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ABSTRACT 
 
This paper presents an approach for the rapid seismic loss assessment of infrastructure systems, where all 
probabilistic variables are modeled through a Bayesian Network (BN). While BN-based approaches have been 
introduced as promising tools for the risk assessment of systems, they suffer from computational issues (i.e., 
combinatorial explosion) that prevent their application to large real-world networks that require accurate and 
complex performance indicators. Therefore, a hybrid BN method is introduced here, where a preliminary Monte 
Carlo simulation is performed in order to generate a dataset of component damage configurations, which is used 
to build a simplified BN structure with only a few selected components. The most critical components are 
selected thanks to an unbiased importance measure computed from a random forest classification. 
While the proposed approach generates an approximate BN structure that cannot provide exact probability 
distributions of losses, the application of Bayesian inference in a retro-analysis context (i.e., updating of loss 
projections given field observations immediately after an earthquake) has a lot of potential as a decision-support 
system for emergency responders. This method is applied to a road network in France, where evidence such as 
recorded ground-motions or observed damages is used to update the state of the system. The approximate BN 
structure has the ability to include complex system performance indicators, such as the additional travel time 
accounting for traffic flows. A sensitivity analysis on the component selection method and on the number of 
selected components demonstrates the stability of the posterior distributions, even with very few selected 
components. 
 
Keywords: Probability distributions; Bridges; Road network; Situational awareness; Decision support 
 
 
1. INTRODUCTION  
 
The loss assessment of infrastructure systems has emerged as an essential aspect of the risk and 
resilience analysis of exposed communities (Franchin and Cavalieri, 2015). Predicting the 
performance loss of critical infrastructure before an event is useful to plan mitigation strategies, while 
a rapid loss assessment in the short-term (i.e. in the crisis period immediately following the disaster) is 
especially helpful for emergency responders as it contributes to situational awareness (e.g. knowledge 
of the areas in urgent need of basic utilities, accessibility of strategic locations, etc.). To this end, 
conventional approaches to model and simulate infrastructure systems include a probabilistic risk 
framework, where a Monte Carlo simulation is performed from the generation of earthquake events to 
the computation of the system performance indicators. Alternatively, Bayesian Networks (BNs) have 
been recently used to structure the links and statistical dependencies between the uncertain variables 
involved in the analysis chain (e.g. earthquake magnitude and location, ground-motion field, damage 
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state of infrastructure components, response of the system, etc.), thanks to the convenient use of 
conditional probabilities through Bayes’ rule (Bensi et al., 2015). BNs may be used in a predictive 
(forward analysis), where all sources of uncertainties are propagated in order to obtain a probabilistic 
distribution of the variables of interest. On the other hand, BNs also have the ability to perform a 
diagnostic (backward) analysis, where the prior distribution of given variables is updated from 
evidence collected on fixed variables (e.g. field observations or measures). The latter property is 
especially relevant in the context of crisis management, since ex-ante predictive loss models may be 
updated thanks to the resolution of a BN with incoming evidence, thus contributing to a progressive 
refinement of the estimated consequences of an earthquake event (Cavalieri et al., 2017; Gehl et al., 
2017). 
One of the main issues preventing the application of BNs in an operational context resides in the 
computational complexity, which generates intractable datasets when large real-world systems are 
considered (Bensi et al., 2013). Moreover, formulating an exact BN, which depicts all links between 
variables, requires the implementation of accurate rules between the components’ states (i.e. damage 
states of individual infrastructure systems) and the performance of the whole system. This constraint 
limits most BN models to a connectivity analysis, while it has been shown that capacity or 
serviceability analyses provide a much more accurate picture of the situation (Cavalieri et al, 2014; 
Hong et al., 2015). Therefore an approximate BN formulation is presented in the present study, in 
order to allow for a quick and efficient Bayesian updating of predictive models in near-real-time. The 
proposed approach is based on two distinct steps, as follows: 

• Generation of a learning dataset through a Monte Carlo simulation: thousands of loss scenarios, 
accounting for all types of uncertainties, are sampled through infrastructure modeling and 
simulation tools, such as the OOFIMS platform (Franchin and Cavalieri, n.d.) developed in the 
FP7 SYNER-G project (Pitilakis et al., 2009-2013). 
• The generated data is used to build a simplified BN formulation, where only the most influent 
components are kept for the estimation of the system performance. These components are 
selected through data mining techniques (i.e. supervised learning), and the relation between them 
and the system performance variable is quantified by counting the Monte Carlo outcomes for 
each configuration and by computing the associated conditional probability. 

