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The behaviour of transient flow due to pumping in fractured rocks has been studied for at least the past 80 years. Analytical solutions were proposed for solving the issue of a well intersecting and pumping from one vertical, horizontal or inclined fracture in homogeneous aquifers, but their domain of application-even if covering various fracture geometries-was restricted to isotropic or anisotropic aquifers, whose potential boundaries had to be parallel or orthogonal to the fracture direction. The issue thus remains unsolved for many field cases. For example, a well intersecting and pumping a fracture in a multilayer or a dual-porosity aquifer, where intersected fractures are not necessarily parallel or orthogonal to aquifer boundaries, where several fractures with various orientations intersect the well, or the effect of pumping not only in fractures, but also in the aquifer through the screened interval of the well.

 along the fracture axis is identical to the equally well-known analytical solution of Gringarten et al. (1974) for a uniform-flux fracture fully penetrating a homogeneous aquifer. This result implies that any existing line-or point-source solution can be used for implementing one or more discrete fractures that are intersected by the well.

Several theoretical examples are presented and discussed: a single vertical fracture in a dualporosity aquifer or in a multi-layer system (with a partially intersecting fracture); one and two inclined fractures in a leaky-aquifer system with pumping either only from the fracture(s), or also from the aquifer between fracture(s) in the screened interval of the well. For the cases with several pumping sources, analytical solutions of flowrate contribution from each individual source (fractures and well) are presented, and the drawdown behaviour according to the length of the pumped screened interval of the well is discussed. Other advantages of this proposed generic analytical solution are also given.

The application of this solution to field data should provide additional field information on fracture geometry, as well as identifying the connectivity between the pumped fractures and other aquifers.

To protect this original concept of a generic solution for modelling pumping tests in fractured media,

Introduction

Since the late 1930s (e.g., [START_REF] Strelsova | Well Testing in Heterogeneous Formations[END_REF], much work has been carried out to characterize the transient flow of pumping tests carried out in naturally or artificially fractured aquifers (e.g. [START_REF] Muskat | The Flow of Homogeneous Fluids through Porous Media[END_REF][START_REF] Warren | The behaviour of naturally fractured reservoirs[END_REF][START_REF] Russell | Transient pressure behavior in vertically fractured reservoirs[END_REF][START_REF] Bertrand | Hot Dry Rocks, contribution to the methodology of determining the hydraulic properties of naturally or artificially fractured rocks[END_REF][START_REF] Barker | A generalized radial flow model for hydraulic tests in fractured rock[END_REF][START_REF] Moench | Double-porosity models for a fissured groundwater reservoir with fracture skin[END_REF][START_REF] Hamm | Dual-porosity fractal models for transient flow analysis in fissured rocks[END_REF][START_REF] Jourde | Flow behavior in a dual fracture network[END_REF][START_REF] Tiab | Analysis of pressure derivative data of hydraulically fractured wells by the Tiab's Direct Synthesis technique[END_REF][START_REF] Delay | Inversion of interference hydraulic pumping tests in both homogeneous and fractal dual media[END_REF][START_REF] Rafini | Numerical modeling of the hydraulic signatures of horizontal and inclined faults[END_REF][START_REF] Dewandel | Analytical solutions for analysing pumping tests in a sub-vertical and anisotropic fault zone draining shallow aquifers[END_REF][START_REF] Roques | High-yielding aquifers in crystalline basement: insights about the role of fault zones, exemplified by Armorican Massif[END_REF]. This led to the development of several analytical solutions for understanding the flow behaviour created by a well intersecting and pumping one vertical, horizontal or inclined fracture with infinite or finite hydraulic conductivity embedded in a homogeneous aquifer (Gringarten andRamey, 1973, 1974;Gringarten et al., 1974;[START_REF] Cinco-Ley | Unsteady-state pressure distribution created by a well with an inclined fracture[END_REF][START_REF] Cinco-Ley | Transient pressure behaviour for a well with a finite-conductivity vertical fracture[END_REF], Thiery, 1980; see also the PetroWiki website). These solutions were obtained by applying the Green's and source functions and the Newman's product method (Newman,1936;Gringarten and Ramey, 1974). However, their domain of application, though proposed for a variety of fracture geometries, is restricted to isotropic or anisotropic infinite aquifers that may be limited in space by no-flow or constant-head boundaries (Gringarten et al., 1974), leaving several possibilities unsolved. For example, pumping a fracture in a multilayer or dual-porosity aquifer, where the fracture is not necessarily parallel or orthogonal to the aquifer boundaries, or a well intersecting and pumping fractures with various orientations, or the effect of pumping from both fractures and also the aquifer in front of the screened interval of the well, etc.

