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Abstract 10 

The behaviour of transient flow due to pumping in fractured rocks has been studied for at 11 

least the past 80 years. Analytical solutions were proposed for solving the issue of a well 12 

intersecting and pumping from one vertical, horizontal or inclined fracture in homogeneous 13 

aquifers, but their domain of application—even if covering various fracture geometries—was 14 

restricted to isotropic or anisotropic aquifers, whose potential boundaries had to be parallel or 15 

orthogonal to the fracture direction. The issue thus remains unsolved for many field cases. For 16 

example, a well intersecting and pumping a fracture in a multilayer or a dual-porosity aquifer, 17 

where intersected fractures are not necessarily parallel or orthogonal to aquifer boundaries, 18 

where several fractures with various orientations intersect the well, or the effect of pumping 19 

not only in fractures, but also in the aquifer through the screened interval of the well. 20 

Using a mathematical demonstration, we show that integrating the well-known Theis 21 

analytical solution (Theis, 1935) along the fracture axis is identical to the equally well-known 22 

analytical solution of Gringarten et al. (1974) for a uniform-flux fracture fully penetrating a 23 

homogeneous aquifer. This result implies that any existing line- or point-source solution can 24 

be used for implementing one or more discrete fractures that are intersected by the well. 25 

Several theoretical examples are presented and discussed: a single vertical fracture in a dual-26 

porosity aquifer or in a multi-layer system (with a partially intersecting fracture); one and two 27 

inclined fractures in a leaky-aquifer system with pumping either only from the fracture(s), or 28 

also from the aquifer between fracture(s) in the screened interval of the well. For the cases 29 
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with several pumping sources, analytical solutions of flowrate contribution from each 30 

individual source (fractures and well) are presented, and the drawdown behaviour according 31 

to the length of the pumped screened interval of the well is discussed. Other advantages of 32 

this proposed generic analytical solution are also given. 33 

The application of this solution to field data should provide additional field information on 34 

fracture geometry, as well as identifying the connectivity between the pumped fractures and 35 

other aquifers. 36 

To protect this original concept of a generic solution for modelling pumping tests in fractured 37 

media, a patent application has been deposited on parts of this work (French National Institute 38 

of Industrial Property). 39 

Key words: analytical solution, pumping in discrete fractures, fractured rocks, pumping test 40 

 41 

1. Introduction 42 

Since the late 1930s (e.g., Strelsova, 1988), much work has been carried out to characterize 43 

the transient flow of pumping tests carried out in naturally or artificially fractured aquifers 44 

(e.g. Muskat, 1937; Warren and Root, 1963; Russell and Truitt, 1964; Bertrand et al., 1980; 45 

Barker, 1988; Moench, 1984; Hamm and Bidaux, 1996; Jourde et al., 2002; Tiab, 2005; Delay 46 

et al., 2007; Rafini and Larocque, 2012; Dewandel et al., 2014; Roques et al., 2016). This led 47 

to the development of several analytical solutions for understanding the flow behaviour 48 

created by a well intersecting and pumping one vertical, horizontal or inclined fracture with 49 

infinite or finite hydraulic conductivity embedded in a homogeneous aquifer (Gringarten and 50 

Ramey, 1973, 1974; Gringarten et al., 1974; Cinco-Ley et al., 1975, 1998, Thiery, 1980; see 51 

also the PetroWiki website). These solutions were obtained by applying the Green’s and 52 

source functions and the Newman’s product method (Newman,1936; Gringarten and Ramey, 53 

1974). However, their domain of application, though proposed for a variety of fracture 54 

geometries, is restricted to isotropic or anisotropic infinite aquifers that may be limited in 55 

space by no-flow or constant-head boundaries (Gringarten et al., 1974), leaving several 56 

possibilities unsolved. For example, pumping a fracture in a multilayer or dual-porosity 57 

aquifer, where the fracture is not necessarily parallel or orthogonal to the aquifer boundaries, 58 

or a well intersecting and pumping fractures with various orientations, or the effect of 59 
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pumping from both fractures and also the aquifer in front of the screened interval of the well, 60 

etc. 61 

The aim of our research was to seek a new and alternative solution for computing drawdown 62 

while pumping in one or several fractures, based on existing line or point source solutions. 63 

We first demonstrate that the solutions developed for pumping in a vertical fracture can 64 

directly be found by integrating the Theis analytical solution (Theis, 1935) along the fracture 65 

axis. Then, by extension, line-source solutions for dual-porosity and multi-layer aquifers and a 66 

point-source solution for a leaky aquifer are used when pumping discrete fractures in such 67 

aquifers. Theoretical examples are given for pumping in: i) A fracture in a dual-porosity 68 

aquifer; ii) A fracture in a multi-layer system that fully or partially intersects one of the 69 

aquifer layers; iii) An inclined fracture in a homogeneous aquifer; iv) Two inclined fractures 70 

in a leaky-aquifer system with pumping only in the fractures (i.e. the well is only screened in 71 

front of the fractures); and v) The same as iv), but now pumping in both the fractures and the 72 

aquifer trough the well itself (screened interval). As in iv) and v), the flowrate contributions of  73 

each pumped source (i.e., the two fractures and the screened interval of well) to the total 74 

pumping rate vary over time, analytical solutions for evaluating their relative contributions are 75 

also presented. 76 

We do not suggest that the proposed solution should replace existing models used for 77 

modelling drawdown in pumping tests performed in homogeneously fractured media (e.g., 78 