The main merit of this approach resides in the selection of a reduced number of influent components, 
which alleviates the dimensionality curse of the ‘components-system’ problem. Moreover, the 
conditional probability table of the system variable is directly built by counting combinations of events 
in the Monte Carlo, which allows any type of components-system relations to be represented, without 
necessarily being constrained by strict connectivity rules. 
This two-step hybrid BN method is detailed in Section 2, where the construction of the approximate 
BN structure is discussed. In Section 3, the proposed approach is then applied and validated on a real-
world road network in the Pyrenees area (France), where bridges are vulnerable to strong motions and 
road segments are exposed to earthquake-triggered landslides (more than 50 vulnerable components in 
total). A traffic model based on an origin-destination matrix is used to compute the Drivers’ Delay 
(i.e., additional travel time between several points of interest) as a system performance indicator (PI). 
Finally, in Section 4, the inference abilities of the BN are demonstrated through various hypothetical 
scenarios, where field observations (e.g., ground-motion records, damage observations) are used to 
refine the loss estimation of the whole system.  
 
 
2. LOSS ASSESSMENT OF INFRASTRUCTURE SYSTEMS WIH BAYESIAN NETWORKS 
 
This section presents the main principles behind the modeling of infrastructure systems with BNs and 
details the proposed approach to build an approximate BN from Monte-Carlo simulation samples. 
 
2.1 Modeling the Damage Probability of Spatially Distributed Components 
 
A BN takes the form of a directed acyclic graph, which comprises edges and nodes. Nodes are 
classified as parents or children depending on the direction of the edges. A node without any parents is 
referred to as a root node. Each node represents an event or variable that may take different states 
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(e.g., survival or failure for a node representing an infrastructure component). The probability of each 
state is given by a conditional probability table (CPT), representing the probabilities given the states of 
the parents: in the case of a root node, the CPT becomes a table of marginal probabilities (i.e., 
assumed probability distribution for a given input variable). An inference is then performed on the BN 
when one or more nodes are observed (i.e., evidence is entered by specifying a given state) and when 
the probabilities of the other nodes are updated. Therefore BNs are well suited for the loss assessment 
of infrastructure systems, due to the convenient manipulation of conditional probabilities along the 
analysis chain (Bensi et al., 2011).  
In the present context, the proposed BN formulation starts with the quantification of the hazard and 
damage events, at the level of the spatially distributed infrastructure components, as shown in Figure 1 
(adapted from Bensi et., 2011; Cavalieri et al., 2017). Most of the variables are continuous and must 
therefore be discretized beforehand, with the exception of seismogenic areas (finite number) and 
components’ states. The considered variables, from top to bottom, are: 

• SGZ: root node, where each state represents one of the seismogenic zones that are susceptible to 
generate an earthquake event near the system; 
• M: magnitude of the earthquake event, function of the activity parameters of the seismogenic 
zone; 
• Epi: location of the earthquake event within the seismogenic zone; 
• Ri: epicentral distance for each vulnerable component i; 
• iS : logarithm of the median value of the seismic intensity measure (IM) of interest, as estimated 
by the ground-motion prediction equation (GMPE); 
• U: standard normal variable that is common to all sites; 
• Vi: standard normal variable that is specific to each site i; 
• εi: intra-event variability of the ground-motion, which is specific to each site i, depending on the 
relative contribution of the U and Vi Dunnett-Sobel variables (Dunnett and Sobel, 1955) that 
account for the spatial correlation of the ground-motion field; 
• η: inter-event variability of the ground-motion, which is common to all sites; 
• Si: logarithmic IM at site i; 
• Ci: component node, with states representing the damage states of the generic component, using 
fragility curves to build the CPT. 

 

 
 

Figure 1. BN model of distributed seismic hazard, applied to a five-component example system. 
 