The aim of our research was to seek a new and alternative solution for computing drawdown while pumping in one or several fractures, based on existing line or point source solutions.

We first demonstrate that the solutions developed for pumping in a vertical fracture can directly be found by integrating the Theis analytical solution [START_REF] Theis | The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using groundwater storage[END_REF] along the fracture axis. Then, by extension, line-source solutions for dual-porosity and multi-layer aquifers and a point-source solution for a leaky aquifer are used when pumping discrete fractures in such aquifers. Theoretical examples are given for pumping in: i) A fracture in a dual-porosity aquifer; ii) A fracture in a multi-layer system that fully or partially intersects one of the aquifer layers; iii) An inclined fracture in a homogeneous aquifer; iv) Two inclined fractures in a leaky-aquifer system with pumping only in the fractures (i.e. the well is only screened in front of the fractures); and v) The same as iv), but now pumping in both the fractures and the aquifer trough the well itself (screened interval). As in iv) and v), the flowrate contributions of each pumped source (i.e., the two fractures and the screened interval of well) to the total pumping rate vary over time, analytical solutions for evaluating their relative contributions are also presented.

We do not suggest that the proposed solution should replace existing models used for modelling drawdown in pumping tests performed in homogeneously fractured media (e.g., [START_REF] Barker | A generalized radial flow model for hydraulic tests in fractured rock[END_REF][START_REF] Moench | Double-porosity models for a fissured groundwater reservoir with fracture skin[END_REF][START_REF] Hamm | Dual-porosity fractal models for transient flow analysis in fissured rocks[END_REF], or for pumping in fractures in homogeneous aquifers (e.g., Gringarten et al, 1974;[START_REF] Thiéry | Analysis of a pumping test in a horizontal fracture. Thomas W Doe. Third Invitational Well-Testing Symposium -well testing in low permeability environments[END_REF]. Rather, they are meant to supplement existing models by providing additional hydrogeological information.

Mathematical demonstration

Here, we demonstrate that the well-known Theis analytical solution (1935), defined for a well fully penetrating an isotropic aquifer and integrated along a fracture axis, is strictly identical to the analytical solution of pumping in one vertical fracture proposed by Gringarten et al. (1974), with uniform flux distribution along the fracture plane. In this conceptual aquifer model (Fig. 1), the well intercepts the middle of a vertical fracture of length 2xf and negligible thickness, intersecting a homogeneous and infinite aquifer of transmissivity T and storage coefficient S. Hereafter, we briefly show how we achieved this demonstration; more details can be found in the Supplemental Materials.

Assuming that the conductivity of the fracture can be considered infinite, and integrating the Theis well function along the fracture plane leads to the following equation:
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Theis well function where q(x) is the rate of pumping per unit length of the fracture, t the time since starting the pumping, and E 1 the exponential integral (see Fig. 1 for parameters that are not defined in the text). Assuming that the pumping rate Q is uniformly distributed along the fracture, then q(x)

takes the following form:
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Using this statement and the following dimensionless variables:
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According to the Fubini theorem ( and x being independent variables), the order of the integration can be inverted, and as
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does not depend on x, Eq.3 can be rearranged as:
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, the term (a) can be separated into two terms related to the Erf function, such as: Combining Eq.4 and Eq.5, we obtain:
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Eq.6 demonstrates that the Theis analytical solution, when integrated along the fracture axis, corresponds exactly to the Gringarten et al. (1974) analytical solution (their Eq.20) using Green's and source functions and the Newman's product method for a vertical fracture with an uniform flux distribution that fully penetrates the aquifer. This implies that the integration of any line-source solution (i.e. a well function defined for a fully or partially penetrating well) along the fracture axis can be used for computing drawdown caused by pumping from a vertical fracture that partially or fully penetrates the aquifer. In addition, any point-source solution can be used for computing drawdown while pumping an inclined or a vertical fracture that is intersected by a well.

