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Abstract—Physics-based three-dimensional numeri-
cal simulations are becoming more predictive and are
already essential for improving the understanding of
natural phenomena, such as earthquakes, tsunami,
flooding or climate change and global warming. Among
the numerical methods available to support these sim-
ulations, Finite-Element formulations have been im-
plemented in several major software packages. The
efficiency of these algorithms remains a challenge due
to the irregular memory access that prevents to squeeze
the maximum level of performance out of current
architectures. This is particularly true at the shared-
memory level with several levels of parallelism and com-
plex memory hierarchies. Despite significant efforts, au-
tomatic optimizations provided by compilers and high-
level frameworks are often far from the performances
obtained from hand-tuned implementations. In this
paper, we have extracted a kernel from the EFISPEC
software package developed at BRGM (the French Ge-
ological Survey). This application implements a high-
order finite-element method to solve the elastodynamic
equation. We characterize the performance of the ex-
tracted mini-app considering key parameters such as
the order of the approximation, the memory access
pattern or the vector length. Based on this study, we
detail specific optimizations and we discuss the results
measured as regards to the roofline performance model
on Intel Broadwell and Skylake architectures.

I. Introduction
The landscape of multicore processors or accelerators

available to implement scientific applications leads to in-
creasing concerns as regards to the real efficiency of key
applications. Each vendor is working on next-generation
hardwares able to overcome exascale barriers. These up-
coming architectures will probably combine high number
of heterogeneous computing cores associated with ad-
vanced memory technologies. Efforts to prepare applica-
tions for this upcoming system should rely on a deep un-
derstanding of the algorithms to predict the performances.

Finite-element methods are representative of such sit-
uation, as these numerical approaches lies at the heart
of many open-source or commercial software packages.
One of the key features of this class of algorithm is the
ability to handle complex geometrical object shapes. On
top of the complex and unstructured meshes generally
involved, the algorithm implements irregular data access
to match with both the local and the global computa-
tional phases. Moreover, the order of the interpolation

described by the basis functions significantly impacts the
CPU-intensive element-by-element computational phase.
Indeed, one common statement is that the increase of the
order of approximation comes almost for free as regards to
the improvement of the arithmetic intensity of the kernel.

Our effort in this paper is to conduct a comprehensive
study of the performance of High-Order Finite-Element
numerical kernels. In case of an explicit time-marching al-
gorithm, the summation of the element contributions (as-
sembly phase) is a bottleneck. Our study target a rep-
resentative Finite-Element Method (FEM) application.
EFISPEC code ([1]) is developed at BRGM, the French
Geological Survey, and solves the three-dimensional elas-
todynamic equations. The standard version of this code is
implemented in Fortran2003 and heavily relies on the MPI
library. The kernel extracted corresponds to the computa-
tion of the internal forces and represents a maximum of
90% of the total elapsed time. This paper extends previous
works dealing with mono-core vectorization [2] and data-
layout reorganization [3]. Our contributions in this paper
are as follows:
• Theoretical performance for FEM numerical kernels

based on the roofline performance model [4].
• Study of the impact of the order of approximation as

regards to the arithmetic intensity.
• Evaluation of both direct and indirect data access

pattern on the peak performance.
• Comparison of the performance on Intel Broadwell

and Skylake dual-socket computing nodes.
The paper proceeds as follows. Section II describes the
related work. Section III details the elastodynamic equa-
tions and the spectral-element method implementation.
Section IV details the challenges for efficient implemen-
tations on current architectures. In sections V and VI, we
show the results obtained with AVX-2 and AVX-512 SIMD
instructions. Finally, we conclude this study and present
some future work.