Barker, 1988; Moench, 1984; Hamm and Bidaux, 1996), or for pumping in fractures in 79 

homogeneous aquifers (e.g., Gringarten et al, 1974; Thiéry, 1980). Rather, they are meant to 80 

supplement existing models by providing additional hydrogeological information. 81 

 82 

2. Mathematical demonstration 83 

Here, we demonstrate that the well-known Theis analytical solution (1935), defined for a well 84 

fully penetrating an isotropic aquifer and integrated along a fracture axis, is strictly identical 85 

to the analytical solution of pumping in one vertical fracture proposed by Gringarten et al. 86 

(1974), with uniform flux distribution along the fracture plane. In this conceptual aquifer 87 

model (Fig. 1), the well intercepts the middle of a vertical fracture of length 2xf and negligible 88 

thickness, intersecting a homogeneous and infinite aquifer of transmissivity T and storage 89 
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coefficient S. Hereafter, we briefly show how we achieved this demonstration; more details 90 

can be found in the Supplemental Materials. 91 

Assuming that the conductivity of the fracture can be considered infinite, and integrating the Theis 92 

well function along the fracture plane leads to the following equation: 93 
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           Theis well function 95 

where q(x) is the rate of pumping per unit length of the fracture, t the time since starting the 96 

pumping, and E1 the exponential integral (see Fig. 1 for parameters that are not defined in the 97 

text). Assuming that the pumping rate Q is uniformly distributed along the fracture, then q(x) 98 

takes the following form: 99 
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Using this statement and the following dimensionless variables: 
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According to the Fubini theorem ( and x being independent variables), the order of the 104 

integration can be inverted, and as 4
2

Dy
e
  does not depend on x, Eq.3 can be rearranged as: 105 
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When changing variable 2







 D

f

x
x

xv , the term (a) can be separated into two terms 108 

related to the Erf function, such as: 109 
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Combining Eq.4 and Eq.5, we obtain: 111 
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Eq.6 demonstrates that the Theis analytical solution, when integrated along the fracture axis, 113 

corresponds exactly to the Gringarten et al. (1974) analytical solution (their Eq.20) using 114 

Green’s and source functions and the Newman’s product method for a vertical fracture with 115 

an uniform flux distribution that fully penetrates the aquifer. 116 

This implies that the integration of any line-source solution (i.e. a well function defined for a 117 

fully or partially penetrating well) along the fracture axis can be used for computing 118 

drawdown caused by pumping from a vertical fracture that partially or fully penetrates the 119 

aquifer. In addition, any point-source solution can be used for computing drawdown while 120 

pumping an inclined or a vertical fracture that is intersected by a well. 121 

 122 

3. Theoretical examples 123 

This section presents theoretical examples based on the integration of known analytical line- 124 

or point-source solutions along the fracture plane. They are based on equation Eq.1 from 125 

which the inner integral (Theis well function in Eq.1) is replaced by another well function, 126 

assuming that flux is uniformly distributed along the fracture (Eq.2). Dimensionless 127 

drawdown (sD) and its logarithmic derivative (sD’) vs. dimensionless time with respect to 128 

fracture length (tDxf or tDLl, see appendix A) were computed for creating Log-Log diagnostic 129 

plots and examining transient flow regimes (Bourdet et al., 1983; Deruyck et al., 1992; 130 

Renard et al., 2009; Rafini et al., 2017, etc.). As benchmarks, the solutions were compared to 131 

existing analytical solutions for pumping in a vertical and a horizontal fracture in a 132 

homogeneous aquifer (Gringarten et al., 1974; Thiéry, 1980). 133 



Journal of Hydrology 559 (2018) 89–99 

6 
 

3.1 Vertical fractures 134 

These analytical solutions are found by integrating line-source solutions. Because the 135 

analytical integration of a given line-source solution along the fracture can be too difficult, we 136 

approximate it by first dividing the fracture length into smaller segments and then placing a 137 

line-source solution at each segment. Because of the linear properties of the diffusivity 138 

equation, we used the principle of superposition, summing up drawdowns induced by each 139 

segment to provide the total drawdown value due to pumping in the fracture. Then, this 140 

general formulation is used for integrating the solutions numerically: 141 





M

i

iff tyxs
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where s (x, y, t, ,, …) is a known line-source solution (e.g. dual-porosity, dual-143 

permeability or partially penetrating well solutions) and sf(xi, y, t, xf, , , …) is the solution 144 

for pumping from a vertical fracture with half-length xf (Fig. 1) in an aquifer whose 145 

parameters are defined in the s solution (,…). The fracture is along the x-axis, M is the 146 

number of segments, and xi is the abscissa of the middle of each segment (-xf≤xi≤+xf). 147 

3.1.1. Pumping at the centre of a vertical fracture fully penetrating a dual-porosity 148 

medium 149 

Figure 2 provides an example of the use of Eq.7 with Moench’s (1984) dual-porosity model (a 150 

model frequently used for interpreting pumping tests performed in homogeneously fractured 151 

media). Here, the implemented fracture is vertical and fully penetrates the dual-porosity 152 

aquifer (e.g. Fig. 1). Figure 2 shows how pumping in a fracture behaves for a set of 153 

interporosity flow coefficients  (see caption for explanation of ). As expected, when =0 154 