Theoretical examples

This section presents theoretical examples based on the integration of known analytical lineor point-source solutions along the fracture plane. They are based on equation Eq.1 from which the inner integral (Theis well function in Eq.1) is replaced by another well function, assuming that flux is uniformly distributed along the fracture (Eq.2). Dimensionless drawdown (s D ) and its logarithmic derivative (s D ') vs. dimensionless time with respect to fracture length (t Dxf or t DLl , see appendix A) were computed for creating Log-Log diagnostic plots and examining transient flow regimes [START_REF] Bourdet | A new set of type curves simplifies well test analysis[END_REF][START_REF] Deruyck | Testing design and analysis[END_REF][START_REF] Renard | Understanding diagnostic plots for well-test interpretation[END_REF]Rafini et al., 2017, etc.). As benchmarks, the solutions were compared to existing analytical solutions for pumping in a vertical and a horizontal fracture in a homogeneous aquifer (Gringarten et al., 1974;[START_REF] Thiéry | Analysis of a pumping test in a horizontal fracture. Thomas W Doe. Third Invitational Well-Testing Symposium -well testing in low permeability environments[END_REF].

Vertical fractures

These analytical solutions are found by integrating line-source solutions. Because the analytical integration of a given line-source solution along the fracture can be too difficult, we approximate it by first dividing the fracture length into smaller segments and then placing a line-source solution at each segment. Because of the linear properties of the diffusivity equation, we used the principle of superposition, summing up drawdowns induced by each segment to provide the total drawdown value due to pumping in the fracture. Then, this general formulation is used for integrating the solutions numerically:
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Eq.7 where s  (x, y, t, ,, …) is a known line-source solution (e.g. dual-porosity, dualpermeability or partially penetrating well solutions) and s f (x i , y, t, x f , , , …) is the solution for pumping from a vertical fracture with half-length xf (Fig. 1) in an aquifer whose parameters are defined in the s  solution (,…). The fracture is along the x-axis, M is the number of segments, and x i is the abscissa of the middle of each segment (-x f ≤x i ≤+x f ).

3.1.1. Pumping at the centre of a vertical fracture fully penetrating a dual-porosity medium Figure 2 provides an example of the use of Eq.7 with [START_REF] Moench | Double-porosity models for a fissured groundwater reservoir with fracture skin[END_REF] dual-porosity model (a model frequently used for interpreting pumping tests performed in homogeneously fractured media). Here, the implemented fracture is vertical and fully penetrates the dual-porosity aquifer (e.g. Fig. 1). Figure 2 shows how pumping in a fracture behaves for a set of interporosity flow coefficients  (see caption for explanation of ). As expected, when =0 (i.e. the matrix hydraulic conductivity is nil corresponding to a single-porosity aquifer), the solution is equivalent to the Gringarten et al. (1974) analytical solution, with an error of 0.2%
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, S G being Gringarten's solution; Eq.6). The difference between the theoretical solution and its numerical evaluation shows that discretization (division of the fracture length into smaller elements) errors are very small.

At the start of pumping, as expected, the flow is linear (half-unit slope of derivative curves)

and corresponds to flow from the most permeable medium (i.e. the secondary porosity) to the vertical fracture. For intermediate pumping stages, the derivative curves have a classical 'U' shape, characterizing the flow from primary (the block matrix) to secondary porosity of the dual-porosity aquifer. Then, for late pumping stages, the derivatives form a plateau that corresponds to radial flow from the dual-porosity aquifer to the vertical fracture (s D '=0.5). In experimental data, this implies that drawdown values on a semi-logarithmic plot form a straight line from which the aquifer transmissivity can be deduced.

3.1.2. Pumping at the centre of a vertical fracture partially penetrating the deepest layer of a multi-layer aquifer

Our second example (Fig. 3a) corresponds to a multilayer aquifer, where pumping from the deepest aquifer induces depletion in the upper one. This system is characterized by a lower aquifer of thickness B with transmissivity T and storage coefficient S, and an upper aquifer with transmissivity T 0 , and storage coefficient Sy. Both aquifers are separated by an aquitard of hydraulic conductivity k' and thickness B'. The vertical fracture is located in the deeper aquifer and is characterized by its location in the aquifer (z f = vertical coordinate of the fracture centre), its height h f and its length 2x f . The line-source solution for this conceptual model is an extension of the [START_REF] Hunt | Flow to a well in a two-aquifer system[END_REF] model for a partially penetrating well.

