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ntroduction

Most of the catchment hydrological studies are based
hydrograph separation techniques to identify the
cipal source components of flow, using chemical
ers (including electrical conductivity) or isotopic
ers (mainly stable isotopes of the water molecule)
lying two-component mixing models implying

precipitation and water previously stored in the catch-
ment before the event (e.g., Buttle, 1994; Genereux and
Hooper, 1998). The limitations of two-component models
have led in tests to extend hydrograph separation to three
or more components mixing models (e.g., Burns et al.,
2001; DeWalle et al., 1988; Klaus and McDonnell, 2013).
Nevertheless, tracer-based hydrograph separation
approaches may not be practical and economic in the
long term as they require a lot of data about chemical/
isotopic and discharge variability (Gonzales et al., 2009;
Joerin et al., 2002), the latter being often a highly limiting
parameter.

In this context, since the 80s, combined geochemical
tracers such as major and trace elements and radiogenic
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A B S T R A C T

This study presents the ability of major/trace elements together with strontium isotopes

to trace water origins at small scale at the outlet of a small watershed (Peyne, Hérault,

France). Two small sub-basins draining distinct lithologies in their headwater (Plio-

Villafranchian conglomerate versus Triassic gypsum-rich marls and dolomites) and the

Miocene formations downstream are investigated. The Ca/Na vs. Mg/Na ratios and Ca/Sr

vs. 87Sr/86Sr ratios allow the different facies that imprint the water signature to be

identified, according to the hydrological conditions (low/high flows). Moreover, Sr

isotopes evidence the two distinct Miocene facies, the sandy marls and the marine

carbonates. The variation of the signature at the outlet of the basin allows identifying the

main contributing compartments according to the hydrological conditions. This approach,

based on a limited number of samples, highlights the potential of geochemical and isotopic

tracers to define the contributing compartments to the runoff at the outlet of a basin. It

thus could be considered as a potential alternative way to classical hydrological

monitoring to delineate the main contributing areas during floods, especially in small

ungauged river basins, where most of the devastating flash floods are recorded.

� 2016 Académie des sciences. Published by Elsevier Masson SAS. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
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isotopes are used in river studies especially to constrain
water origins, chemical (water–rock interaction) and
physical (particulate transport) erosion processes (e.g.,
Allègre et al., 1996; Blum et al., 1994; Dupré et al., 1996;
Gaillardet et al., 1997; Hagedorn et al., 2011; Harker et al.,
2015; Kyser et al., 2015; Louvat and Allègre, 1997; Négrel
et al., 2007; Paces and Wurster, 2014; Quade et al., 2003;
Shand et al., 2009; Stallard and Edmond, 1983). These
studies essentially dealt with large-scale watersheds,
dominated by silicate lithologies. Only a few approaches
focused on small watersheds (Aubert et al., 2001; Négrel
and Deschamps, 1996; Négrel et al., 2004, 2015; Paul et al.,
2015; Petelet-Giraud et al., 2003a; Pierret et al., 2014;
Riotte and Chabaux, 1999; Schaffhauser et al., 2014; Viers
et al., 2000) and even more in carbonated environments
(Ben Othman et al., 1997; Brenot et al., 2008; Calmels et al.,
2014; Négrel and Petelet-Giraud, 2005; Petelet et al., 1998;
Petelet-Giraud et al., 2003b).

