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Abstract The instability mechanisms for self-organized kilometer-scale shoreline sand waves have been
extensively explored by modeling. However, while the assumed bathymetric perturbation associated with
the sand wave controls the feedback between morphology and waves, its effect on the instability onset
has not been explored. In addition, no systematic investigation of the effect of the physical parameters
has been done yet. Using a linear stability model, we investigate the effect of wave conditions, cross-shore
profile, closure depth, and two perturbation shapes (P1: cross-shore bathymetric profile shift, and P2:
bed level perturbation linearly decreasing offshore). For a P1 perturbation, no instability occurs below an
absolute critical angle 𝜃c0 ≈ 40–50∘. For a P2 perturbation, there is no absolute critical angle: sand waves
can develop also for low-angle waves. In fact, the bathymetric perturbation shape plays a key role in
low-angle wave instability: such instability only develops if the curvature of the depth contours offshore
the breaking zone is larger than the shoreline one. This can occur for the P2 perturbation but not for P1.
The analysis of bathymetric data suggests that both curvature configurations could exist in nature. For both
perturbation types, large wave angle, small wave period, and large closure depth strongly favor instability.
The cross-shore profile has almost no effect with a P1 perturbation, whereas large surf zone slope and
gently sloping shoreface strongly enhance instability under low-angle waves for a P2 perturbation. Finally,
predictive statistical models are set up to identify sites prone to exhibit either a critical angle close to 𝜃c0 or
low-angle wave instability.

1. Introduction

Sandy shorelines often exhibit alongshore undulations at different length scales. Well-known examples are
beach cusps (typical alongshore wavelength, L ∼ 1–50 m) and megacusps (typically L ∼ 100–1000 m), which
are associated with swash zone processes and with surf zone rhythmic bars, respectively [Ribas et al., 2015].
However, there are larger-scale shoreline undulations with L ∼ 1–10 km that are not directly linked to surf
zone rhythmic bars but to similar undulations in the bathymetric contours up to a certain depth in the
shoaling zone [Ruessink and Jeuken, 2002; Davidson-Arnott and van Heyningen, 2003; Medellín et al., 2008;
Ryabchuk et al., 2011; Kaergaard et al., 2012; Idier and Falqués, 2014]. We will call them kilometer-scale shore-
line sand waves or simply shoreline sand waves. Some of these submarine geomorphic features can be forced
by offshore bathymetric anomalies or by antecedent geological constraints [Riggs et al., 1995; Bender and
Dean, 2003; Valvo et al., 2006]. Others, suspected to result from self-organization processes, exhibit an along-
shore migration. This migration is sometimes visually obvious [see, e.g., Davidson-Arnott and van Heyningen,
2003; Kaergaard et al., 2012] or is suggested by the observation of migrating zones of erosion and accretion
[see, e.g., Ruessink and Jeuken, 2002]. Here we focus on self-organized shoreline sand waves.

The self-organized origin of coastal morphological patterns is widely accepted in case of beach cusps and
rhythmic surf zone bars [see, e.g., Coco and Murray, 2007; Ribas et al., 2015]. In case of shoreline sand waves,
it has been hypothesized that they could emerge from a feedback between the morphology and the wave
field involving (i) the wave-driven longshore sediment transport and (ii) the cross-shore sediment exchange
between the surf and shoaling zones that is responsible for the cross-shore equilibrium profile. This feedback
mechanism was proposed by Ashton et al. [2001] and later confirmed and refined in a number of modeling
studies [Falqués and Calvete, 2005; Ashton and Murray, 2006a; van den Berg et al., 2012; Kaergaard and Fredsoe,
2013a]. These studies show that sand waves develop for (deep water) wave angle with respect to shore normal
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larger than a certain threshold, 𝜃c, with 𝜃c ≥ 𝜃c0 and 𝜃c0 ∼ 42∘. In the present paper, 𝜃c will be called the
critical wave angle and 𝜃c0 the absolute critical wangle. However, Idier et al. [2011] found that for particu-
lar bathymetric profiles and wave conditions this positive feedback could also occur for low wave angles.
These instabilities have been called high-angle wave instability (HAWI) and low-angle wave instability (LAWI),
respectively.