Figure 3b shows type curves for various degrees of penetration of the fracture into the aquifer (h f /B ratio). In these examples, the fracture is located at the centre of the deepest aquifer (z f /B=0.5), and there is no hydraulic conductivity anisotropy (kx=ky=kz). As expected when h f equals aquifer thickness (B), the solution is identical to the Gringarten et al. (1974) analytical solution until leakage from the upper aquifers starts. At the start of pumping, derivative curves follow the half-unit slope that shows linear flow from the aquifer to the fracture, before decreasing and following a negative slope tending to -½ that corresponds to ellipsoidal flow because of the partial entry of the fracture into the aquifer (low h f /B ratios, curve 5 in Fig. 3b for instance). For intermediate times, the derivative curves form a first plateau corresponding to radial flow into the lower pumped aquifer (s D '=0.5). Later, they have a 'V' shape characterizing leakage from the upper aquifers. Finally, for very late stages of pumping, derivative curves form a second plateau whose value depends on the transmissivity values of both upper and lower aquifers (
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Inclined fractures

Pumping at the centre of a single inclined fracture

Figure 4a presents the conceptual model. The aquifer is characterized by transmissivity T and a storage coefficient S, and is anisotropic (k x , k y , k z ). It is overlain by a leaky aquifer of thickness B' and hydraulic conductivity k'. This conceptual aquifer model is similar to that proposed by [START_REF] Hantush | Aquifer tests on partially penetrating wells[END_REF] and assumes that the aquitard does not react to pumping (infinite storage). The fracture crosscuts the aquifer, and is characterized by length L, width l, and angle with the vertical axis. The analytical solution of drawdown for pumping in a fracture in such an aquifer is found by integrating the point-source analytical solution given by Hunt ( 2005) on the fracture plane:
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where r is the radial distance to the well, B is aquifer thickness, k z /k xy its vertical anisotropy in hydraulic conductivity, t D a dimensionless time,   As before, this equation is solved numerically by dividing the fracture in small elements along both L and l while assuming a uniformly distributed pumping rate per unit area (similarly to Eq.2; i.e.    
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). Then the principle of superposition is applied for computing the drawdown at any location into the aquifer. Therefore, the solution yields:
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Eq.9

where r i,j is the radial distance between the point (x, y, z) and the i, j th element, and M and p are the number of segments along L and l.

Figure 4b

presents type curves of Eq.9 for various values of . For this example, the aquifer has a vertical anisotropy of 10.0 (k xy /k z =10) and we ignore the leaky aquifer (k'/B'=0). The fracture is located at the centre of the aquifer (z f /B=0.5) and its width equals the aquifer thickness (l=B).

As expected, the results show that Eq.9 is identical to the benchmark solutions: the Gringarten et al. (1974) solution for a vertical rectangular fracture when =0°, and the [START_REF] Thiéry | Analysis of a pumping test in a horizontal fracture. Thomas W Doe. Third Invitational Well-Testing Symposium -well testing in low permeability environments[END_REF] solution for a horizontal rectangular fracture located at the centre (z f /B=0.5) of the aquifer, when =90°. Derivative curves show that, regardless of the  value, the early stages of pumping always describe linear flow within the fracture (half-unit slope of derivative curves).

Later, derivatives create a hump, more or less pronounced according to the value of . This behaviour corresponds to the transition from flow perpendicular to the fracture-controlled by the average hydraulic conductivity normal to the fracture plane-to horizontal flow controlled by the horizontal aquifer transmissivity. In some cases (e.g. =90°), the derivatives follow a near-negative half-unit slope characterizing ellipsoidal flow because of the partial penetration of the fracture into the aquifer. Note also that increasing the k xy /k z ratio with 90, will result in a more pronounced hump of the derivative curve, because of the increased resistance to flow induced by the low vertical hydraulic conductivity. When the fracture is vertical and fully penetrates the aquifer (=0°), the hump disappears as the drawdown no longer depends upon the vertical anisotropy in hydraulic conductivity. For the late stages of pumping, derivatives form a plateau characterizing the radial flow induced by flow towards the fracture at the aquifer scale (s D '=0.5). As mentioned before, in experimental data the plateau value will depend on the horizontal transmissivity of the aquifer.

Pumping intersecting two fractures -Pumping in the fractures only

One of the flexibilities inherent in our analytical/numerical solution is the possibility to consider several fractures with different locations and orientations intersecting the pumping well. Figures 5 and6 show an example of application where two fractures intersect the well.

The characteristics of fracture 1 are L: 10 m; l: 20 m,  : 20°, and z f : 13 m, and of fracture 2 L: 10 m; l: 45 m,  : 100°, and z f : 5 m. As before, only fractures are pumped (uniform flux).