These chemical and isotopic technics were only rarely
applied to help in the delineation of water source areas
during flood events (Ben Othman et al., 1997; Négrel and
Petelet-Giraud, 2005; Petelet-Giraud and Négrel, 2007; Rai
and Singh, 2007). Petelet-Giraud and Négrel (2007) and
Petelet-Giraud et al. (2015) applied a combined chemical
and isotopic approach to perform flood deconvolutions in a
Mediterranean catchment (Hérault, France) using Sr
isotopes, major and trace element concentrations. They
demonstrated the ability of these tracers to define very
well constrained end-member (characterized under vari-
ous hydrological conditions) for each tributary as the result
of the diversity of the drained lithologies. A monitoring at
the outlet of the watershed during low flow periods shows
that the signature results from a binary mixing between
the two main water sources in the basin (the main
tributary and groundwater from karstic system of the
basin). During 4 flood events, they showed that each of
them presents a different temporal geochemical evolution
(counter- or clockwise evolution in an 87Sr/86Sr vs. 1/Sr
diagram) reflecting temporal changes in the predominant
water source during the flood, i.e., the various tributaries
versus the karst aquifers depending on rainfall intensity,
duration and location. At this medium scale study
(2500 km2), it was not possible to go deep in the
understanding of small-scale water source patterns, i.e.
the contributing water reservoirs in each sub-basin as a
response to rain events. Therefore, to go further, this study
focuses on one of the Hérault tributaries, the Peyne River
and especially regarding two sub-basins with a very small
area (6 to 16 km2) using the approach based on major and
trace element concentrations and Sr isotopes tracers. We
present the results of three sampling campaigns in
contrasted hydrological conditions (high and low flows).
The objectives are: (1) to test the ability of chemical and
isotopic tracers to trace the sources of water by linking
back the measured geochemical signatures in small brooks
to the drained lithologies; (2) to investigate the chemical
and isotopic signals at the outlet of the Peyne River that
integrates water runoff from the small-scale sub-basins
and (3) to attempt demonstrating the feasibility of this
approach to define the main compartments contributing to
the river discharge.

2. Study area description

The Peyne watershed covers 120 km2, in the South of
France, being a sub-basin of the Hérault watershed. The
climate is typically Mediterranean i.e. characterized by a
great irregularity of rainfall regime. The mean annual
precipitations are about 700 mm and the precipitation
events are often short but very intensive, inducing flash
floods and often destructive (Ribolzi et al., 1996). The
Peyne River is fed by five small tributaries in its lower part
(Fig. 1). The Olivettes dam, located at the limit between the
upper and lower part of the basin, controls the discharge
downstream. During summer, the dam releases between
50 and 150 L�s�1, which constitutes the quasi-totality of
the downstream Peyne River discharge. The lower part of
the watershed is mainly covered by vineyards, with a
geology mainly represented by Triassic, Miocene and
Pliocene marine, lacustrine and fluvial deposits. The study
focuses on two hydrologically independent and distinct
parts of the lower basin, namely the St Martial and La
Lande–La Prade basins.

The St Martial basin covers 16.2 km2 (Fig. 1), is located
in the southern part of the Peyne basin and is mainly
composed of continental Pliocene-Villafranchian gravels,
Miocene sandy marls with limestones and clays (hereafter
referenced as V–M). This sub-basin is drained by the St
Martial brook, 10.5 km long. The La Lande–La Prade basin
covers �6 km2 (Fig. 1), it is located in the northern part of
the basin, and is mainly composed of Triassic gypsiferous
marls together with dolomites and Miocene sandy marls
(hereafter referenced as T–M).

These two sub-basins were selected because they drain
relatively simple and well constrained lithologies, and
because of their common Miocene formations down-
stream allowing further comparison of the water geo-
chemical signatures.

3. Sampling and analytical methods

Three sampling campaigns were performed between
November 1996 and November 1997, reflecting different
hydrological conditions from low flow periods (Novem-
ber 1996) to high flow periods (Nov-97, right after a
heavy rainy episode), together with an intermediate
situation (low-medium flow in February 1997),
Fig. 2A. Between 5 and 8 samples were collected in the
V–M compartment according to the flow regime,
upstream lateral contributors to the St Martial brook
were dry in low flow. In The T–M compartment 3 samples
were taken in low flows and 4 in higher regime for the
same reason (Table 1).

Water temperature and electric conductivity were
measured on site with a microprocessor conductivity-
meter WTW LF96 standardised at 25 8C. The pH was also
measured on site using an Ingold electrode and an Orion
250 pH-meter. The samples for trace element and Sr
isotope determinations were collected in acid-cleaned
polypropylene bottles. Samples were filtered, through
acid-cleaned 0.2 mm PVDF filters, less than six hours after
collection (Goldstein and Jacobsen, 1987). An aliquot was
stored before acidification for anion analyses. Filtered
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ples were acidified to pH 2 with sub-boiled 15 N HNO3

 stored at 4 8C in the dark until analysis. Major elements
re analysed by Capillary Ion Electrophoresis (accuracy
. Trace element concentrations were determined by
-MS (VG1 Plasma Quad PQ2 Turbo Plus). For isotopic

analyses, Sr was separated on a Biorad1 (AG50 X8 200–400
mesh) resin column in HCl media (Birck, 1986) and
analysed on a VG Sector Mass Spectrometer. The mean
value of the NBS 987 Sr standard over this period was
87Sr/86Sr = 0.71024 � 0.00004 (n = 23, 2 sn).