II. Related Work

Though this work of evaluating the performance of a
finite-element numerical kernel has already been done by
using simpler approaches (for instance the Mantevo bench-



mark1, optimizing applicative performance is a continuous
effort as regards to emerging chips (growing vectorization
capabilities for instance).
Besides the scientific problems, one major challenge is to
face key breakthroughs on both the hardware and software
sides that will drive the community to the Exaflops. For
instance, the energy consumption wall, for systems built
with several millions of heterogeneous cores, remains an
open topic. Consequently, both the scalability and the ef-
ficiency (computation and memory movements) of current
applications are critical.
As regards to earthquakes modeling on distributed-
memory systems, several references ([5], [6], [7]) underline
the scalability of explicit formulations to solve the elas-
todynamic. In this case, we benefit from limited amount
of point-to-point communications between neighboring
MPI sub domains. Significant works have been made to
extend this parallel results on heterogeneous and low-
power processor ([8], [9]), mainly for the simpler Finite-
Difference method. For example, both auto-tuning and
machine learning strategies ([10], [11]) have been consid-
ered to explore the usual and large space of optimization
parameters (compiler flags, space and time tiling, memory
mapping). These approaches have not yet been fully in-
vestigated for High-Order Finite Element methods. This
is probably due to the complexity of the implementation
of such kernels.
Nevertheless, few papers discuss low levels parallelism for
Finite-Elements based methods ([12], [13], [14], [15], [16]).
Among these contributions, mesh coloring algorithms have
gained significant attention these last few years due to
their ability to reduce synchronizations at the shared-
memory level. The counterpart is the limited efficiency
as regards to cache memory. In [3] we have extended
this approach to parallel FEM assembly on multi-core
architectures by implementing colored packs of elements
along with advanced vectorization strategies.
Finally, one can change the data structure as detailed
in [2]. In this reference, the authors compared the
SOA (Structure of Arrays) data layout to the AOS (Array
of Structures). This strategy shows limited impact on the
performances that are mainly governed by the efficiency
at the SIMD level. If we exploit knowledge from the
physics as regards to specific geometries (for instance in
geosciences), we can benefit from hybrid approaches that
combines a structured mesh (with regular data access
for the main part of the computation) and unstructured
meshes (with irregular data access). This approach has
been successfully implemented in [17].

III. EFISPEC: Spectral finite element solver
The spectral-element method (SEM) appeared more

than 20 years ago in computational fluid mechanics [18],
[19], [20]. The SEM is a specific formulation of the finite-

1https://mantevo.org/MantevoOverview.pdf

Figure 1: Referenced cube with (4+1)3 = 125 GLL points.
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Figure 2: Global and local view of the GLL numbering.

element method for which the interpolated points and
the quadrature points of an element share the same loca-
tion. These points are the Gauss–Lobatto–Legendre (GLL)
points, which are the p+1 roots of (1−ξ2)P ′p(ξ) = 0, where
P ′p denotes the derivative of the Legendre polynomial of
degree p and ξ coordinate in the one-dimensional reference
space Λ = [−1, 1].
The generalization to higher dimensions is done through
the tensorization of the one-dimensional reference space.
In three dimensions, the reference space is the cube � =
Λ× Λ× Λ (see Fig. 1).
The mapping from the reference cubes to a hexahedral
element Ωe is done by a regular diffeomorphism Fe : �→
Ωe. In a finite-element method, the domain of study is
discretized by subdividing its volume Ω into welded non-
overlapping hexahedral elements Ωe, e = 1, . . . , ne such
that Ω = ∪ne

e=1Ωe.
The elements Ωe from the mesh of the domain. On the
one hand, each element Ωe has a local numbering of the
GLL points ranging from 1 to p+ 1 along each dimension
of the tensorization. On the other hand, the mesh has
a unique global numbering ranging from 1 to N (see
Fig. 2). The mapping from the local numbering to the
global numbering is the so-called ”assembly” phase of all
finite-element calculations.
Each GLL point of an element Ωe is redirected to a
unique global number, ∀Ωe. When multiple elements share
a common face, edge or corner, the assembly phase sums
the local GLL value into the global numbering system.