As shown previously, fractures with different orientations and locations are characterized by different flow behaviours. Consequently, their resistance to flow is different; this implies, when several fractures are pumped simultaneously, that the flowrates from each fracture vary over time. Therefore, the flowrate contributions of each fracture to the total pumping rate of the well have to be considered before evaluating the average drawdown in the well. To solve this problem, we again use the principle of superposition, i.e. the drawdown in a particular location is the sum of drawdown values of several pumping sources. This allows computing the flowrates of each fracture from the combination of dimensionless pumping-source solutions (see similar work in [START_REF] Lolon | New semi-analytical solutions for multilayer reservoirs[END_REF][START_REF] Lashgari | Estimation of hydraulic fracture contribution in medium to high permeability reservoirs[END_REF]. However, the boundary conditions of each individual solution do not include perturbation due to the presence of the other pumping source, which is the only approximation of this solution. Note that this approximation is the same as the one used for modelling drawdown (with analytical solutions) created by several pumping wells.

As the well is screened in front of each fracture only and as it intersects the fracture centre, the average dimensionless drawdown in the well, s Dtot , can be derived from the following equations:
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where q 1 and q 2 are flowrates from fractures 1 and 2, Q is the total pumping flowrate. s D1 and s D2 are the dimensionless drawdown values at the centre of fractures 1 and 2, s D12 is the dimensionless drawdown induced by fracture 1 at the centre of fracture 2, and s D21 , the one induced by fracture 2 at the centre of fracture 1.

At the intersection between fracture 1 and the well, the drawdown is:
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and at the intersection between fracture 2 and the well:
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Eq.10d

Assuming equal drawdown at the centre of both fractures (S F1 =S F2 ), thus implicitly assuming uniform drawdown at the well location, and solving the system of equations provided by Eqs.

10, one will find solutions for s Dtot , q 1 and q 2 :
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For the computation, drawdown values s D1 , s D2 , s D12 and s D21 were calculated separately with Eq.9 while assuming a unit flow rate (Q=1).

Figures 6a andb present the resulting drawdown and the flowrate contributions of each fracture, and figures 6c, d, e and f show drawdown distribution in the vertical plane at different times. In the early stages of pumping, the drawdown derivative is characterized by the classical half-unit slope corresponding to flow from the aquifer to both fractures (t <0.8 min; Fig. 6a andc). In the beginning, both fractures contribute almost equally to the total pumping rate (Fig. 6b), though in the very early stage (t ≤0.1 min) fracture 2 contributes slightly more because of its larger area. However, very rapidly flowrate from fracture 1 becomes dominant as its orientation offers less restriction to flow compared to fracture 2, which is oriented almost orthogonal to the hydraulic conductivity axis of the lower aquifer.

Between 0.1 and 100 min, the derivative curve shows transitional flow behaviour, followed by a near -1/2 slope (100<t<2000 min) that characterizes the ellipsoidal flow towards both fractures as drawdown starts to progress in the whole aquifer (Fig. 6d). Later (2000<t<7000 min), the derivative stabilizes, forming a plateau characterizing radial flow from the aquifer to both fractures (Fig. 6e) whose value depends on the aquifer transmissivity.

For the last stages (t>7000 min), the derivative decreases because of leakage from the top aquitard (Fig. 6f). At the end of pumping, fracture 1 (the smallest; 200 m 2 ) contributes 74% of the total flow rate while fracture 2, the largest (450 m 2 ), contributes only 26% (Fig. 6b).

As a final point, this drawdown curve shows the difficulty of identifying the contribution of more than one fracture on a diagnosis plot, as this looks similar to one of the cases presented in Fig. 4 until leakage appears. In this case, only drawdown observation on other wells in the aquifer and/or few data on the geometry of fractures can provide unequivocal information about these fractures.

Pumping intersecting two fracturespumping in the fractures and in the aquifer through the well itself

This last case is similar to the sketch presented on Figure 5, but pumping affects both fractures as well as the aquifer directly through a screened portion of the well. The well intersects the centres of both fractures. As for the previous case, flowrate contributions of each individual pumping source (the two fractures and the well) have to be evaluated before computing the average dimensionless drawdown, s Dtot , in the well:
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where q 1 and q 2 are flowrates from fractures 1 and 2, q W the flowrate from the aquifer through the well and Q the total pumping flowrate. s D1W and s D2W are the dimensionless drawdown values induced by fractures 1 and 2 in the screened well interval. s D1W and s D2W are the average drawdown values along the screened interval, computed by integrating the analytical solution (Eq.8) between the upper and lower limits of the pumped section. s W is the dimensionless drawdown induced by pumping in the screened interval [START_REF] Hunt | Flow to vertical and nonvertical wells in leaky aquifers[END_REF] analytical solution).