These modeling studies have extensively explored the basic instability mechanism, how it depends on the
wave angle, and its consequences on sand wave formation. Some of them have investigated the effect of
wave height, wave period, bathymetric profile, and closure depth on the growth rate (when there was insta-
bility) or wavelength of shoreline instabilities. For instance, after Ashton and Murray [2006b], an increase of
wave height H and period T leads to an increase of the diffusional time scale (∝ H12∕5T 1∕5), i.e., speeds up
the sand waves development in case of high-angle waves. Kaergaard and Fredsoe [2013a, 2013b] investigated
the effect of wave directional spreading, the closure depth Dc, and the shoreface steepness and showed that
sand wave wavelength increases with increasing directional spreading and Dc, while it decreases with increas-
ing shoreface steepness. However, these studies did not investigate the effect of these parameters on the
instability onset. Falqués and Calvete [2005] made a first investigation of the effect of wave conditions on
this onset. They essentially found that instability develops only for large wave angle and is favored by small
H and small T . These authors explored the effect of seven equilibrium profiles, showing that large slope at
the shoreline and large bathymetric gradients on the shoreface favor instability onset. However, this explo-
ration has been done for a limited number of bathymetric profiles, and a single closure depth value was
considered. Idier et al. [2011] made a systematic exploration of the effect of the wave height, the wave direc-
tion, and the surf zone slope: they showed that small wave height and steep surf zones (e.g., a surf zone
slope 𝛽s ≥ 0.04) could lead to instability onset for small angles. Thus, although previous modeling studies
investigated the effect of wave conditions, bathymetric profile, and closure depth, a systematic exploration
of the instability onset for the whole range of realistic values of such parameters (with the same model)
is lacking.

Another important issue is the bathymetric perturbation associated with the shoreline perturbation. It is
indeed essential to capture the feedback between the morphology and the wave field. In morphodynamic
models where the coastline evolves as a result of the changes in bathymetry driven by the sediment transport,
both are linked in a natural way [van den Berg et al., 2012]. However, in models based on the one-line concept,
a link must be explicitly set up between shoreline and bathymetric perturbations. Both from observations
and from physical principles, little is known on the perturbed bathymetry associated with self-organized sand
waves. Therefore, considering that sand waves have a large time scale O(1–10 years) in comparison with the
short-term event scale of storms, for instance, the assumption of a bathymetric perturbation corresponding
to a cross-shore shift of the equilibrium profile following the shoreline displacement has been used [see, e.g.,
Ashton et al., 2001; Ashton and Murray, 2006a]. Some studies [see, e.g., Falqués and Calvete, 2005; Kaergaard and
Fredsoe, 2013a] assumed this profile shift but by imposing a zero perturbation beyond the closure depth Dc.
Falqués and Calvete [2005] considered other perturbations which are exponentially or linearly decreasing
from a maximum value at the shoreline to 0 at Dc. Although some tests looking at different perturbation
shapes have been done [Falqués, 2006; Idier et al., 2011], there has been no systematic investigation of the
effect of the various types of perturbation and no analysis on the characteristics of the associated perturbed
bathymetry and especially on the bathymetric contour curvature, which, as we will show, plays a key role in
the development of shoreline sand wave.

The present paper aims to systematically investigate the conditions which can lead to the emergence of
kilometer-scale shoreline sand waves from instabilities driven by the alongshore sediment transport. The rel-
ative contribution of the physical parameters and the effect of the bathymetric perturbation shape on the
instability onset are investigated, with a particular focus on the role of the bathymetric contour curvature and
on the critical angle𝜃c above which shoreline instability develops. First, the model is presented, the considered
bathymetric perturbation shapes are introduced, and their key properties are analyzed, before describing the
computer grid experiment (section 2). Then results are presented, and the relative contributions of the phys-
ical parameters to the instability onset are analyzed using statistical methods (section 3). Section 4 mainly
discusses the sensitivity of the results to the considered perturbation shapes, the associated shoreline sand
wave wavelengths, the shoreface slope effect, the plausibility of the perturbation shapes, and the probability
to observe the absolute 42∘ critical angle in nature. Conclusions are drawn in section 5.
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2. Model and Methods
2.1. Model Overview
The 1D-morfo linear stability model is used to investigate the conditions under which shoreline sand waves
can emerge from a morphodynamic instability. The model is fully described in Falqués and Calvete [2005], and
only the main concepts are presented here along with some details on the shape of the assumed bathymetric
perturbation (section 2.2).

A small undulation is imposed on an initially rectilinear shoreline being defined as

ys(x, t) = a
2

e𝜎t+iKx + c.c. (1)

with x, y being cartesian coordinates in the alongshore and cross-shore directions (respectively), t the time,
a the amplitude of the shoreline perturbation, K the alongshore wave number (L = 2𝜋∕K), c.c. the complex
conjugate, and 𝜎 = 𝜎r + i𝜎i the complex growth rate (see Figure 1). The model aims at providing 𝜎, from which
the characteristic growth time 𝜎−1

r and the migration celerity V = 𝜎i∕K can be computed. A positive growth
rate 𝜎r means that the shoreline perturbation of wavelength L develops.