The CPTs of the variables are quantified by considering established analytical and empirical models, 
such as GMPEs, fragility curves and earthquake recurrence laws. More details on the construction of 
this part of the BN are provided in Cavalieri et al. (2017). If the aim of the analysis is to estimate the 
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distribution of a given system performance indicator, then the BN in Figure 1 must be augmented with 
another set of child nodes, SYS, which represent the system’s state given the damage state of the 
components nodes Ci. 
 
2.2 Approximate Estimation of the System Performance Indicator 
 
Directly expressing the conditional probability of the system’s state as a function of all components 
would lead to a combinatorial explosion (i.e., the CPT has a growth rate in O(xn), n being the number 
of the components): such a components-system converging structure is referred to as a naïve BN 
formulation. Previous alternative formulations have been introduced in order to solve this issue, such 
as the ones based on the identification of minimum link-sets or cut-sets to decompose the problem in 
smaller chains of components (Bensi et al., 2013). However, it has been shown that such alternatives 
tend to move the computational bottleneck to other steps of the analysis, thus only slightly increasing 
the number of components that can be considered (Cavalieri et al., 2017). 
Therefore, it is proposed here to build a reduced and approximate BN structure that accounts only for a 
few components to predict the system’s performance. To this end, a two-step BN learning procedure is 
introduced, as detailed below: 

1. Generation of a set of N simulated samples, through a plain Monte Carlo simulation of all the 
variables involved, from SGZ to SYS. The results are represented as a state matrix of size [N ; 
n+1], where each row represents the outcome of a given simulation and the n first columns 
represent the states of the n components in the system. The last column represents the SYS 
variable. 
2. Selection of k components for the construction of the CPT of SYS, based on their influence on 
the system’s performance. The CPT of SYS is then built only from the states of the k components, 
instead of all n parent nodes. The conditional probability of the discretized SYS to be in the state 
sys, given that the components Ci are in states ci (for i = 1…k), is rewritten as in Eq. (1). The joint 
probabilities can then be approximated by counting the number of occurrences in the state matrix, 
if enough samples are generated: 

 

  

P SYS = sys C1 = c1,...,Ci = ci ,...,Ck = ck( ) = P SYS = sys,C1 = c1,...,Ci = ci ,...,Ck = ck( )
P C1 = c1,...,Ci = ci ,...,Ck = ck( )

≈
δ SYS ,sys( j) δCi ,ci

( j)
i=1

k

∏
j=1

N

∑

δCi ,ci
( j)

i=1

k

∏
j=1

N

∑

 (1) 

where N is the total number of simulated samples; and δa,b(j) is the Kronecker delta for the jth sample, 
which takes the value 1 if a = b, and 0 otherwise. 
In the proposed approach, a converging structure is used between the selected components and the 
system variable, since this configuration can be directly generated from counting the state matrix. The 
selection of the most critical components to include in the system’s prediction is performed here 
through a random forest classification (Breiman, 2001), which is relevant for discrete or categorical 
variables. It carries out a bootstrap operation on many decision trees, so that the aggregated decision 
tree reduces the effect of model overfitting and provides a stable classification (e.g., reduction of the 
impact of components that are very rarely damaged in the Monte Carlo simulation). The bootstrap 
sampling is carried out on two levels, namely (i) on the simulation outcomes (i.e., rows of the state 
matrix) before each classification tree is built, and (ii) on the components to consider (i.e., columns of 
the state matrix) for each decision split in the classification tree. Using the random forest, an unbiased 
prediction importance estimate for each component can be retrieved in order to rank the most 
important components. 
The proposed hybrid BN approach has the benefit of using a much smaller amount of components in 
order to reduce the computational complexity. Moreover, it enables any type of PI to be estimated, 
since the relation between the components’ states and the SYS variables is simply obtained by 
counting, without the need to use any connectivity or capacity rules. However, since the approximate 
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BN formulation is learned from the Monte Carlo simulation, it is not able to use component 
configurations that are not explored by such simulation, thus providing very little benefit over 
conventional simulation-based approaches. On the other hand, the inference abilities of such a 
Bayesian framework are well suited to the diagnostic analysis of an infrastructure system immediately 
following an earthquake: the BN may be seen as a support tool to update initial model predictions 
from field observations, in order to provide a posterior distribution of the variables of interest. 
 