1. Geological map of the lower part of the Peyne watershed and the sample location in both studied sub-basins: The V–M compartment is mainly

posed of Plio-Villafranchian gravels and Miocene sandy marls. The T–M compartment is mainly composed of Triassic gypsiferous marls and dolomites

 Miocene sandy marls). The geological map is from www.infoterre.brgm.fr.

2. (A) Daily rainfall in Pezenas (outlet out the Peyne watershed) over the studied period. Red arrows mark the sampling dates (13/11/1996: low flow;

2/1997: low-medium flow; 8/11/1997: high flow). (B) Discharge at the outlet of the Hérault River at the sampling periods at the outlet of the Peyne
ershed (data are from www.hydro.eaufrance.fr).

http://www.infoterre.brgm.fr/
http://www.hydro.eaufrance.fr/
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4. Results and discussion

4.1. The geochemical composition of the Peyne Basin waters

Electrical Conductivity (EC), pH, major elements, Sr
concentrations and Sr isotopic compositions are listed in
Table 1.

The EC varies from 670 to 2160 mS/cm. The highest
mineralized waters are observed in brooks with the
smallest discharge and draining Triassic and Miocene
formations (T–M compartment). Part of the mineralization
could be related to the anthropogenic activities (mainly
vineyard exploitation) but the water–rock interactions
must be dominant as the headwaters of this compartment,
draining an uncultivated and non-urbanized area, present
a Total Dissolved Solids (TDS) around 1.5 g�L�1 during both
high and low flow periods. In the V–M compartment, the
EC decreases progressively from P4 to P8 despite of the
mineralized lateral contributions (P1, P2). Waters from
the T–M compartment are characterized by a Ca-SO4 facies
due to the drainage of the Triassic formations, especially
the gypsiferous marls. In contrast, the V–M compartment
presents mainly Ca–HCO3 water types.

Major element ratios between alkali and alkali-earth
are recognized to be tracers of drained lithologies,

carbonated rocks (e.g., Gaillardet et al., 1999; Meybeck,
1986; Négrel et al., 1993, 2013; Stallard and Edmond,
1983). In this perspective, by plotting the sampled waters
in an Mg/Na vs. Ca/Na diagram (Fig. 3), two geochemical

Table 1

Major, trace elements concentration and Sr isotopic composition in the dissolved load of the Peyne watershed water samples.

Number Compartment pH EC Ca2+ Mg2+ Na+ K+ Cl- SO4
2- Sr 87Sr/86Sr

(mS/cm) (mmol/L) (mmol/L)

Low flows (November 1996)
P1 V-M 7.52 1400 6.73 0.90 1.13 0.01 3.90 2.64 5.05 0.71140

P2 V-M 7.49 1190 5.81 0.50 0.85 d.l. 3.28 1.87 4.06 0.71134

P3 V-M 7.21 1210 5.86 0.51 1.32 0.08 2.79 1.94 3.34 0.71116

P4 V-M 7.05 1140 4.99 0.92 1.38 0.03 2.63 1.98 2.97 0.71185

P8 V-M 7.88 850 3.78 0.56 0.90 0.07 1.70 0.99 3.03 0.70828

P5 T-M 7.33 1790 7.85 3.52 1.01 0.06 2.32 7.46 44.16 0.70844

P6 T-M 7.46 1260 5.23 1.54 0.97 0.09 2.26 2.89 11.46 0.70886

P7 T-M 7.74 2160 9.01 3.23 2.77 0.14 6.49 8.34 14.72 0.70910

Low–medium flows (February 1997)
P1 V-M 7.39 1070 5.46 0.56 1.06 0.16 2.88 1.93 3.44 0.71137