In this article, the problem of interest is the equation of
motion whose weak formulation is given by∫

Ω
ρwT ·ü dΩ =

∫
Ω

∇w : τ dΩ−
∫

Ω
wT ·f dΩ−

∫
Γ

wT ·T dΓ

where Ω and Γ are the volume and the surface area of the
domain under study, respectively; ρ is the material density;
w is the test vector; ü is the second time-derivative of
the displacement u; τ is the stress tensor; f is the body
force vector and T is the traction vector acting on Γ.
Superscript T denotes the transpose, and a colon denotes
the contracted tensor product.

Our study focuses on the internal forces defined by (see
[21]) ∫

Ωe

∇w : τ dΩe ≈
p+1∑
α=1

p+1∑
β=1

p+1∑
γ=1

3∑
i=1

wαβγi ×

[

ωβωγ

p+1∑
α′=1

[
ωα′J α

′βγ
e

3∑
j=1

[
τα

′βγ
ij ∂jξα′

]
`′α(ξα′)

]

+ωαωγ
p+1∑
β′=1

[
ωβ′J αβ

′γ
e

3∑
j=1

[
ταβ

′γ
ij ∂jηβ′

]
`′β(ηβ′)

]

+ωαωβ
p+1∑
γ′=1

[
ωγ′J αβγ

′

e

3∑
j=1

[
ταβγ

′

ij ∂jζγ′
]
`′γ(ζγ′)

]]

with τ the stress tensor (= c : ∇u); J α′βγ
e the jacobian

of an element Ωe at the GLL points α′βγ; ωλ integration
weight at the GLL point λ; ξ, η, ζ local coordinates along
the three dimensions of the reference cube; `′λ derivative
of the Lagrange polynomial at the GLL point λ. c is the
elastic tensor and ∇u is the gradient of the displacement
defined by

∂iuj (ξαηβζγ) =
[p+1∑
σ=1

uσβγj `′σ (ξα) ∂iξαβγ

]

+
[p+1∑
σ=1

uασγj `′σ (ηα) ∂iηαβγ

]

+
[p+1∑
σ=1

uαβσj `′σ (ζα) ∂iζαβγ

]
IV. Challenges

A. Data access
The EFISPEC kernel has mainly to deal with unstruc-

tured meshes. Classical implementations require to use
an indirection table. The elements are composed of GLLs
identified by the numbers from this indirection table. This
defined a GLL indirection table from the global GLL
numbering to the local element GLL numbering.
For instance, the meshes of Geosciences can have some
large computing zones with very local regions of interest.
Moreover some unstructured sub-meshes can be located at
the interfaces between two different regions represented by

Structured part
low resolution

Structured part
hight resolution

Unstructured
interface

Figure 3: Mesh interface between two levels of resolution.

Private GLL Shared GLL

Figure 4: Gauss–Lobatto–Legendre (GLL) direct access
structure

structures meshes a shown by the figure 3. Therefore, it
was interesting to evaluate the performances of a regular
access GLL structure as shown by the figure 4. It also
allows the evaluation of the cost of the indirection involved
in classical FEM assembly computations.

Structured meshes allow a direct data access structure
that does not need to load any GLL indices. Therefore,
the arithmetic intensity is higher. The elements can be
organized following a three-dimensional grid as in the
figure 3 .

B. Vectorization
The vectorization of our kernel is mainly described in

the papers [3], [2]. It is based on the use of intrinsics since
compilers are not able to fully vectorize the code. The
principle is to compute elements eight by eight on AVX
architectures or sixteen by sixteen on AVX-512 architec-
tures. Mesh-partitioning procedures may rotate elements,
thus the same GLL may be loaded several times in a SIMD
register. In this case, scattering GLLs back to memory
may cause concurrent writes. This problem is described
in [2] and solved by adding a preprocessing step to detect
and rotate elements to avoid this configuration. In our
previous work, we have considered the AVX2 instruction
set. In this paper, we also consider the AVX-512/256
instructions which are part of the AVX-512 instruction
set but process only 256-bit of data. This brings scatter
intrinsics to the AVX2 instruction set to implement the
indirect data access algorithm. It allows to gather and
scatter the GLL data between global and local numbering
as shown in the figure 5. Thus, we can study the impact
of doubling the SIMD width with the same instructions.

