheduling policy 1 2 2
Chunk size 1 32 32
Block size X 1 64 64
Block size Y 1 64 64
Total for Naive 3 512 768
Total for Blocking 5 2,097,152 3,145,728

4.1.1 Training and validation sets

We created a training set by randomly selecting a subset from the configuration set presented
in Table 3. Then, for each experiment we measured the hardware counters (L3 cache misses,
data translation lookaside buffer misses and total cycles) and performance values (GFLOPS
and execution time). Because hardware counters have very large values it was necessary to
perform a dynamic range compression (log transformation) between the hidden layer and the
output layer, as shown in Figure 2.

A random testing set was used since all SVMs in both the hidden and the output layers are
trained to calculate new GFLOPS and execution time values through simulation. After that, we
measured the accuracy of the model using statistical estimators. Finally, the maximum value
of GFLOPS and the minimum value of execution time were selected and matched with their
input values. Simulated and real values are compared to determine if the best performance
obtained from the simulation is the same as the real best performance. Table 4 presents the
total number of experiments that were performed to obtain the training and validation sets.

Table 4: Number of experiments in training and testing sets.

Naive Blocking
Stencil Set Node 1 Node 2 Node 1 Node 2

7-point Jacobi
Training 44 38 2,355 4,054
Testing 11 10 589 1,014
Total 55 48 44,794 49,152

Seismic Wave
Training 211 237 2,176 371
Testing 53 60 544 93
Total 264 297 6,849 1,020

4.2 Analysis of Variance

In order to refine the results, we applied the ANOVA statistical model to analyze the influence
of the different populations. We assume different populations for each variable and we assume
that all populations have equal mean. Thus, we compute the statistical significance (p-value) to
determine whether the hypothesis must be rejected or not: if this value is lower than 0.05 then
the hypothesis is rejected and populations have different means. This analysis was divided in two
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classical ANOVA models: one-way ANOVA, when only one factor affects all populations; and
two-way ANOVA, when two factors affect all populations. In this analysis we used GFLOPS,
L3 cache misses, TLB data misses and the number of cycles as population variables. Factors
are defined by all values in the input vector (scheduling policy, chunk size and the number of
threads). The results of p-value for the naive implementation are presented in Table 5.

As it can be noted, all factors rejected the hypothesis for the 7-point Jacobi, since p-value
is lower than 0.05. All population variables have significant differences. For the seismic wave
kernel, the hypothesis cannot be rejected for scheduling and chunk size variables. Table 6 shows
results of two-way ANOVA to determine if combined variables affect populations. Results
show that combining scheduling and chunk size with executed and available threads rejects
the hypothesis, and variables have statistical differences if two factors are combined. So, the
analysis of variance introduces the first assumption: factors produce statistical significance into
selected variables.

Table 5: p-value of one-way ANOVA for
the naive implementation.

7-point Jacobi Seismic Wave
Scheduling policy 2.58e-16 0.5284
Chunk size 1.37e-12 0.9985
Num. of threads <2.2e-16 <2.2e-16
Num. of cores <2.2e-16 <2.2e-16

Table 6: p-value of two-way ANOVA for
the Seismic Wave kernel.

p-value
Scheduling policy:Num. of threads <2.2e-16
Scheduling policy:Num. of cores 0.4664
Chunk:Num. of threads <2.2e-16
Chunk:Num. of cores <2.2e-16

4.3 Results

We first evaluate the model with two statistical estimators: root mean square error (RMSE)
and the coefficient of determination (R-square). The former represents the standard deviation
of the differences between predicted values and real values whereas the latter represents how
close the regression approximates the real data (R-square equal to 1 indicates a perfect fit of
data regression). As it can be noted in Table 7, the regression model is highly accurate. For
the naive implementation, the model presented an accuracy of up to 99.70% and 99.87% for
GFLOPS and execution time metrics, respectively. For the blocking implementation, on the
other hand, the model presented an accuracy of up to 98.22% and 99.71% for GFLOPS and
execution time metrics, respectively.

Table 7: RMSE and R-square for simulated values of the 7-point Jacobi and the Seismic Wave
kernels.

Naive Blocking
Node 1 Node 2 Node 1 Node 2

7-point Jacobi
RMSE

GFLOPS 0.7941 1.0179 1.4185 1.6065
Time 0.6642 2.5089 2.2537 3.4211

R-square
GFLOPS 0.9782 0.9313 0.9627 0.8540
Time 0.9879 0.8689 0.8881 0.8049

Seismic Wave
RMSE

GFLOPS 0.2273 0.6351 0.3158 0.4597
Time 13.5391 212.282 15.6548 347.4940

R-square
GFLOPS 0.9970 0.8334 0.9822 0.7313
Time 0.9987 0.6263 0.9971 0.7494

Second, since the goal is to obtain the best performance, we compared the model with the
best performance measurement from all data. Figure 3 present the results of this comparison.
Red bars represent the normalized output of simulated best performance from the ML-based
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model (maximum GFLOPS) whereas blue bars represent the normalized best performance from
real data. Perfect fit for best performance is obtained when the simulated values are the same (or
very close) to best performance values. This means that the predicted best performance actually
matches the best performance from all data. The best performance for blocking implementation
is described in [8].