P2 V-M 7.19 1160 6.01 0.58 1.08 0.18 3.32 1.96 4.06 0.71146

P3 V-M 7.54 1010 5.12 0.47 1.19 0.23 2.49 1.81 2.98 –

P4 V-M 7.16 1120 5.46 0.53 1.39 0.21 2.86 1.91 3.20 –

P8 V-M 8.11 860 3.91 0.80 1.19 0.03 1.87 1.27 3.27 0.70846

P9 V-M 7.03 940 5.03 0.38 0.79 d.l. 2.43 1.66 1.84 0.71124

P201 V-M 6.7 1250 7.11 0.68 1.06 d.l. 3.60 2.25 4.36 0.71139

P5 T-M 7.41 1770 7.95 3.70 1.11 0.09 1.98 8.97 40.50 0.70854

P6 T-M 7.66 1340 5.52 2.29 1.13 0.03 2.45 4.88 18.60 0.70868

P7 T-M 7.75 2070 8.31 3.80 3.31 0.05 6.14 8.22 12.92 0.70922

P10 T-M 7.85 1650 7.38 3.80 1.03 0.16 1.78 9.29 35.74 0.70866

High flows (November 1997)
P1 V-M 7.68 1368 7.25 0.86 1.73 0.01 4.13 3.39 4.47 –

P2 V-M 7.63 1156 6.02 0.67 1.33 0.02 3.28 2.34 3.77 –

P2a V-M 7.27 1100 6.39 0.73 1.39 d.l. 3.47 2.38 4.02 –

P3 V-M 7.74 1129 5.85 0.71 1.77 0.03 2.94 2.64 3.14 –

P4 V-M 7.61 680 3.06 0.35 0.81 0.14 0.98 1.20 1.72 –

P8 V-M 8.07 888 4.06 0.77 1.96 0.55 1.94 1.43 3.05 –

P9 V-M 7.75 665 3.76 0.18 0.86 0.01 1.18 1.11 1.30 –

P201 V-M 7.3 1190 6.65 0.80 1.45 0.01 3.25 2.26 4.07 –

P5 T-M 7.41 1800 8.46 3.83 1.28 0.02 1.96 9.58 41.09 –

P6 T-M 7.5 1162 5.03 1.78 1.25 d.l. 2.07 3.91 13.35 –

P7 T-M 7.86 1732 7.13 2.13 1.92 0.03 4.54 7.01 11.76 –

P10 T-M 7.81 1626 7.38 3.13 0.99 0.13 1.56 9.06 29.33 –

d.l.: detection limit.

Fig. 3. Mg/Na vs. Ca/Na diagram (molar ratios) of the Peyne watershed

samples. The theoretical local end-members are reported as EM-1 to EM-

3 (see text). The Peyne River samples at the outlet of the basin are from
this study and Petelet-Giraud and Négrel (2007) and references therein.
especially adapted for discrimination of silicated versus
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ds may be delineated. These two patterns initiate from
mmon end-member featured by low Ca/Na (�1–2) and

 Mg/Na (�0.5–1) molar ratios, which reflects a mixed
uence of silicate and carbonate rock weathering (EM-1)
ording to literature data (Gaillardet et al., 1999;
ybeck, 1986 and references therein). Samples draining

 V–M compartment present low Mg/Na ratios and
tively large variations of the Ca/Na ratio. The high

Na ratios (up to 7) define the second end-member
-2) that tends towards typical values of water draining

bonates. Samples originating from the T–M compart-
nt define a third end-member (EM-3) with Ca/Na �
d Mg/Na � 4 that tends towards typical values of water

ining carbonates and dolomites (Gaillardet et al., 1999;
ybeck, 1986). Finally, the Peyne River samples, sampled
he outlet of the watershed, plots next to EM-1 that

responds to a mixed influence of silicate and carbonate,
ecting that the Peyne River integrates and mixes water
ining various lithologies whatever the hydrologic
ditions. At this stage, based on major elements
centrations, the three end-members cannot be pre-
ly defined as we cannot yet identify exactly which
es impose their geochemical signatures. This will be
estigated further using Sr isotopes.