C. Arithmetic intensity
Each element of order o is composed of (o+ 1)3 GLLs.

Computing an element consists of loading GLL values and
executing floating point operations. Any loaded bytes can
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Figure 5: Description of the vectorization strategy.

be reused by the operations according to the element order
as detailed in the table I.
To compute a 3 dimensional element of order 4 as one the
figure 1, there are (4 + 1)3 = 125 GLL values to load with
other parameters (GLL weights or Lagrange derivatives).
It costs 11120 bytes to load but 48150 floating point op-
erations to compute. Then, the arithmetic intensity of an
order 4 elements is 48150/11120 = 4.33. This factor means
that a byte is used for 4.33 flops. When the arithmetic
intensity is low, we have to carefully optimize the memory
access. Conversely, when it is high, we must pay attention
to the computing capabilities. The AI threshold between
computing and memory bandwidth bound depends on the
architecture.

Order Flop/Element Data access Byte/Element A.I
2 7974 Regular 2316 3.44

Irregular 2424 3.29
4 48150 Regular 10620 4.53

Irregular 11120 4.33
8 411966 Regular 61596 6.69

Irregular 64512 6.39

Table I: Arithmetic Intensity (A.I) with respect to the
amount of data access and the order of the spectral
element method. The irregular version uses an indirection
array whereas the regular one uses a direct access to the
physical values.

V. Experimentations
A. Experimental setup

Two different platforms are considered. The first one is
equipped with two Intel Xeon Gold 6148 processors based
on the Skylake architecture. The second one comes with

Platform Skylake Broadwell
physical cores 2 × 20 2 × 18
base frequency 2.4GHz 2.3GHz
AVX frequency 1.9GHz 2.0GHz
AVX-512 frequency 1.6GHz -

Table II: Platform characteristics

two Intel Xeon 2697v4 processors based on the previous
Broadwell architecture. Table II contains the characteris-
tics of both platforms. Hyperthreading is disabled on both
platforms.

We propose to use the Roofline model to study the
performance and the limitations of our implementations.
The rooflines has been established for both platforms of re-
sults obtained from a BLAS SGEMM benchmark and the
STREAM benchmark [22]. Figure 6 shows the resulting
rooflines. The Broadwell and Skylake platforms achieve
a peak performance of respectively 2,314 GFLOPS and
3,826 GFLOPS .

We consider two different compilers in our study: ICC
2017 and Clang 5. Since results obtained with neither
compiler is significantly different and exhibit a similar
behavior, we only present results obtained with Clang 5.

B. Kernels
We have derived several versions from the original EFIS-

PEC kernel to study the impact of the approximation
order and mesh structure. Two data access patterns are
considered:

1) Irregular: the original EFISPEC access pattern
based on an indirection array to access GLL elements
in an unstructured mesh, also used in common FEM
implementations.

2) Regular: GLL elements are stored in a regular pat-
tern suitable to represent a structured mesh.

For each access pattern, we derive three variants for
orders 2, 4 and 8. Each variant comes in three SIMD
versions:

1) AVX2: it operates on 256-bit registers and is able
to run on both the Broadwell and Skylake platforms,

2) AVX-512: it operates on 512-bit registers thus it is
only able to run on the Skylake platform,

3) AVX-512/256: it is the same as the AVX2 version
but uses a specific 256-bit SIMD scatter instruction
(accessible through the mm256 i32scatter ps
intrinsics) only available in the AVX-512 instruction
set.

Comparing the AVX-512 and AVX-512/256 versions al-
lows to study the gain brought by doubling the width of
the SIMD unit. Note that, as reported in table II, cores
adapt their frequency depending on the kind of SIMD
instructions processed.