 
3. SEISMIC LOSS ASSESSMENT OF A ROAD NETWORK IN FRANCE 
 
This section describes the French road network used as case-study and the probabilistic loss 
assessment of the system, carried out in order to generate data for the BN learning. 
 
3.1 Description of the Case-Study 
 
The case-study area is located in the Pyrenees mountain range in the South-West of France, where a 
portion of a road network connecting small towns and villages is modeled. Based on the results of 
previous seismic risk studies (e.g., SISPYR project, www.sispyr.eu), ground shaking has the potential 
to affect engineering works such as bridges or even to trigger landslides on the unstable slopes that 
overhang some road segments. In total, the network model is composed of 219 nodes and 265 
bidirectional edges: 58 edges, namely 20 bridges and 38 unstable slopes, are considered to be 
vulnerable to seismic hazard. For the network analysis, 10 Traffic Analysis Zones (TAZs) have been 
selected, corresponding either to population settlements or to entry points to the network. The road 
network is presented in Figure 2, together with a close-up on its central part, where most of the 
vulnerable components are located. 
 

 
 
Figure 2. (a) Schematic view of the road network and (b) zoomed-in area around the sites and TAZs of interest. 
Sites A and B represent vulnerable components that are used as a source of field observations in the Bayesian 
updating. TAZs #2 and #8 respectively represent the end of the valley (ski resort) and the town of Saint-Béat, 

which are used to estimate trips at the local level. 
 
The seismic hazard is modeled by following the probabilistic framework of the SYNER-G project: 
earthquake events are sampled from seismogenic zones surrounding the studied area, based on their 
activity parameters (see Table 1). The seismogenic areas have been truncated so that only the parts 
within 100 km to the closest vulnerable components are kept: this optimization allows more damaging 
earthquake events to be sampled, instead of many far-field earthquakes that would be irrelevant for the 
construction of the state matrix. 
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Table 1. Seismic activity parameters of the selected seismogenic zones (Woessner et al., 2013). λ0 is the mean 
annual rate of the events in the source with magnitude M greater than the lower limit ML, β is the magnitude 

slope, and ML and MU are the lower and upper magnitude limits of truncated Gutenberg-Richter recurrence law. 
The mean annual rate λ0 has been adjusted by the ratio of the selected area (i.e., the one within 100 km of the 

infrastructure) on the total area of the seismogenic zone. 
 

Zone FRAS468 FRAS466 FRAS470 FRAS469 FRAS110 ESAS971 FRAS473 
λ0 0.0028 0.0061 0.0066 0.0053 0.0067 0.0090 0.0012 
β 2.3026 2.3026 2.3026 2.3026 2.3026 2.3717 2.3026 

ML 5.5 5.5 5.5 5.5 5.5 5.5 5.5 
MU 6.8 6.8 6.8 6.8 6.5 6.8 6.8 

 
Other modeling assumptions regarding the hazard and risk assessment are the following: 

• The GMPE by Akkar and Bommer (2010) generates a spatially correlated ground-motion field 
at the vulnerable sites. Local site amplifications are taken into account through the specification 
of Eurocode 8 soil classes. 
• Fragility curves are taken from the literature (Argyroudis and Kaynia, 2014), while considering 
a single limit state (i.e., slight/minor damage) for simplification purposes: for bridges, the median 
PGA is 0.12g and σlogPGA = 0.44; for unstable slopes, the median PGA is 0.16g and σlogPGA = 0.40. 
• It is assumed that the occurrence of damage on a vulnerable edge corresponds to a reduction of 
30% of the free-flow speed (i.e., functionality loss). 
• The network performance is assessed by accounting for the traffic flow level, rather than purely 
in terms of connectivity or free-flow travels. To this end, an origin-destination (O-D) matrix is 
generated, with trips between the ten TAZs in vehicles per hour (vph). The traffic flow analysis is 
then carried out by reaching user equilibrium with the Frank-Wolfe algorithm. 