 The Sr isotopic composition of the Peyne Basin waters

Sr isotopes are a powerful tool to discriminate the
ined lithologies and water circulations. Indeed, the Sr
topic ratio (87Sr/86Sr) reflects the type of rocks or

erals being weathered. The so-called radiogenic
r/86Sr, generally higher than 0.710, are observed in
ters draining silicates and associated with low Sr
centrations (Aubert et al., 2002; Blum et al., 1994;
elet-Giraud et al., 2003b). Waters presenting lower
r/86Sr ratios, generally close to 0.708–0.709, with high
ontents reflect the drainage of carbonates (Albarède

 Michard, 1987; Edmond, 1992; Goldstein and
obsen, 1987; Petelet-Giraud et al., 2003a; Semhi
l., 2000). Their Sr isotopic compositions is generally
ted to the Sr isotopic characteristics of the sea water at

 time of carbonate deposition (Burke et al., 1982;
pnick et al., 1985; Koepnick et al., 1990; Palmer and

erfield, 1985).
In the T–M compartment 87Sr/86Sr ratios vary between
0844 and 0.70922 (Fig. 4). In the upper part, samples

 and P5 present relatively low 87Sr/86Sr around
085 that preclude a significant contribution from the
mian and Triassic sandstones of the head of the T–M
partment. This Sr isotopic signature tends towards the
ssic carbonate fingerprints (87Sr/86Sr = 0.7074 to

082; e.g., Korte et al., 2003) and more specifically
ards the Triassic gypsum as measured on rocks
ples in the Var valley (South East of France, Potot

al., 2012), in agreement with the Ca-SO4 water type
denced for these samples. Water sampled in P7
r/86Sr � 0.70915), only drains the Miocene sandy

rls formations from the middle part of the Peyne
tershed, and thus can be considered as representative of

 Miocene lithology. Downstream, P6 receives water

(like P7), P6 presents an intermediate signature between
P5P10 and P7.

In the Saint-Martial basin (V–M), 87Sr/86Sr ratios
present much variation, ranging from 0.70827 to
0.71185, the highest values higher than 0.711 being
observed in the headwaters where water originates from
the Villafranchian gravel formation mainly composed of
quartz and terrigenous detritic material. This later detritic
material probably imposes its relatively radiogenic signa-
ture (Fig. 4). At the outlet of the V–M area, the sample P8
presents a lower 87Sr/86Sr signature (�0.7085), much less
radiogenic than the signature of the Miocene sandy marls.
This low 87Sr/86Sr could reflect the drainage of the Late
Miocene formation outcropping downstream in the sub-
basin. This formation is composed of limestone with a
smaller detritic fraction than the underlying Middle
Miocene one (constituting the main outcropping facies),
resulting in a less radiogenic Sr isotopic composition.
Consistently, pure marine Miocene carbonates have
87Sr/86Sr usually ranging between 0.7083 and 0.7089
(Hodell et al., 1991; Schildgen et al., 2014) and the local
Miocene carbonates in the Vène catchment, 25 km
eastward the studied area, show a 87Sr/86Sr of 0.70877
(Ben Othman et al., 1997), compatible with the measured
values in P8. In addition, the Ca/Sr �1200 of P8 are fully in
agreement with the range defined for small or large rivers
draining carbonates (1200–1700; Ben Othman et al., 1997;
Négrel et al., 1993; Petelet et al., 1998).

Therefore, these results show that Sr isotopes allow the
nature of the end-members to be tightly constrained,
especially through to the discrimination of the two distinct
Miocene layers, i.e. the Middle Miocene sandy marls
defining the dominant outcropping facies in the middle
part of the basin and the Late Miocene limestone

Fig. 4. 87Sr/86Sr vs. Ca/Sr diagram. The lithologic end-members

discriminated with the 87Sr/86Sr isotopic ratios are also plotted. Marine

Miocene end-member is from Hodell et al. (1991) and Schildgen et al.

(2014), the Triassic carbonates end-member from Korte et al. (2003), and

the Triassic gypsum from Potot et al. (2012).
cropping in the low part of the basin.
 P10 and P5 and drains the Miocene sandy marls out
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4.3. End-member contribution during different hydrological