For each kernel, the corresponding arithmetic intensity,
as indicated in table I, is reported into the rooflines.
On both platforms, rooflines show that our kernels are
memory-bound.
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Figure 6: Rooflines for the Broadwell and Skylake platforms.

Additionally, we have introduced a peak application per-
formance for each architecture. These values are computed
with a small example able to fit into the cache. In this case
we measure a peak value of 948 GFLOPS on Broadwell
and 1,236 GFLOPS on Skylake. Based on these local peak
performance, we can observe that the implementation of
the order 8 versions are CPU-limited in almost all cases.

VI. Experimental results
A. Impact of the data access pattern

In this section, we comment on the impact of direct or
indirect data access pattern on the performance observed.
One of the key point is coming from the fact that an
indirect data access implementation involves more data
movement compared to a direct version (see Table I).
In this case, each element requires to be transformed to
a local representation before the compute and assembly
phase. Even if the vectorization can deal with indirect
loads and stores, we still need to retrieve the indices from
DRAM to cache memory.
From figure 7, that represents the peak performance with
respect to the data access strategy on Intel Broadwell and
Skylake hardware, we can extract two main outcomes.
First of all, the best results as regards to both scaling
and peak performance are obtained with the direct and
simpler data access pattern. This is expected as arithmetic
intensities of these algorithms are higher (for instance the
AI for the order 2 version is 3.44 in the direct case and 3.29
for the indirect case). Moreover these implementations can
fully benefit from vectorization thanks to the regularity in
the memory accesses.
Second of all, regardless of the polynomial order, the
gap between direct and indirect data access versions is
higher on Skylake. The direct data access pattern version
outperforms the indirect one by 47% on Skylake but only
by 34% on Broadwell for the higher polynomial order.
Similar trend could be observed for lower polynomial
orders as the benefit from regular data access pattern is
clearly growing with the size of the SIMD vector.

B. Impact of the polynomial order
The main objective of this section is to discuss the

impact of the order of approximation for the element-by-
element computation. One common suggestion is that the
extra computation coming with a higher polynomial order
comes almost for free due to the arithmetic intensity
improvement. This ideal scenario corresponds to a shift
from a memory-bound to a CPU-bound situation.
If we study the shape of the plots from Broadwell and
Skylake platforms (see Figure 7), we can observe a
saturation of the peak performance as we increase the
number of cores. This behavior could be explained by
the roofline model and underlines that the higher order
versions are more likely to be CPU-bound for direct
access pattern. For irregular versions, the results on the
Skylake platform are different as the lower order version
performs better than the others. Similar trend could be
observe on Broadwell hardware also with almost the same
level of performance between both implementations.
These results do not match with the arithmetic intensity
values (3.29 for order 2 and 6.39 at order 8). This is
probably coming from a better usage of cache memory
mainly for low order versions. In this case the local
array is more likely to fit into the cache memory. When
we increase the order of approximation, the amount of
data is significantly larger, exceeding cache size and
generating much more memory traffic at the DRAM
level. To illustrate this, figure 8 compares local or remote
memory access situations on our dual-socket shared-
memory systems. If we compare both memory mapping
strategies, the NUMA penalty leads to a revert ranking
of the different implementations as regards to their peak
performances.

C. Impact of the vectorization
The support of the AVX512 allows the hardware to

compute 16 single precision floats by instruction. We recall
from [3] that automatic optimizations provided by the
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Figure 7: Comparison of the implementations with direct or indirect data access pattern on Broadwell (left) and Skylake
(right) platforms.