Two system PIs are considered here, namely the global Drivers’ Delay (DD) and a local Drivers’ 
Delay (LDD), the latter considering only the travel delay between two TAZs (i.e, TAZs #2 and #8 as 
shown in Figure 2). DD is defined as the difference between the congested total travel time in 
damaged and normal, undamaged conditions (denoted with subscript “0”). Such total travel time is the 
sum of flow dependent travel times TT(x) over all network edges, indexed by i, weighted by edge 
flows x (Shinozuka et al., 2003): 
 

  DD = xi ⋅TTi (xi )i∑ − x0,i ⋅TT0,i (x0,i )i∑  (2) 
 
The LDD PI has the same definition as DD, but with both summations extended over only the edges 
belonging to the shortest path between the two TAZs: 
 

  
LDD TAZ#1,TAZ# 2( ) = xi ⋅TTi (xi )

i∈path
∑ − x0,i ⋅TT0,i (x0,i )

i∈path
∑  (3) 

 
3.2 Monte Carlo Simulation for the Selection of Components 
 
The OOFIMS (Object-Oriented Framework for Infrastructure Modeling and Simulation) platform 
(Franchin and Cavalieri, n.d.) is used to model the road network and to sample 10,000 outcomes of the 
system’s performance metrics, in terms of DD and LDD. The OOFIMS platform outputs a state matrix 
of size [1000 x 60], with the first 58 columns representing the components’ states and the last two the 
performance metrics DD and LDD. This state matrix constitutes the dataset of descriptor/target 
variables for the creation of the random forest classification, from which unbiased performance 
measures are extracted in order to rank the components. As the random forest classification is specific 
to each system PI considered, two different sets of ten components are selected. For each PI, it is then 
possible to count the occurrences of the various combinations of the selected components’ states, and 
to evaluate the probabilities of the system PI to be in a given state for each combination (see example 
in Table 2). 
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Table 2. Occurrences and probability estimation of DD being in the 1st discrete interval, for the five most 
frequent combinations of ten components, over the 10,000 outcomes of the state matrix. 

 

ID 
States (1=intact, 2=damaged) of the ten selected 

components Total 
occurrences 

Occurrences 
of the 1st DD 

interval 

Probability 
of the 1st 

DD interval C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 
1 1 1 1 1 1 1 1 1 1 1 8170 8133 0.9955 
2 1 1 1 1 1 1 1 1 2 1 156 148 0.9487 
3 2 1 1 1 1 1 1 1 1 1 127 0 0.0000 
4 1 2 1 1 1 1 1 1 1 1 125 106 0.8480 
5 2 2 1 1 1 1 1 1 1 1 90 0 0.0000 
… … … … … … … … … … … … … … 
 
 
4. POST-EARTHQUAKE RAPID LOSS ASSESSMENT 
 
This section details the approximate BN structure that is generated from the Monte-Carlo simulation, 
in order to demonstrate its application as a rapid loss assessment tool. 
 
4.1 Construction of the Approximate Structure of the Bayesian Network 
 
Once the CPTs for both system PIs have been estimated from the state matrix, the BN is built by using 
an exact formulation up to the component nodes (i.e., as in Figure 1), and an approximate formulation 
from the component nodes to the SYS nodes (i.e., both PIs). The resulting BN is displayed in Figure 3, 
where it can be seen that only ten edges converge to each SYS node: it comprises 355 nodes and 544 
edges. In order to perform inference on this BN, the Bayes Net toolbox (Murphy, 2001) has been used, 
which mainly requires the CPTs and the topology of the BN to be specified. All continuous variables 
must be discretized beforehand, so that exact inference engines such as the junction-tree algorithm 
may be used. It should be noted that the size of CPTs and cliques in the junction-tree algorithm is 
directly linked to the number of states in the BN nodes, thus limiting the number of discrete intervals: 
here, with all continuous variables discretized in 10 or 20 intervals, the largest clique size generated by 
the junction-tree algorithm reaches a little more than 430,000,000 elements. 
 

 
 

Figure 3. Layout of the t-Naïve BN formulation for the case-study, with ten components selected for each PI. 
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4.2 Updating of Loss Predictions through Bayesian Inference 
 
Several inference operations have been performed on the BN in order to demonstrate its ability to 
account for various types of field observations and update the probability distributions of other 
variables. If this BN framework is to be used in the context of crisis management, the following 
evidences may be entered in the BN in order to update target variables (i.e., marginalized nodes) such 
as system PIs: 

• Estimation of the earthquake magnitude and epicenter location, which is usually known within 
several minutes after the event; 
• Measure of the ground-motion intensity at some locations by recording stations; 
• Observation of damaged physical components through ground or airborne reconnaissance. 