(i.e. the matrix hydraulic conductivity is nil corresponding to a single-porosity aquifer), the 155 

solution is equivalent to the Gringarten et al. (1974) analytical solution, with an error of 0.2% 156 

( GfG ssserror _ , SG being Gringarten’s solution; Eq.6). The difference between the 157 

theoretical solution and its numerical evaluation shows that discretization (division of the 158 

fracture length into smaller elements) errors are very small. 159 

At the start of pumping, as expected, the flow is linear (half-unit slope of derivative curves) 160 

and corresponds to flow from the most permeable medium (i.e. the secondary porosity) to the 161 

vertical fracture. For intermediate pumping stages, the derivative curves have a classical ‘U’ 162 



Journal of Hydrology 559 (2018) 89–99 

7 
 

shape, characterizing the flow from primary (the block matrix) to secondary porosity of the 163 

dual-porosity aquifer. Then, for late pumping stages, the derivatives form a plateau that 164 

corresponds to radial flow from the dual-porosity aquifer to the vertical fracture (sD’=0.5). In 165 

experimental data, this implies that drawdown values on a semi-logarithmic plot form a 166 

straight line from which the aquifer transmissivity can be deduced. 167 

3.1.2. Pumping at the centre of a vertical fracture partially penetrating the deepest layer 168 

of a multi-layer aquifer 169 

Our second example (Fig. 3a) corresponds to a multilayer aquifer, where pumping from the 170 

deepest aquifer induces depletion in the upper one. This system is characterized by a lower 171 

aquifer of thickness B with transmissivity T and storage coefficient S, and an upper aquifer 172 

with transmissivity T0, and storage coefficient Sy. Both aquifers are separated by an aquitard 173 

of hydraulic conductivity k’ and thickness B’. The vertical fracture is located in the deeper 174 

aquifer and is characterized by its location in the aquifer (zf= vertical coordinate of the 175 

fracture centre), its height hf and its length 2xf. The line-source solution for this conceptual 176 

model is an extension of the Hunt and Scott (2007) model for a partially penetrating well. 177 

Figure 3b shows type curves for various degrees of penetration of the fracture into the aquifer 178 

(hf/B ratio). In these examples, the fracture is located at the centre of the deepest aquifer 179 

(zf/B=0.5), and there is no hydraulic conductivity anisotropy (kx=ky=kz). As expected when hf 180 

equals aquifer thickness (B), the solution is identical to the Gringarten et al. (1974) analytical 181 

solution until leakage from the upper aquifers starts. At the start of pumping, derivative 182 

curves follow the half-unit slope that shows linear flow from the aquifer to the fracture, before 183 

decreasing and following a negative slope tending to -½ that corresponds to ellipsoidal flow 184 

because of the partial entry of the fracture into the aquifer (low hf/B ratios, curve 5 in Fig. 3b 185 

for instance). For intermediate times, the derivative curves form a first plateau corresponding 186 

to radial flow into the lower pumped aquifer (sD’=0.5). Later, they have a ‘V’ shape 187 

characterizing leakage from the upper aquifers. Finally, for very late stages of pumping, 188 

derivative curves form a second plateau whose value depends on the transmissivity values of 189 

both upper and lower aquifers (  0D TT2T's  ). 190 

3.2 Inclined fractures 191 

 192 

3.2.1 Pumping at the centre of a single inclined fracture 193 
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Figure 4a presents the conceptual model. The aquifer is characterized by transmissivity T and 194 

a storage coefficient S, and is anisotropic (kx, ky, kz). It is overlain by a leaky aquifer of 195 

thickness B’ and hydraulic conductivity k’. This conceptual aquifer model is similar to that 196 

proposed by Hantush (1961) and assumes that the aquitard does not react to pumping (infinite 197 

storage). The fracture crosscuts the aquifer, and is characterized by length L, width l, and 198 

angle with the vertical axis. The analytical solution of drawdown for pumping in a fracture 199 

in such an aquifer is found by integrating the point-source analytical solution given by Hunt 200 

(2005) on the fracture plane: 201 
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where r is the radial distance to the well, B is aquifer thickness, kz/kxy its vertical anisotropy in 203 

hydraulic conductivity, tD a dimensionless time,   ,q  the pumping rate per unit area, n the 204 

root of an equation, and W(a, b) the Hantush leaky-aquifer well function; all parameters are 205 

explained in Appendix B. 206 

As before, this equation is solved numerically by dividing the fracture in small elements along 207 

both L and l while assuming a uniformly distributed pumping rate per unit area (similarly to 208 

Eq.2; i.e.    lLQq  , ). Then the principle of superposition is applied for computing the 209 

drawdown at any location into the aquifer. Therefore, the solution yields: 210 
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where ri,j is the radial distance between the point (x, y, z) and the i, j
th

 element, and M and p 212 

are the number of segments along L and l. 213 

Figure 4b presents type curves of Eq.9 for various values of . For this example, the aquifer 214 

has a vertical anisotropy of 10.0 (kxy/kz=10) and we ignore the leaky aquifer (k’/B’=0). The 215 

fracture is located at the centre of the aquifer (zf/B=0.5) and its width equals the aquifer 216 

thickness (l=B). 217 

As expected, the results show that Eq.9 is identical to the benchmark solutions: the Gringarten 218 

et al. (1974) solution for a vertical rectangular fracture when =0°, and the Thiéry (1980) 219 
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solution for a horizontal rectangular fracture located at the centre (zf/B=0.5) of the aquifer, 220 

when =90°. Derivative curves show that, regardless of the  value, the early stages of 221 

pumping always describe linear flow within the fracture (half-unit slope of derivative curves). 222 