120

110

100

90

80

70

60

50

40

30

20

10

0 DistantLocal

NUMA Memory allocation node

G
Fl
o
p
s

Broadwell 9 cores Order 2
Broadwell 9 cores Order 4
Broadwell 9 cores Order 8

350

300

250

200

150

100

50

0 DistantLocal

NUMA Memory allocation node

G
Fl
o
p
s

SkylakeS2 20 cores Order 2
SkylakeS2 20 cores Order 4
SkylakeS2 20 cores Order 8
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and Skylake platforms.

compilers hardly reach 140 GFLOPS on both platforms,
this represents less than 5% of the theoretical peak perfor-
mance. Figure 9 compares the performance between 256-
bit and 512-bit SIMD instructions.
The AVX-512 with irregular data access version exhibits
a speedup of 1.20 for order 2 and 1.13 for order 8 com-
pared to AVX-512/256 implementations. As expected, the
performance gain from the use of AVX-512 instructions is
lower than 2 as regards to AVX-512/256. Conversely, the
direct data access implementation benefits more from this
improvement as we measure almost a speedup of 2.

D. Comparison with roofline model results
The arithmetic intensities of our different implemen-

tations are shown in Figure 6. Most of the kernels are
bounded by the memory bandwidth. Therefore, we esti-
mate the maximal GFLOPS peak performance of an im-
plementation on a given platform by multiplying the peak
memory bandwidth by the AI factor. For instance, the
implementation based on an indirect data access pattern
and an order 2 approximation (IReg Order 2) shows a peak
performance of 3.29× 128 = 421.12GFLOPS .
The outcomes of the previous sections underline the fol-

lowing points. Firstly, the performance levels expected
from the arithmetic intensity values are far from being
reproduced during real experiments. For instance, the
ratio between the AI for order 2 and order 8 imple-
mentations is 1.94. For simpler data access pattern and
one core, measured results approximately match with the
AI ratios (i.e.1.51 on Broadwell and 1.21 on Skylake).
When more computing cores are involved, the quality
of the theoretical model tend to diminish due to a lack
of refinement as regards to complex interactions at the
shared-memory level.
Secondly, for the indirect memory access pattern, the
ratio is reversed in almost all cases. That underlines the
limitation of our model to take into account complex data
movements on hierarchical architectures.

Data AVX2 Order 1 thread 36 threads
Indirect /256 2 12.9 GFLOPS 284.1 GFLOPS
access 8 8.6 GFLOPS 295.0 GFLOPS
Direct /256 2 11.9 GFLOPS 319.4 GFLOPS
access 8 18.0 GFLOPS 442.3 GFLOPS

Table III: SIMD 256 bits performances from the Broadwell
platform.
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Figure 9: Comparison between AVX512 and AVX-512/256 with regular and irregular data access on the Skylake
platform.

Data AVX512 Order 1 thread 40 threads
/256 2 16.4 GFLOPS 474.0 GFLOPS

Indirect 8 10.4 GFLOPS 393.9 GFLOPS
access /512 2 19.6 GFLOPS 474.0 GFLOPS

8 11.7 GFLOPS 371.2 GFLOPS
/256 2 14.3 GFLOPS 458.4 GFLOPS

Direct 8 19.1 GFLOPS 610.4 GFLOPS
access /512 2 28.2 GFLOPS 546.0 GFLOPS

8 34.0 GFLOPS 696.0 GFLOPS

Table IV: SIMD 256 bits and SIMD 512 bits performances
from the Skylake platform.

VII. Conclusion and future work

Optimizing the most popular numerical methods for
parallel architectures is a continuous effort. Though the
main characteristics of these kernels are already well
known, finding the best algorithms or implementations on
each architecture can be viewed as a quest. Our paper
underlines some of the key aspects of the Finite-Element
Method by exploiting the popular roofline theoretical
performance model. We also study the correlation between
the arithmetic intensity and the real performance on two
leading dual-socket Intel platforms.
Based on the theoretical model, we have underlined the
impact of the data access patterns that represent a major
bottleneck as regards to the expected performance. Ad-
ditionally, from real experiments, we have demonstrated
the limited improvements coming from higher polynomial
orders on current architectures. One major outcome of this
study is also the tremendous complexity of performance
prediction, particularly on available chips that combine
several levels of parallelism and cache hierarchies.
Obviously, the proposed optimizations would benefit from
an integration in a high-level framework in order to ease
their integration in a large number of scientific applica-
tions. We also believe that significant efforts should be
made at the performance modeling level, probably with
a wider usage of low-level emulation tools, to bring key
applications up to speed on emerging processors.