At the intersection between fractures and the well, the drawdown in the well has to be identical to that from the fractures. Therefore, at the intersection between the well and fracture 1:
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and between the well and fracture 2:
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with s D1 and s D2 the dimensionless drawdown values at the centre of fractures 1 and 2, s D12 the dimensionless drawdown induced by fracture 1 at the centre of fracture 2, and s D21 the one induced by fracture 2 at the centre of fracture 1.

Assuming equal drawdown at the centre of both fractures (Eq.12c=Eq.12d) in the well in front of both fractures, and solving the system of equations provided by Eqs.12, solutions are found for s Dtot , q 1 , q 2 and q W :
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where C is defined before (Eqs.11),
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, and Q q q i Di  are the dimensionless flowrates.

Drawdown computations and flowrate of each pumping source were made for a well fully penetrating an aquifer with characteristics and fractures as sketched on Figure 5. Drawdown values were computed separately with Eq.9 for the fractures and with the [START_REF] Hunt | Flow to vertical and nonvertical wells in leaky aquifers[END_REF] analytical solution for the well (vertical, fully penetrating the aquifer and uniform flux distribution). Figures 7a andb show the results and Figures 7c,d, e and f the drawdown distribution (on a vertical axis) at different times.

The drawdown behaviour is very different to the case where only the fractures are pumped (Fig. 6a). At the start of pumping (see also Fig. 7c), the half-unit slope persists as the contribution of the aquifer through the well in terms of flowrate is low compared to that from the fractures (Fig. 7b). After 1 to ~1000 minutes, the derivative curve slightly decreases, following a gentle near-negative slope. This period describes the transitional flow regime during which the contribution though the well starts to contribute significantly to the total flowrate. During this period, ellipsoidal flows from fractures still exist (Fig. 7d), but are masked by the well contribution. Between 1000 and ~7000 minutes (Fig. 7e), the derivative curve forms a plateau corresponding to near-radial flow induced by the three pumping sources. At the end of pumping, the well contributes up to 52% of the total flow rate, fracture 1 up to 36%, while fracture 2 yields only 12%.

The high flowrate contribution from the aquifer to the well, here equivalent to both fractures, is due to two reasons: i) The medium to high transmissivity of the aquifer (T=10 -4 m 2 /s), or more exactly its diffusivity; and ii) Because the screened interval covers the entire aquifer thickness. If the aquifer transmissivity had been very low (e.g. <10 -8 m 2 /s), or if the well had been screened near the fractures, the aquifer contribution through the well would have been This result shows that where an aquifer has significant transmissivity, the fracture signature (i.e. the half-unit derivative slope in the early stages of pumping) may be very short, and even not seen. This may explain why pumping tests in fractured media commonly are not interpreted with solutions invoking discrete fractures intersected by the well, but with homogeneous aquifer solutions (e.g. dual-porosity models), even if fractures were seen on field data (e.g. [START_REF] Taylor | A tectono-geomorphic model of the hydrogeology of deeply weathered crystalline rock: Evidence from Uganda[END_REF][START_REF] Maréchal | Contribution of hydraulic tests at different scale to the characterisation of fracture network properties in hard-rock aquifers[END_REF][START_REF] Dewandel | A conceptual hydrodynamic model of a geological discontinuity in hard rock aquifers: Example of a quartz reef in granitic terrain in South India[END_REF][START_REF] Dewandel | Respective roles of the weathering profile and the tectonic fractures in the structure and functioning of crystalline thermo-mineral carbo-gaseous aquifers[END_REF].

Conclusions

Integrating the well-known Theis analytical solution (1935) along a fracture axis is mathematically identical to the equally well-known solution of Gringarten et al. (1974) for a uniform-flux fracture fully penetrating an aquifer, obtained with Green's function and the product solution method. Though this result was mathematically expected (Green's function represents the distribution of instantaneous point-sources over length, area or volume), this had never before been demonstrated or highlighted as far as we are aware. This implies that any line-or point-source solution integrated along the fracture plane can be used for computing flow through a fracture. In view of the large number of existing analytical solutions, this provides a very wide range of applications for this generic analytical solution, and thus helps modelling discrete fractures that are intersected and pumped by a well, in most hydrogeological settings.

We give several theoretical examples for dual-porosity or multilayer aquifer types, even when the pumping well intersects several fractures, and for pumping both in fractures and/or directly in the aquifer through the screened interval of a well. Where several sources are pumped (the aquifer trough the well and/or several fractures), solutions of flowrate contributions of each individual pumping source are given and can be extended to any number of fractures.