Later, derivatives create a hump, more or less pronounced according to the value of . This 223 

behaviour corresponds to the transition from flow perpendicular to the fracture—controlled by 224 

the average hydraulic conductivity normal to the fracture plane—to horizontal flow controlled 225 

by the horizontal aquifer transmissivity. In some cases (e.g. =90°), the derivatives follow a 226 

near-negative half-unit slope characterizing ellipsoidal flow because of the partial penetration 227 

of the fracture into the aquifer. Note also that increasing the kxy/kz ratio with 90, will result 228 

in a more pronounced hump of the derivative curve, because of the increased resistance to 229 

flow induced by the low vertical hydraulic conductivity. When the fracture is vertical and 230 

fully penetrates the aquifer (=0°), the hump disappears as the drawdown no longer depends 231 

upon the vertical anisotropy in hydraulic conductivity. For the late stages of pumping, 232 

derivatives form a plateau characterizing the radial flow induced by flow towards the fracture 233 

at the aquifer scale (sD’=0.5). As mentioned before, in experimental data the plateau value 234 

will depend on the horizontal transmissivity of the aquifer. 235 

3.2.2 Pumping intersecting two fractures – Pumping in the fractures only 236 

One of the flexibilities inherent in our analytical/numerical solution is the possibility to 237 

consider several fractures with different locations and orientations intersecting the pumping 238 

well. Figures 5 and 6 show an example of application where two fractures intersect the well. 239 

The characteristics of fracture 1 are L: 10 m; l: 20 m,  : 20°, and zf: 13 m, and of fracture 2 L: 240 

10 m; l: 45 m,  : 100°, and zf: 5 m. As before, only fractures are pumped (uniform flux). 241 

As shown previously, fractures with different orientations and locations are characterized by 242 

different flow behaviours. Consequently, their resistance to flow is different; this implies, 243 

when several fractures are pumped simultaneously, that the flowrates from each fracture vary 244 

over time. Therefore, the flowrate contributions of each fracture to the total pumping rate of 245 

the well have to be considered before evaluating the average drawdown in the well. To solve 246 

this problem, we again use the principle of superposition, i.e. the drawdown in a particular 247 

location is the sum of drawdown values of several pumping sources. This allows computing 248 

the flowrates of each fracture from the combination of dimensionless pumping-source 249 

solutions (see similar work in Lolon et al. 2008 and Lashgari et al., 2014). However, the 250 

boundary conditions of each individual solution do not include perturbation due to the 251 
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presence of the other pumping source, which is the only approximation of this solution. Note 252 

that this approximation is the same as the one used for modelling drawdown (with analytical 253 

solutions) created by several pumping wells. 254 

As the well is screened in front of each fracture only and as it intersects the fracture centre, 255 

the average dimensionless drawdown in the well, sDtot, can be derived from the following 256 

equations: 257 

    21221211
2

1
DDDDDtot ssqssqQs        Eq.10a 258 

21 qqQ            Eq.10b 259 

where q1 and q2 are flowrates from fractures 1 and 2, Q is the total pumping flowrate. sD1 and 260 

sD2 are the dimensionless drawdown values at the centre of fractures 1 and 2, sD12 is the 261 

dimensionless drawdown induced by fracture 1 at the centre of fracture 2, and sD21, the one 262 

induced by fracture 2 at the centre of fracture 1. 263 

At the intersection between fracture 1 and the well, the drawdown is: 264 

212111 DDF sqsqS            Eq.10c 265 

and at the intersection between fracture 2 and the well: 266 

121222 DDF sqsqS           Eq.10d 267 

Assuming equal drawdown at the centre of both fractures (SF1=SF2), thus implicitly assuming 268 

uniform drawdown at the well location, and solving the system of equations provided by Eqs. 269 

10, one will find solutions for sDtot, q1 and q2: 270 

   CBCAsDtot  1
2

1
         Eq.11a 271 

 CQq  11 , or  CqD  111        Eq.11b 272 

 CQCq  12 , or  CCqD  12        Eq.11c 273 

with  121 DD ssA  ,  212 DD ssB   and    212121 DDDD ssssC  , and dimensionless 274 

flowrate Qqq iDi  . 275 
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For the computation, drawdown values sD1, sD2, sD12 and sD21 were calculated separately with 276 

Eq.9 while assuming a unit flow rate (Q=1). 277 

Figures 6a and b present the resulting drawdown and the flowrate contributions of each 278 

fracture, and figures 6c, d, e and f show drawdown distribution in the vertical plane at 279 

different times. In the early stages of pumping, the drawdown derivative is characterized by 280 

the classical half-unit slope corresponding to flow from the aquifer to both fractures 281 

(t <0.8 min; Fig. 6a and c). In the beginning, both fractures contribute almost equally to the 282 

total pumping rate (Fig. 6b), though in the very early stage (t ≤0.1 min) fracture 2 contributes 283 

slightly more because of its larger area. However, very rapidly flowrate from fracture 1 284 

becomes dominant as its orientation offers less restriction to flow compared to fracture 2, 285 

which is oriented almost orthogonal to the hydraulic conductivity axis of the lower aquifer. 286 