conditions

The Peyne River was sampled seven times at the outlet
of the watershed (Petelet-Giraud and Négrel, 2007), i.e.
where it collects all the waters from the watershed (VM
and TM compartments). The Peyne being an ungauged
river, the general hydrological conditions at the various
sampling periods may be illustrated using the neighboring
next order Hérault River discharge at its outlet (Fig. 2B).
Two extreme hydrological conditions are represented by
the sample of February 1996, collected during the
decreasing phase of a big flood, and the sample of August
1999, collected during the summer minimum flow. Data of
the Peyne River outlet are reported in Fig. 4, where they
present a limited range of variation both for their Ca/Sr
ratio (490–780) and 87Sr/86Sr (0.70852–0.70885) com-
pared to the signatures of the main end-members
identified in the Peyne watershed. This implies that, at
the scale of the Peyne watershed (70 km2), despite the
great variability of signature highlighted in the contribut-
ing compartments, the geochemical signatures observed in
the Peyne river are relatively buffered whatever the
hydrological conditions. In addition, these signatures
preclude significant contributions from the upper deposit
layers composed of the more radiogenic Plio-Villafran-
chian gravels, sandstones and red clays. Data plot in a
ternary mixing diagram whose end-members are defined
by (1) Miocene sandy marls, (2) marine Miocene and (3)
Triassic carbonates and gypsum. In high flow conditions
(February 1996), the Peyne outlet presents a signature
mainly marked by the Miocene end-members, both Middle
and upper facies. In minimum flow conditions (August
1999), the Peyne outlet presents the lowest Ca/Sr ratio
together with the lower 87Sr/86Sr ratios and tends towards
the Triassic signature. It thus seems that during minimum
flow period, the imprint of the highly mineralized water
draining the gypsiferous facies is still visible at the outlet of
the Peyne, while in high flow conditions the Miocene
signature clearly dominates. Considering a simple binary
mixing between the 2 Miocene formations (represented by
P7 and P8), the sample of the Peyne outlet in February
1996 would correspond to the mixing of water draining
both Miocene formations with about 70% coming from the
Upper Miocene reservoir and 30% from the Middle
Miocene terrains.

5. Conclusion

This study presents the ability of major and trace
element concentrations together with 87Sr/86Sr isotope
ratios to trace water origins in river basin at very small
scale and to explain the geochemical and isotopic signal at
the outlet of a small ungauged watershed. Two small and
hydrologically independent sub-basins of the lower Peyne
watershed (70 km2) were selected because they drain
distinct lithologies (Plio-Villafranchian conglomerate
versus Triassic gypsum-rich marls and dolomites) in their
headwater and Miocene formations downstream. These
small brooks were sampled in several locations along their

to drain monolithologic units. This approach highlights
that:

(1) major elements concentrations and Ca/Na vs. Mg/Na
ratios classically applied to distinguish carbonate from
silicate weathering, allow discriminating three main
end-members from the two sub-basins;

87Sr/86Sr isotope ratios, coupled with Ca/Sr ratios,
discriminate more precisely the drained lithologies of
the two sub-basins. Firstly, the 87Sr/86Sr ratios allow
identifying the nature of the lithologies and their main
component(s) contributing to the Sr budget in water.
Secondly, Sr isotopes evidenced two distinct Miocene
facies: the detritic fraction with the sandy marls, and
the marine carbonates;

(2) the geochemical signatures of the Peyne River itself,
sampled at the outlet of the watershed just before the
confluence into the Hérault River, was compared with
the above-described tributary samples. It appears that
the signature of the Peyne River, integrating all the
water draining the basin, is relatively invariant
whatever the hydrological conditions and mainly
marked by the Miocene formations. The Sr isotopes
highlight the role of Miocene facies present in the
lower part of the Peyne watershed, i.e. the sandy marls
and the carbonates in the signature of the river, and
evidence that the typical signature of the Plio-
Villafranchian conglomerates is completely hidden.
The Triassic gypsiferous marls and dolomites of the
headwaters of the T–M sub-basin seem to imprint their
signature only during the minimum flow period; this
could be related to the high solubility of the gypsum
formations releasing large quantities of dissolved
elements in solution, even if the contribution to the
river discharge from this part of the basin is very
limited.

These results illustrate that the geochemical tracers
(major, trace elements and Sr isotopes) are extremely
dependent on the facies sequences (morphology) and of
the soil nature (mineralogical composition), what is
particularly a varying feature at small scale, making them
relevant tools to trace water origins in rivers, i.e. identify
the contributing compartments of the basin. Although
only based on a very limited number of samples, this
study allows roughly defining the contributing compart-
ments to the discharge at the outlet of the basin.
Nevertheless, in the objective to clearly identify the
water origins during flood events, dedicated sampling
campaigns should be conducted during several floods
episodes.