Other evidences could include the observation of some local PIs, on the condition that these loss 
metrics are actually measurable or observable (e.g., disruption of water flow at a given location of a 
water supply system). As such measurable PIs are practically unavailable in the case of road networks, 
only the observations at the level of the components are considered here. The proposed inference 
scenarios on the BN are described in Table 3, while the resulting prior and posterior distribution of all 
scenarios are detailed in Figure 4. 
 
Table 3. Proposed inference scenarios for the demonstration of the BN applied to the road network. Sites A and 

B are shown in Figure 2, while the epicenter coordinates are [42.723°N;1.172°E]. 
 
Scenario ID Evidence Marginalized node 
#0 (prior) None LDD, DD, IMB, CB 
#1 Epicenter (Ravg = 49 km), Mw 6.5 LDD, DD 
#2 Epicenter (Ravg = 49 km), Mw 6.5, CA and CB damaged LDD, DD 
#3 Epicenter (Ravg = 49 km), Mw 6.5, IMA and IMB high LDD, DD 
#4 Epicenter (Ravg = 49 km), Mw 6.5, IMA high IMB, CB 
 
 

 
 

Figure 4. Prior and posterior distributions for the considered inference scenarios. 
 
As shown in Figure 4, introducing evidence of a severe event (e.g., large magnitude, high local 
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intensity measures, observation of damaged components, etc.) leads to a shift of the loss distributions 
towards the right. It should be noted that, even though components A and B are not included in the ten 
components selected for the estimation of PIs DD and LDD, evidence on their damage states or the 
hazard intensity at their locations has a significant impact on the performance of the road network. 
This observation demonstrates the ability of the proposed approximate BN formulation to provide 
accurate estimates of the system behavior while including a reduced number of components. The 
observed effect is made possible by the statistical dependency between the IMi variables (i.e., spatially 
correlated field), which propagates the evidence to neighboring components and finally to the system 
PIs (e.g., see the two bottom plots in Figure 4). 
Other noteworthy observations are the following: 

• The LDD distribution is more heavily affected by the additional evidence on CA and CB (i.e., 
difference between inference scenarios #1 and #2) than the DD distribution. Since LDD is a local 
PI measuring the accessibility between two TAZs, it usually involves a reduced set of very 
influent components, so that selecting ten components out of the total 58 provides an accurate 
estimation of the local performance of the network. On the other hand, DD is based on all inter-
TAZ trips and the ten selected components are slightly less efficient to fully describe the global 
behavior of the network. 
• The two bottom plots in Figure 4 are the result of an exact BN inference with an accurate 
modeling of the variables, since all the nodes involved correspond to the part of the BN where an 
exact formulation is used (see Figure 1). The only potential source of error lies in the 
discretization of continuous variables such as Ri or IMi, which may lead to imprecise 
representations of the probability density functions. This is another benefit of the hybrid BN 
approach, where only the components-system relationship is approximate. 
• Inference scenario #4 appears to have a significant impact on the distribution of the hazard 
intensity at site B (IMB), yet it does not lead to a huge change in the damage distribution of CB. 
However, even if the updating of the damage probability of CB is marginal, the integration of all 
components at the system level provides a lever effect, where the joint damage probabilities of 
several components have a high impact on the network performance. 

 
4.3 Sensitivity of the Results with respect to Component Selection 
 
In order to investigate the stability of the selection method, the random forest classification (Breiman, 
2001), is compared to other ranking algorithms, such as the Pearson correlation coefficient (as initially 
proposed by Cavalieri et al., 2017) and regression or classification trees (see Figure 5).  
 