Between 0.1 and 100 min, the derivative curve shows transitional flow behaviour, followed 287 

by a near -1/2 slope (100<t<2000 min) that characterizes the ellipsoidal flow towards both 288 

fractures as drawdown starts to progress in the whole aquifer (Fig. 6d). Later 289 

(2000<t<7000 min), the derivative stabilizes, forming a plateau characterizing radial flow 290 

from the aquifer to both fractures (Fig. 6e) whose value depends on the aquifer transmissivity. 291 

For the last stages (t>7000 min), the derivative decreases because of leakage from the top 292 

aquitard (Fig. 6f). At the end of pumping, fracture 1 (the smallest; 200 m
2
) contributes 74% of 293 

the total flow rate while fracture 2, the largest (450 m
2
), contributes only 26% (Fig. 6b). 294 

As a final point, this drawdown curve shows the difficulty of identifying the contribution of 295 

more than one fracture on a diagnosis plot, as this looks similar to one of the cases presented 296 

in Fig. 4 until leakage appears. In this case, only drawdown observation on other wells in the 297 

aquifer and/or few data on the geometry of fractures can provide unequivocal information 298 

about these fractures. 299 

 3.2.3. Pumping intersecting two fractures – pumping in the fractures and in the 300 

aquifer through the well itself 301 

This last case is similar to the sketch presented on Figure 5, but pumping affects both 302 

fractures as well as the aquifer directly through a screened portion of the well. The well 303 

intersects the centres of both fractures. As for the previous case, flowrate contributions of 304 

each individual pumping source (the two fractures and the well) have to be evaluated before 305 

computing the average dimensionless drawdown, sDtot, in the well:  306 
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WWWDWDDtot sqsqsqQs  2211
       Eq.12a 307 

with 
WqqqQ  21

         Eq.12b 308 

where q1 and q2 are flowrates from fractures 1 and 2, qW the flowrate from the aquifer through 309 

the well and Q the total pumping flowrate. sD1W and sD2W are the dimensionless drawdown 310 

values induced by fractures 1 and 2 in the screened well interval. sD1W and sD2W are the 311 

average drawdown values along the screened interval, computed by integrating the analytical 312 

solution (Eq.8) between the upper and lower limits of the pumped section. sW is the 313 

dimensionless drawdown induced by pumping in the screened interval (Hunt’s (2005) 314 

analytical solution). 315 

At the intersection between fractures and the well, the drawdown in the well has to be 316 

identical to that from the fractures. Therefore, at the intersection between the well and fracture 317 

1: 318 

21211 DDWW sqsqsq           Eq.12c 319 

and between the well and fracture 2: 320 

12122 DDWW sqsqsq          Eq.12d 321 

with sD1 and sD2 the dimensionless drawdown values at the centre of fractures 1 and 2, sD12 the 322 

dimensionless drawdown induced by fracture 1 at the centre of fracture 2, and sD21 the one 323 

induced by fracture 2 at the centre of fracture 1. 324 

Assuming equal drawdown at the centre of both fractures (Eq.12c=Eq.12d) in the well in front 325 

of both fractures, and solving the system of equations provided by Eqs.12, solutions are found 326 

for sDtot, q1, q2 and qW : 327 

   WWWDtot sDCDCsss  121
       Eq.13a 328 

 WsDCQq  11 , or  WD sDCq  111      Eq.13b 329 

 WsDCQCq  12 , or  WD sDCCq  12      Eq.13c 330 

  WWW sDCsQDq  1 , or   WWDW sDCsDq  1     Eq.13d 331 



Journal of Hydrology 559 (2018) 89–99 

13 
 

where C is defined before (Eqs.11),    212211221 DDDDDD ssssssD  , and Qqq iDi   are 332 

the dimensionless flowrates. 333 

Drawdown computations and flowrate of each pumping source were made for a well fully 334 

penetrating an aquifer with characteristics and fractures as sketched on Figure 5. Drawdown 335 

values were computed separately with Eq.9 for the fractures and with the Hunt (2005) 336 

analytical solution for the well (vertical, fully penetrating the aquifer and uniform flux 337 

distribution). Figures 7a and b show the results and Figures 7c, d, e and f the drawdown 338 

distribution (on a vertical axis) at different times. 339 

The drawdown behaviour is very different to the case where only the fractures are pumped 340 

(Fig. 6a). At the start of pumping (see also Fig. 7c), the half-unit slope persists as the 341 

contribution of the aquifer through the well in terms of flowrate is low compared to that from 342 

the fractures (Fig. 7b). After 1 to ~1000 minutes, the derivative curve slightly decreases, 343 

following a gentle near-negative slope. This period describes the transitional flow regime 344 

during which the contribution though the well starts to contribute significantly to the total 345 

flowrate. During this period, ellipsoidal flows from fractures still exist (Fig. 7d), but are 346 

masked by the well contribution. Between 1000 and ~7000 minutes (Fig. 7e), the derivative 347 

curve forms a plateau corresponding to near-radial flow induced by the three pumping 348 

sources. At the end of pumping, the well contributes up to 52% of the total flow rate, fracture 349 