In Mediterranean Europe, flash floods are classified as
one of the most devastating hazards in terms of human life
loss and infrastructures (Gruntfest and Handmer, 1999);
e.g., Southern France has paid a heavy toll because of floods
over the last 25 years (> 20 victims). In the Mediterranean
area, some hydrograph deconvolution studies using
geochemical tracers were conducted (e.g., Marc et al.,
1995; Ribolzi et al., 1996, 1997), but they are limited to
very small experimental research basins, studied in detail

and equipped with real-time monitoring of rain and
courses together with small lateral contributions supposed



disc
for 

ma
pop
flas
(Bo
geo
sho
the
sm

Ref

Alba

Allè

Aub

Aub

Ben

Birc

Blum

Borg

Bren

Burk

Burn

Butt

Calm

DeW

Dup

Edm

Gail

Gail

Gen

Gold

E. Petelet-Giraud et al. / C. R. Geoscience 348 (2016) 379–386 385
harge. Furthermore, classical hydrological techniques
flood real-time monitoring and flood forecast are

inly implemented in large rivers and upstream heavily
ulated areas or of major economic interest, whereas
h floods often happen in small ungauged catchments
rga et al., 2008). Therefore, this kind of presented
chemical approach, including isotopic fingerprinting,
uld be considered as a potential alternative to delineate

 main contributing areas during floods, especially in
all ungauged river basins.
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gre, C.J., Dupré, B., Négrel, P., Gaillardet, J., 1996. Sr-Nd-Pb isotope
systematics in Amazon and Congo River systems: Constraints about
erosion processes. Chem. Geol. 131, 93–112.
ert, D., Stille, P., Probst, A., 2001. REE fractionation during granite
weathering and removal by waters and suspended loads: Sr and Nd
isotopic evidence. Geochim. Cosmochim. Acta 65 (3), 387–406.
ert, D., Probst, A., Stille, P., Viville, D., 2002. Evidence of hydrological
control of Sr behavior in stream water (Strengbach catchment, Vosges
mountains, France). Applied Geochem. 17, 285–300.

 Othman, D., Luck, J.M., Tournoud, M.G., 1997. Geochemistry and
water dynamics: application to short time-scale flood phenomena
in a small Mediterranean catchment. I–Alkalis, alkali-earths and Sr
isotopes. Chem. Geol. 140, 9–28.
k, J.L., 1986. Precision K-Rb-Sr isotopic analysis: application to Rb-Sr
chronology. Chem. Geol. 56, 73–83.

, J.D., Erel, Y., Brown, K., 1994. 87Sr/86Sr ratios of Sierra Nevada
stream waters: Implications for relative mineral weathering rates.
Geochim. Cosmochim. Acta 58, 5019–5025.
a, M., Gaume, E., Creutin, J.D., March, I.L., 2008. Surveying flash flood

response: gauging the ungauged extremes. Hydrol. Process. 22 (18),
3883–3885.
ot, A., Cloquet, C., Vigier, N., Carignan, J., France-Lanord, C., 2008.

Magnesium isotope systematics of the lithologically varied Moselle
river basin, France. Geochim. Cosmochim. Acta 72, 5070–5089.
e, W.H., Denison, R.E., Hetherington, E.A., Koepnick, R.B., Nelson, H.F.,

Otto, J.B., 1982. Variation of seawater 87Sr/86Sr throughout Phanero-
zoic time. Geology 10, 516–519.
s, D.A., McDonnell, J.J., Hooper, R.P., Peters, N.E., Freer, J.E., Kendall, C.,

Beven, K., 2001. Quantifying contributions to storm runoff through
end-member mixing analysis and hydrologic measurements at the
Panola Mountain Research Watershed (Georgia, USA). Hydrol. Pro-
cess. 15, 1903–1924.
le, J.M., 1994. Isotope hydrograph separations and rapid delivery of
pre-event water from drainage basins. Prog. Phys. Geogr. 18, 16–41.

els, D., Gaillardet, J., François, L., 2014. Sensitivity of carbonate
weathering to soil CO2 production by biological activity along a
temperate climate transect. Chem. Geol. 390, 74–86.
alle, D.R., Swistock, B.R., Sharpe, W.E., 1988. Three-component tracer

model for stormflow on a small Appalachian forested catchment. J.
Hydrol. 104, 301–310.
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