 
 

Figure 5. Sensitivity of the prior and two posterior distributions of DD to the component selection method. 
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The comparison in Figure 5 corresponds to the prior and two posterior distributions of DD with 
inference scenarios #1 and #2. The four subplots appear very similar, and this gives an estimate of the 
robustness of the four methods. Given the type of evidence, large gaps in probability at the first DD 
state are expected between the prior and posterior #1, as well as between the two posteriors. It is 
possible to note from Figure 5 that the random forest algorithm presents the largest gaps and thus 
allows the impact of the evidence on the PI distribution to be better captured. 
The random forest algorithm for component selection involves a stochastic process and hence a 
variability of the solution, in the form of epistemic uncertainty. To investigate the sensitivity of the 
results to the ten component sequence that is output from the random forest algorithm, a total of 50 
sequences have been generated and for each sequence the inferences have been performed, in terms of 
the prior and two posterior distributions (#1 and #2 in Table 3) of DD, in particular the first DD state; 
then the statistics (mean and standard deviation) of the inference results have been computed. Table 4 
highlights that the highest value of standard deviation is still very low, thus confirming the robustness 
of the component selection via random forest. 
 

Table 4. Sensitivity of the inference results to uncertainty in the sequence of ten components generated via 
random forest algorithm. The results are referred to the probability of the first state of DD, according to the prior 

distribution and two posterior distributions. 
 

Distribution 
Inference type 

P[DD(1)]prior P[DD(1)]posterior#1 P[DD(1)]posterior#2 
Mean 0.9234 0.7557 0.5569 

St. Dev. 0.0020 0.0052 0.0128 
 
Finally, in order to investigate the sensitivity of the solution with respect to the number of selected 
components, the prior and two posterior distributions (#1 and #2 in Table 4) of DD have been 
computed with an increasing number of components (Figure 6, left). Taking the values with thirteen 
components as “exact”, it is possible to conclude that the performance is quite well captured with as 
low as four components. This is also evidenced by Figure 6 (right), where the normalized importance 
measure reaches much larger values for the first four components and presents a large decrease after 
the fourth one. Based on these results, the number of components for the inferences of Figure 4 has 
been set to ten, which is a good compromise between accuracy in the results and computational effort. 
 

 
 

Figure 6. Sensitivity of the prior and two posterior distributions of DD to the number of selected components 
(left), and normalized importance measure of the 58 components ranked by decreasing importance (right). 
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The above results regarding the sensitivity to various selection parameters are specific to the present 
case-study, as they depend on many factors such as the network topology, the hazard distribution or 
the vulnerability of the components: in the present example, Figure 6 clearly indicates that the 
remaining components, from the fifth one on, do not play an critical role in the estimation of the 
quantities of interest and could be overlooked for a rough estimation of the distribution of DD. 
Therefore a similar sensitivity study should be carried out for any new case-study considered, in order 
to assess beforehand how many components need to be included to obtain a stable estimate. It remains 
feasible to perform the proposed sensitivity analyses after the Monte Carlo simulation phase (i.e., “off-
line” computations ahead of any potential earthquake), in order to build a robust BN that can then be 
used in an operational capacity. 
 
 
5. CONCLUSIONS 
 
This paper has presented the potential benefits of using BNs for the seismic loss assessment of 
infrastructure systems, in complement to simulation-based approaches. The hybrid BN method relies 
on a preliminary Monte Carlo simulation in order to learn an approximate BN structure, characterized 
by a reduced number of components involved in the prediction of the system’s performance. It has 
been shown that this approach has the potential to avoid some of the computational challenges usually 
associated to BNs, while being able to account for any type of performance indicators (even the flow-
based ones). 
The application of the hybrid BN approach to a road network in France has led to stable estimates of 
the posterior distribution of the drivers’ delay measure. For this specific example, the Bayesian 
updating of loss probabilities based on field observations has provided satisfying results, even when 
considering a fraction of the vulnerable components. This encouraging observation may be explained 
by two main factors: 

• Component failures are statistically dependent through the spatial correlation of the ground-
motion field, which enables some component events to be considered as proxies for the others; 
• The BN has an exact structure for all variables up to the component states, while only the 
system PI variable is approximately characterized in terms of linked component nodes and CPT. 

The applicability of this approach to any type of infrastructure systems, however large and complex, 
remains to be investigated, although case-specific sensitivity studies performed on the number of 
selected components or the selection algorithms constitute useful tools to estimate the level of 
uncertainty that should be expected when studying a given area. Finally, it should be kept in mind that 
the use of a BN with discrete variables may also be a source of imprecision due to the discretization of 
continuous variables: this issue should be the subject of future investigations, with the need to develop 
adaptive discretization schemes that refine the probability distributions at the points of interest and 
optimize the number of discrete states required. 
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