1 up to 36%, while fracture 2 yields only 12%. 350 

The high flowrate contribution from the aquifer to the well, here equivalent to both fractures, 351 

is due to two reasons: i) The medium to high transmissivity of the aquifer (T=10
-4

 m
2
/s), or 352 

more exactly its diffusivity; and ii) Because the screened interval covers the entire aquifer 353 

thickness. If the aquifer transmissivity had been very low (e.g. <10
-8

 m
2
/s), or if the well had 354 

been screened near the fractures, the aquifer contribution through the well would have been 355 

negligible or drastically less, creating an average drawdown in the well similar to the one 356 

observed on Fig. 6. Appendix C provides an intermediate figure where the well is screened in 357 

front of both fractures only. Fractures and aquifer properties are those of Fig. 5 with a well-358 

screened interval of 7 m. Drawdown and derivative behaviour are different from the previous 359 

case, and closer to those of Fig. 6 because of the lower contribution of the aquifer through the 360 

well to the total pumping flowrate (at the end of pumping, well: 20%, fracture1: 56% and 361 

fracture 2: 22%). 362 
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This result shows that where an aquifer has significant transmissivity, the fracture signature 363 

(i.e. the half-unit derivative slope in the early stages of pumping) may be very short, and even 364 

not seen. This may explain why pumping tests in fractured media commonly are not 365 

interpreted with solutions invoking discrete fractures intersected by the well, but with 366 

homogeneous aquifer solutions (e.g. dual-porosity models), even if fractures were seen on 367 

field data (e.g. Taylor and Howard, 2000; Maréchal et al., 2004; Dewandel et al., 2011, 2017). 368 

 369 

4. Conclusions 370 

Integrating the well-known Theis analytical solution (1935) along a fracture axis is 371 

mathematically identical to the equally well-known solution of Gringarten et al. (1974) for a 372 

uniform-flux fracture fully penetrating an aquifer, obtained with Green’s function and the 373 

product solution method. Though this result was mathematically expected (Green’s function 374 

represents the distribution of instantaneous point-sources over length, area or volume), this 375 

had never before been demonstrated or highlighted as far as we are aware. This implies that 376 

any line- or point-source solution integrated along the fracture plane can be used for 377 

computing flow through a fracture. In view of the large number of existing analytical 378 

solutions, this provides a very wide range of applications for this generic analytical solution, 379 

and thus helps modelling discrete fractures that are intersected and pumped by a well, in most 380 

hydrogeological settings. 381 

We give several theoretical examples for dual-porosity or multilayer aquifer types, even when 382 

the pumping well intersects several fractures, and for pumping both in fractures and/or 383 

directly in the aquifer through the screened interval of a well. Where several sources are 384 

pumped (the aquifer trough the well and/or several fractures), solutions of flowrate 385 

contributions of each individual pumping source are given and can be extended to any number 386 

of fractures. 387 

As expected when the conceptual hydrogeological models respect the theoretical assumptions 388 

of benchmark analytical solutions (here for pumping in a vertical or a horizontal fracture), the 389 

proposed solutions do not show significant differences between models. 390 

Where a fracture is vertical and fully intersects the aquifer, the classical flow regime of a 391 

fracture can be recognized regardless of the conceptual aquifer model used. However, in the 392 

case of an inclined fracture, we show that flow behaviour is not unique. In that case, it 393 
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depends on the screened-interval length of the well, as well as on whether only the fracture, or 394 

both the fracture and the surrounding aquifer are screened. Even, when aquifer transmissivity 395 

(or diffusivity) is not low, the fracture signature (the classical half-unit slope on a derivative 396 

drawdown curve) can be masked by the contribution of the screened interval of the well. 397 

Our work is based on the assumption that flux is uniformly distributed along the fracture and 398 

the screened interval of the well. Even if this hypothesis is the closest approximation for an 399 

infinite conductivity fracture –it is nonetheless identical at early stages of pumping- solutions 400 

for infinite conductivity fracture can be derived from uniform flux analytical solutions 401 

(Gringarten et al., 1974). This can be computed by dividing the fracture into small sections, 402 

each with uniform flux per unit area, and then by evaluating the flow contribution of each 403 

section to arrive at identical drawdown values along the entire fracture, including the screened 404 

interval of the well if it is pumped as well. 405 

In addition to the possibility of using any line- or point-source solutions, our generic 406 

analytical solution offers several other advantages. For example, by using the superposition 407 

principle (image well theory) it allows developing solutions where no-flow and constant-head 408 

boundaries are not necessarily parallel to the fracture directions. Currently available analytical 409 

solutions, however, assume fractures parallel or at right angle to boundaries. In the case of a 410 

well field, our solution allows computing the overall drawdown created by several pumping 411 

wells intersecting fractures with various geometries, or when only some of the wells intersect 412 

such fractures, the others directly pumping the aquifer. Finally, though we established 413 

analytical solutions for rectangular fractures, these solutions can also be developed for any 414 

other geometrical configuration. 415 

From a practical point view, the proposed analytical solutions and few diagnosis plots as 416 

presented provide additional information on flow behaviour and drawdown in fractured 417 

media. Their application to real field data is expected soon to characterize fracture geometries, 418 

particularly in the case of fractured thermo-mineral aquifers (Maréchal et al., 2014). This 419 

should help defining, among other points, the location of a well within a given deep fracture, 420 

and then to establish if this fracture extends very deep or not. In addition, it should help 421 

characterizing fractures of the weathered Stratiform Fractured Layer of hard rock aquifers 422 