Figures 3(a) and 3(b) compare the performance of simulated and real data for the 7-point
Jacobi stencil. As it can be noted, the simulated performance achieved by the model for the
naive implementation is very close to the best performance on both platforms. Simulated
values for the blocking implementation, on the other hand, did not exactly reach the same best
performance, although they are close to the real ones. For the seismic wave kernel, Figures 3(c)
and 3(d) show that the simulated performance is very close to the best performance. The
approximation of the best performance for 7-point Jacobi was 97.46% and 95.61% for the naive
implementation on Node 1 and Node 2, respectively, whereas it was 76.79% and 87.01% for the
blocking implementation on Node 1 and Node 2, respectively. For the seismic wave kernel, the
approximation was 97.78% and 97.04% for the naive implementation on Node 1 and Node 2,
respectively, whereas it was 99.62% and 101.06% for the blocking implementation on Node 1
and Node 2, respectively. Simulation for naive is easier than blocking because the model has
less parameters to be considered. Differences between Node 1 and Node 2 show the impact of
NUMA effects, which are difficult to simulate.

0.0

0.5

1.0

1.5

Naive Blocking

G
flo

ps

Simulated Best

(a) GFLOPS for 7-point
Jacobi: Node 1.

0.0

0.5

1.0

1.5

Naive Blocking

G
flo

ps

Simulated Best

(b) GFLOPS for 7-point
Jacobi: Node 2.

0.0

0.5

1.0

1.5

Naive Blocking

G
flo

ps

Simulated Best

(c) GFLOPS for Seismic
Wave: Node 1.

0.0

0.5

1.0

1.5

Naive Blocking

G
flo

ps

Simulated Best

(d) GFLOPS for Seismic
Wave: Node 2.

Figure 3: Normalized performance comparison between results from the ML-algorithm and
results from the best performance experimentations.

5 Related Works

Some previous works proposed performance optimizations for stencil applications on heteroge-
neous architectures. In [12] the authors analyzed the performance of task scheduling algorithms.
They concluded that different scheduling policies combined with different task sizes may consid-
erably affect the efficiency and performance of seismic wave kernels. Similarly, in [5] the authors
used a methodology to optimize stencil computations for multiple architectures (multi-core and
accelerators). They worked on target cache reuse methodologies across single and multiple
stencil sweeps, examining cache-aware algorithms as well as cache-oblivious techniques. Their
results demonstrated that recent trends in memory system organization have reduced the ef-
ficacy of traditional cache-blocking optimizations. Analogously, in [10] the authors presented
a stencil auto-tuning framework for multi-core architectures that converts a sequential stencil
expression into tuned parallel implementations. Overall, the main problem of these works is

8

Performance Improvement of Stencil Computations

for Multi-core Architectures V. Mart́ınez et. al.

that the search domain can be very large and searching for the best configuration would take
too much time.

Other works investigated the accuracy of regression models and ML algorithms in different
contexts. In [14] the authors compared ML algorithms for characterizing the shared L2 cache
behavior of programs on multi-core processors. The results showed that regression models
trained on a given L2 cache architecture are reasonably transferable to other L2 cache architec-
tures. In [19] the authors proposed a dynamic scheduling policy based on a regression model
that is capable of responding to the changing behaviors of threads during execution.

Finally, in [18] the authors presented ML-based predictors to map parallelism to multi-cores.
They considered several different parameters such as the number of threads and scheduling
policies in OpenMP programs. In [9] the authors applied ML techniques to explore stencil
configurations (code transformations, compiler flags, architectural features and optimization
parameters). Their approach is able to select a suitable configuration that gives the best
execution time and energy consumption. In [6] the authors improved performance of stencil
computations by using a model based on cache misses.

6 Conclusions and Future Work

We proposed in this paper an ML-based model to simulate performance behavior of stencil
computations on multi-core architectures. We showed that performance of two well-studied
stencil kernels (7-point Jacobi and seismic wave) can be predicted with a high accuracy using
hardware counters and the best configuration can be obtained from hardware counters and
performance measurements. Our future works can be summarized in the following lines.

First, we believe that our model can be integrated into an auto-tuning framework to find the
best performance configuration for a given stencil kernel. One possibility would be to use the
Boast automatic source-to-source transformations framework [16]. Second, we expect to extend
our methodology in order to capture complex behaviors on advanced architectures (NUMA
effects, manycores, vectorization, spacetime blocking). Finally, we intend to design a model
based on unsupervised ML algorithms to further improve our results.
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