As expected when the conceptual hydrogeological models respect the theoretical assumptions of benchmark analytical solutions (here for pumping in a vertical or a horizontal fracture), the proposed solutions do not show significant differences between models.

Where a fracture is vertical and fully intersects the aquifer, the classical flow regime of a fracture can be recognized regardless of the conceptual aquifer model used. However, in the case of an inclined fracture, we show that flow behaviour is not unique. In that case, it depends on the screened-interval length of the well, as well as on whether only the fracture, or both the fracture and the surrounding aquifer are screened. Even, when aquifer transmissivity (or diffusivity) is not low, the fracture signature (the classical half-unit slope on a derivative drawdown curve) can be masked by the contribution of the screened interval of the well.

Our work is based on the assumption that flux is uniformly distributed along the fracture and the screened interval of the well. Even if this hypothesis is the closest approximation for an infinite conductivity fracture -it is nonetheless identical at early stages of pumping-solutions for infinite conductivity fracture can be derived from uniform flux analytical solutions (Gringarten et al., 1974). This can be computed by dividing the fracture into small sections, each with uniform flux per unit area, and then by evaluating the flow contribution of each section to arrive at identical drawdown values along the entire fracture, including the screened interval of the well if it is pumped as well.

In addition to the possibility of using any line-or point-source solutions, our generic analytical solution offers several other advantages. For example, by using the superposition principle (image well theory) it allows developing solutions where no-flow and constant-head boundaries are not necessarily parallel to the fracture directions. Currently available analytical solutions, however, assume fractures parallel or at right angle to boundaries. In the case of a well field, our solution allows computing the overall drawdown created by several pumping wells intersecting fractures with various geometries, or when only some of the wells intersect such fractures, the others directly pumping the aquifer. Finally, though we established analytical solutions for rectangular fractures, these solutions can also be developed for any other geometrical configuration.

From a practical point view, the proposed analytical solutions and few diagnosis plots as presented provide additional information on flow behaviour and drawdown in fractured media. Their application to real field data is expected soon to characterize fracture geometries, particularly in the case of fractured thermo-mineral aquifers [START_REF] Maréchal | Structure and hydrogeochemical functioning of a sparkling natural mineral water system determined using a multidisciplinary approach: a case study from southern France[END_REF]. This should help defining, among other points, the location of a well within a given deep fracture, and then to establish if this fracture extends very deep or not. In addition, it should help characterizing fractures of the weathered Stratiform Fractured Layer of hard rock aquifers [START_REF] Lachassagne | The fracture permeability of hard rock aquifers is due neither to tectonics, nor to unloading, but to weathering processes[END_REF] as well as their relationships with overlying saprolite (leakage effects). ; with L and l, the length and the width of the fracture.

Appendix B: point-source solution of Hunt (2005)

Point-source (or sink source) solution for the aquifer described in Figure 4 [START_REF] Hunt | Flow to vertical and nonvertical wells in leaky aquifers[END_REF], from which 3-D anisotropy in hydraulic conductivity has been implemented: 
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Well Theis function for a well

The aquifer is pumped in a single vertical well fully penetrating the aquifer with a pumping rate q. The drawdown at a radial distance r from the well can be expressed as:
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Gringarten analytical solution (Gringarten et al., 1974) For a pumping in a single vertical fracture intersecting the pumped well, with uniform flux distribution, the drawdown can be expressed as: Where Q is the pumping rate. As Q is assumed to be uniformly distributed along the fracture, therefore:
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Mathematical demonstration

Integration of the Theis' solution along the fracture yields: [Eq.6] proves that the Theis analytical solution integrated along the fracture plane is exactly the same as the Gringarten analytical solution, for a vertical fracture with a uniform flux distribution (Eq. 2 or the Eq. 20 in Gringarten et al. 1974).
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  per unit area,  n the root of an equation, and W(a, b) the Hantush leaky-aquifer well function; all parameters are explained in Appendix B.

  negligible or drastically less, creating an average drawdown in the well similar to the one observed on Fig. 6. Appendix C provides an intermediate figure where the well is screened in front of both fractures only. Fractures and aquifer properties are those of Fig. 5 with a wellscreened interval of 7 m. Drawdown and derivative behaviour are different from the previous case, and closer to those of Fig. 6 because of the lower contribution of the aquifer through the well to the total pumping flowrate (at the end of pumping, well: 20%, fracture1: 56% and fracture 2: 22%).
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 2 Figure 2. A single fully penetrating fracture in a dual-porosity aquifer (dual-porosity conceptual model: Moench, 1984), pumping at the centre of the fracture. Type curves for various  coefficients (=K m r 2 /(K f b m )). Dimensionless drawdown -s D : plain curves and derivatives-s D ': dotted curves. Circles correspond to the Gringarten et al. (1974) solution. Dual-porosity model parameters: K f and K m , fracture and matrix hydraulic conductivity, b m : block size, r: radial distance from the well, s f and s m : fracture and matrix storage, sk f = fracture skin.