(Lachassagne et al., 2011) as well as their relationships with overlying saprolite (leakage 423 

effects). 424 

 425 
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Figure captions 526 

Figure 1. Conceptual sketch of a well intercepting a single vertical fracture; it corresponds to 527 

the analytical solution of Gringarten et al. (1974) (plan view). 528 

Figure 2. A single fully penetrating fracture in a dual-porosity aquifer (dual-porosity 529 

conceptual model: Moench, 1984), pumping at the centre of the fracture. Type curves for 530 

various  coefficients (=Kmr
2
/(Kfbm)). Dimensionless drawdown –sD: plain curves and 531 

derivatives–sD’: dotted curves. Circles correspond to the Gringarten et al. (1974) solution. 532 

Dual-porosity model parameters: Kf and Km, fracture and matrix hydraulic conductivity, bm: 533 

block size, r: radial distance from the well, sf and sm: fracture and matrix storage, skf= fracture 534 

skin. 535 

Figure 3. A single partially entering vertical fracture in a multilayer aquifer. Fracture in the 536 

deepest layer, and pumping at the centre of the fracture. a) Conceptual model with aquifer 537 

parameters (see text for explanation). b) Type curves for various hf/B ratios. Circles 538 

correspond to the Gringarten et al. (1974) analytical solution. 539 

Figure 4. Pumping at the centre of an inclined fracture in a leaky aquifer system. a) 540 

Conceptual model with aquifer parameters (see text for explanation). b) Type curves for 541 

various angles of the fracture with the vertical, , and k’/B’=0 (no-leakage). Dots correspond 542 

to the Gringarten et al. (1974) and Thiéry (1980) analytical solutions. 543 

Figure 5. Two inclined fractures in a leaky aquifer system: model parameters. 544 

Figure 6. Two inclined fractures in a leaky aquifer system; the well is screened in front of 545 

both fractures only. a) Average drawdown and its derivative at the well. b) Dimensionless 546 

flowrate contributions of each fracture. c), d), e) and f) Drawdown distributions at various 547 

times along the x-axis. Pumping rate is 1 m
3
/h. 548 

Figure 7. Two inclined fractures in a leaky aquifer system, pumping in the fractures and in 549 

the aquifer through a fully penetrating well. a) Average drawdown and its derivative at the 550 

well. b) Dimensionless flowrate contributions of each fracture and of the aquifer through the 551 

well. c), d), e) and f) Drawdown distributions at various times along the x-axis. Pumping rate 552 

is 1 m
3
/h. 553 

Caption for the figure in Appendix C: drawdown and its derivative (a) and flowrates (b) 554 

behaviour for a well screened in front of both fractures (length: 7 m); both fractures and the 555 



Journal of Hydrology 559 (2018) 89–99 

21 
 

aquifer though the screened-interval are pumped. Fractures and aquifer properties are the ones 556 

of Figure 5. Pumping rate is 1 m
3
/h. 557 

 558 

 559 

Figure 1. Conceptual sketch of a well intercepting a single vertical fracture; it corresponds to 560 

the analytical solution of Gringarten et al. (1974) (plan view). 561 

 562 

 563 

Figure 2. A single fully penetrating fracture in a dual-porosity aquifer (dual-porosity 564 

conceptual model: Moench, 1984), pumping at the centre of the fracture. Type curves for 565 

various  coefficients (=Kmr
2
/(Kfbm)). Drawdown –sD: plain curves and derivatives–sD’: 566 

dotted curves. Circles correspond to the Gringarten et al. (1974) solution. Dual-porosity 567 

model parameters: Kf and Km, fracture and matrix hydraulic conductivity, bm: block size, r: 568 

radial distance from the well, sf and sm: fracture and matrix storage, skf= fracture skin. 569 

 570 

T, S

Borewell

xf

Vertical fracture

x

y

xobs

yobs
Observation well

xf

0.01

0.1

1

10

0.001 0.01 0.1 1 10 100 1000 10000 100000 1000000

s D
&

  s
D
’

tDxf

curve 1 : 0 (Sol. Gringarten)

curve 2 : =1E-12

curve 3 : =1E-10

curve 4 : =1E-9

curve 5  : =1E-8

cure 6  : =1E-7

Single verticale fracture in a dual porosity medium

=Kmr2/Kfbm

WSf/Sm=0.1
skf=1.0

1

2
3456

1

2

3
4

5

6

Radial flow sD’=1/2

Error

0.19%

Benchmark

 -> Gringarten solution 

(vertical fracture)



Journal of Hydrology 559 (2018) 89–99 

22 
 

 571 

Figure 3. A single partially entering vertical fracture in a multilayer aquifer. Fracture in the 572 

deepest layer, and pumping at the centre of the fracture. a) Conceptual model with aquifer 573 

parameters (see text for explanation). b) Type curves for various hf/B ratios. Circles 574 

correspond to the Gringarten et al. (1974) analytical solution. 575 
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 576 

Figure 4. Pumping at the centre of an inclined fracture in a leaky aquifer system. a) 577 

Conceptual model with aquifer parameters (see text for explanation). b) Type curves for 578 

various angles of the fracture with the vertical, , and k’/B’=0 (no-leakage). Dots correspond 579 

to the Gringarten et al. (1974) and Thiéry (1980) analytical solutions. 580 

 581 
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 582 

Figure 5. Two inclined fractures in a leaky aquifer system: model parameters. 583 