Acknowledgment

The authors thank Philippe Thierry, principal engineer
at Intel, for many interesting discussions and for providing
us access to Broadwell and Skylake platforms. We would
also like to thank Faiza Boulahya from BRGM (French
Geological Survey) for relevant comments on this paper.
The work of Gauthier Sornet is co-funded by the Region
Centre-Val de Loire and BRGM.

References

[1] F. De Martin, “Verification of a spectral-element method code
for the southern california earthquake center loh.3 viscoelastic
case,” Bull. Seism. Soc. Am., vol. 101, no. 6, pp. 2855–2865,
2011.

[2] S. Jubertie, F. Dupros, and F. D. Martin, “Vectorization of
a spectral finite-element numerical kernel,” in Proceedings of
the 4th Workshop on Programming Models for SIMD/Vector
Processing, WPMVP@PPoPP 2018, Vienna, Austria, February
24, 2018, pp. 8:1–8:7, 2018.

[3] G. Sornet, S. Jubertie, F. Dupros, F. De Martin, P. Thierry, and
S. Limet, “Data-layout reorganization for an efficient intra-node
assembly of a Spectral Finite-Element Method,” in PDP2018,
(Cambridge UK, United Kingdom), Mar. 2018.

[4] S. Williams, A. Waterman, and D. Patterson, “Roofline: An in-
sightful visual performance model for multicore architectures,”
Commun. ACM, vol. 52, pp. 65–76, Apr. 2009.

[5] D. Roten, Y. Cui, K. B. Olsen, S. M. Day, K. Withers, W. H.
Savran, P. Wang, and D. Mu, “High-frequency nonlinear earth-
quake simulations on petascale heterogeneous supercomputers,”
in Proceedings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis, SC 2016,
Salt Lake City, UT, USA, November 13-18, 2016, pp. 957–968,
2016.

[6] S. Tsuboi, K. Ando, T. Miyoshi, D. Peter, D. Komatitsch,
and J. Tromp, “A 1.8 trillion degrees-of-freedom, 1.24 petaflops
global seismic wave simulation on the K computer,” IJHPCA,
vol. 30, no. 4, pp. 411–422, 2016.

[7] J. Tobin, A. Breuer, A. Heinecke, C. Yount, and Y. Cui, “Ac-
celerating seismic simulations using the intel xeon phi knights
landing processor,” in High Performance Computing - 32nd In-
ternational Conference, ISC High Performance 2017, Frankfurt,
Germany, June 18-22, 2017, Proceedings, pp. 139–157, 2017.

[8] D. Göddeke, D. Komatitsch, M. Geveler, D. Ribbrock, N. Ra-
jovic, N. Puzovic, and A. Ramı́rez, “Energy efficiency vs. per-
formance of the numerical solution of pdes: An application
study on a low-power arm-based cluster,” J. Comput. Physics,
vol. 237, pp. 132–150, 2013.



[9] M. Castro, E. Francesquini, F. Dupros, H. Aochi, P. O. A.
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Sober, J. A. S. Llorens, D. Lorente, A. J. Serrano, S. Mart́ınez-
Sanchis, C. M. Aranda, and J. D. Mart́ın-Guerrero, “A finite
element-based machine learning approach for modeling the me-
chanical behavior of the breast tissues under compression in
real-time,” Comp. in Bio. and Med., vol. 90, pp. 116–124, 2017.

[12] J. Bolz, I. Farmer, E. Grinspun, and P. Schröoder, “Sparse
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