Figure 3 .

 3 Figure 3. A single partially entering vertical fracture in a multilayer aquifer. Fracture in the deepest layer, and pumping at the centre of the fracture. a) Conceptual model with aquifer parameters (see text for explanation). b) Type curves for various h f /B ratios. Circles correspond to the Gringarten et al. (1974) analytical solution.

Figure 4 .

 4 Figure 4. Pumping at the centre of an inclined fracture in a leaky aquifer system. a) Conceptual model with aquifer parameters (see text for explanation). b) Type curves for various angles of the fracture with the vertical, , and k'/B'=0 (no-leakage). Dots correspond to the Gringarten et al. (1974) and Thiéry (1980) analytical solutions.

Figure 5 .

 5 Figure 5. Two inclined fractures in a leaky aquifer system: model parameters.

Figure 6 .

 6 Figure 6. Two inclined fractures in a leaky aquifer system; the well is screened in front of both fractures only. a) Average drawdown and its derivative at the well. b) Dimensionless flowrate contributions of each fracture. c), d), e) and f) Drawdown distributions at various times along the x-axis. Pumping rate is 1 m 3 /h.

Figure 7 .

 7 Figure 7. Two inclined fractures in a leaky aquifer system, pumping in the fractures and in the aquifer through a fully penetrating well. a) Average drawdown and its derivative at the well. b) Dimensionless flowrate contributions of each fracture and of the aquifer through the well. c), d), e) and f) Drawdown distributions at various times along the x-axis. Pumping rate is 1 m 3 /h.
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 1 Figure 1. Conceptual sketch of a well intercepting a single vertical fracture; it corresponds to the analytical solution of Gringarten et al. (1974) (plan view).
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 234 Figure 2. A single fully penetrating fracture in a dual-porosity aquifer (dual-porosity conceptual model: Moench, 1984), pumping at the centre of the fracture. Type curves for various  coefficients (=K m r 2 /(K f b m )). Drawdown -s D : plain curves and derivatives-s D ': dotted curves. Circles correspond to the Gringarten et al. (1974) solution. Dual-porosity model parameters: K f and K m , fracture and matrix hydraulic conductivity, b m : block size, r: radial distance from the well, s f and s m : fracture and matrix storage, sk f = fracture skin.
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 5 Figure 5. Two inclined fractures in a leaky aquifer system: model parameters.
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 6 Figure 6. Two inclined fractures in a leaky aquifer system; the well is screened in front of both fractures only. a) Average drawdown and its derivative at the well. b) Dimensionless flowrate contributions of each fracture. Pumping rate is 1 m 3 /h.
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 6 Figure 6. cont'd. c), d), e) and f) Drawdown distributions at various times along the x-axis.

Figure 7 .Figure 7

 77 Figure 7. Two inclined fractures in a leaky aquifer system, pumping in the fractures and in the aquifer through a fully penetrating well. a) Average drawdown and its derivative at the well. b) Dimensionless flowrate contributions of each fracture and, of the aquifer though the well. Pumping rate is 1 m 3 /h.

  are dimensionless variables of the point location (x, y, z); k x , k y , k z are the hydraulic conductivity along the x, y, z directions; Z is the z coordinate of the point source where pumping Q takes place; k xy is the horizontal hydraulic conductivity of the aquifer ( well Theis funtion integrated along a fracture plane is identical to the analytical solution of pumping in a vertical fracture proposed by Gringarten et al. (1974) with uniform flux distribution. Definition conceptual model: the borewell intercepts a vertical fracture of length 2xf in a homogeneous and infinite aquifer of transmissivity, T, and storativity, S. The width of the fracture is assumed to be negligible.

  Fubini theorem (i.e.  and x are independent), the order of integration can be inverted, yielding to: of [Eq.4] can be decomposed into two terms related to the Erf function:

  

   with the simplified notation and using the property of the E i function, it becomes:
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