 584 

 585 

Figure 6. Two inclined fractures in a leaky aquifer system; the well is screened in front of 586 

both fractures only. a) Average drawdown and its derivative at the well. b) Dimensionless 587 

flowrate contributions of each fracture. Pumping rate is 1 m
3
/h. 588 
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 590 

Figure 6. cont’d. c), d), e) and f) Drawdown distributions at various times along the x-axis.  591 
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 592 

Figure 7. Two inclined fractures in a leaky aquifer system, pumping in the fractures and in 593 

the aquifer through a fully penetrating well. a) Average drawdown and its derivative at the 594 

well. b) Dimensionless flowrate contributions of each fracture and, of the aquifer though the 595 

well. Pumping rate is 1 m
3
/h.  596 
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 598 

Figure 7. cont’d. c), d), e) and f) Drawdown distributions at various times along the x-axis. 599 
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Appendices: 601 

Appendix A: Dimensionless drawdown and time 602 

Dimensionless drawdown, sD : 603 

s
Q

T
sD

2
  604 

With s, the drawdown, T, the transmissivity, and Q, the pumping rate.  605 

Dimensionless time, tDxf and tDLl : 606 

- For a vertical fracture fully penetrating the aquifer, tDxf : 607 

2

f

Dxf
Sx

tT
t  ; with xf, the half-fracture length, t, the time and S, the storage coefficient of 608 

the aquifer. 609 

- For a fracture partially penetrating the aquifer, tDLl : 610 

- 
 2.2 lLS

tT
tDLl  ; with L and l, the length and the width of the fracture. 611 

 612 

Appendix B: point-source solution of Hunt (2005) 613 

Point-source (or sink source) solution for the aquifer described in Figure 4 (Hunt, 2005), from 614 

which 3-D anisotropy in hydraulic conductivity has been implemented: 615 
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 616 

where xyyD kk
B

x
x  , xyxD kk

B

y
y  , 

B

z
zD  , are dimensionless variables of the point 617 

location (x, y, z); kx, ky, kz are the hydraulic conductivity along the x, y, z directions; Z is the z 618 

coordinate of the point source where pumping Q takes place; kxy is the horizontal hydraulic 619 

conductivity of the aquifer ( BTkkk yxxy  ); B is the aquifer thickness and SBtkt xyD  ; 620 
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t is time; n is the root of equation  
Bk

Bk

z

nn

''
tan  , with k’ and B’ the hydraulic 621 

conductivity and the thickness of the leaky aquifer; W(a, b) is the Hantush leaky-aquifer well 622 

function. 623 

 624 

Appendix C: drawdown and its derivative (a) and flowrates (b) behaviour for a well screened 625 

in front of both fractures (length: 7 m); both fractures and the aquifer though the screened-626 

interval are pumped. Fractures and aquifer properties are the ones of Figure 5. Pumping rate is 627 

1 m
3
/h. 628 
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Supplemental material: 631 

Demonstrating that the well Theis funtion integrated along a fracture plane is identical 632 

to the analytical solution of pumping in a vertical fracture proposed by Gringarten et al. 633 

(1974) with uniform flux distribution. 634 

Definition conceptual model: the borewell intercepts a vertical fracture of length 2xf in a 635 

homogeneous and infinite aquifer of transmissivity, T, and storativity, S. The width of the 636 

fracture is assumed to be negligible. 637 

 638 

Notations 639 

222 )( obsobs yxxr   with x a point in the fracture ; 
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Tt
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f

D 2
  ; 

f
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y   ;  640 
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 642 

Properties of the well function W(u): 643 
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 644 
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 645 

Properties of the Erf function: 646 
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Well Theis function for a well 650 

The aquifer is pumped in a single vertical well fully penetrating the aquifer with a pumping 651 

rate q. The drawdown at a radial distance r from the well can be expressed as: 652 


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       [Eq.1] 

653 

 
654 

Gringarten analytical solution (Gringarten et al., 1974) 655 

For a pumping in a single vertical fracture intersecting the pumped well, with uniform flux 656 

distribution, the drawdown can be expressed as: 657 
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 658 

Where Q is the pumping rate. As Q is assumed to be uniformly distributed along the fracture, 659 

therefore: 660 
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661 

Mathematical demonstration 662 

Integration of the Theis’ solution along the fracture yields: 663 
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 664 

with the simplified notation and using the property of the Ei function, it becomes: 665 
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which can be rewritten as : dxd
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According to the Fubini theorem (i.e.  and x are independent), the order of integration can be 668 

inverted, yielding to:  669 
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670 

and as 4
2

Dy
e
  does not depend on x, it can be rearranged as: 671 
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        (a) 673 

With the following change of variable: 2



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xv , the (a) term of [Eq.3] can be 674 
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The right part of [Eq.4] can be decomposed into two terms related to the Erf function: 677 
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           [Eq.5] 679 

Combining [Eq.3] and [Eq.5], we obtain: 680 
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 681 

And thus :  
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 [Eq.6] 682 

[Eq.6] proves that the Theis analytical solution integrated along the fracture plane is exactly 683 

the same as the Gringarten analytical solution, for a vertical fracture with a uniform flux 684 

distribution (Eq. 2 or the Eq. 20 in Gringarten et al. 1974). 685 

686 
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