Regarding the unperturbed state, the main inputs of the model are the cross-shore bathymetric profile,
zb(y) = −D0(y), and the significant wave height, peak period, and angle at a certain depth: Hs (in meters), Tp

(in seconds), and 𝜃 (in degrees). Regarding the perturbation, the main inputs are its alongshore wavelength, L,
the depth of its offshore reach, Dc, and its cross-shore shape function, f (y), so that f (0) = 1 and f (y ≥ yc) = 0,
where D0(yc) = Dc. Thus, the perturbed bathymetry associated with the sand wave defined in equation (1) is
given by

zb(x, y, t) = −D0(y) +
a
2
𝛽sf (y)e𝜎t+iKx + c.c. (2)

To compute the growth rate, 𝜎, equation (1) is inserted into the one-line sediment conservation equation
[Komar, 1998]:

𝜕ys

𝜕t
= − 1

D̄
𝜕Q
𝜕x

(3)

where D̄ is a mean depth of the morphodynamic active zone and Q is the total alongshore sediment transport
rate. It should be noted that the one-line approximation presupposes that the response of the bathymetry
to shoreline changes is instantaneous. Such assumption is justified only on time scales long enough for the
sediment accumulation or deficit in the surf zone due to gradients in alongshore transport to be spread to the
shoaling zone by the cross-shore exchange until the closure depth Dc. Such approach makes sense only in a
long time scale, not in an event time scale, meaning that the model cannot describe the response to individual
events such as storms. However, storms still play a significant role in the model behavior as they affect the
closure depth Dc but in a statistical way [Hallermeier, 1978].

In equation (3), Q is computed with the Coastal Engineering Research Center (CERC) formula [Komar, 1998]:

Q = 𝜇H5∕2
b sin 2𝛼b (4)

where Hb, 𝛼b are the wave height and wave angle with respect to the local shore normal at breaking and 𝜇 is
an empirical constant. The constant 𝜇 (typical values of ≈ 0.1–0.2 m1∕2 s−1) is proportional to the empirical
parameter K1 of the original CERC formula. It is set up to 𝜇 = 0.15 m1∕2 s−1, which corresponds to K1 = 0.525
[see Idier et al., 2011]. The value of 𝜇 has an effect only on the time scale, such that the sign of the growth rate
𝜎r (i.e., the shoreline instability onset) is insensitive to the magnitude of this parameter.

Computing the left-hand side of equation (3) is straightforward from equation (1), but estimating the
right-hand side requires calculating the perturbed Hb and 𝛼b. This is done by linearizing (with respect to a)
the equations describing refraction and shoaling over the perturbed bathymetry and computing Hb and 𝛼b

numerically.

On many beaches, the long-term averaged equilibrium profile can be represented by a Dean profile [Dean,
1977]. Thus, for the present analysis, we use a shifted Dean-type bathymetric profile, D0(y) = A((y + y0)2∕3 −
y2∕3

0 ), which is characterized by the A coefficient and the y0 parameter that introduces a small shift to avoid an
infinite slope at the shoreline [Falqués and Calvete, 2005]. We compute y0 by prescribing the shoreline slope
𝛽s, so that the bathymetric profile is fully defined by the two parameters A and 𝛽s. Although 𝛽s is (in the model)
the slope right at the shoreline, its real meaning is the mean slope of the area where the littoral drift takes
place (i.e., roughly the surf zone) since 1D-morfo is a one-line model so that this area collapses in a single line.
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Figure 1. (a) Shoreline sand wave example (location: 23.8∘N, 14.5∘E) and (b) model geometry (cross and top view).

2.2. Bathymetric Perturbation: Description and Role of the Associated Curvature
First, the cross-shore shape function (equation (2)) is such that f (0) = 1 and f (y ≥ yc) = 0 (see section 2.1).
Second, as highlighted in section 1, different types of bathymetric perturbation have been used in previ-
ous studies. The investigated perturbation shapes can be split into two classes: one based on profile shift
assumptions and the other based on a prescribed decay of the bed level perturbation. Two examples of bathy-
metric perturbations are provided in Figure 2, for low and high bathymetric gradients profiles. The associated
perturbation shapes can be written as follows:

P1 ∶ f (y) = 1
𝛽s

dD0

dy
(5)

P2 ∶ f (y) = 1 −
y
yc

(6)

The shape function P1 (equation (5)) was defined and used by Falqués and Calvete [2005]. By inserting it in
equation (2) and considering equation (1), it is readily seen that it corresponds to horizontally shifting the pro-
file by the same amount as the shoreline displacement. The shape function P2 is based on a linear decay of
the bed level perturbation (equation (6)). Such perturbation is obtained as a limit of the exponential pertur-
bation used in Falqués and Calvete [2005] in case of very large value of the e-folding distance controlling the
seaward decay, i.e., the distance over which the bed level perturbation decays by a factor of exp(1) ≃ 2.7.

For the high bathymetric gradient, both options show similar (but not exactly equal) horizontal patterns
(Figure 2b), whereas for the low bathymetric gradient, P2 exhibits significant differences with a curvature of
the bathymetric lines which reaches a maximum at a certain distance from the coast (Figure 2a).

We here make a preliminary analysis of this curvature property on shoreline sand wave development.
First, wave refraction by slowly varying depth contours can be represented by wave rays, which are locally
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Figure 2. Basic state (cross-shore), perturbation shapes (cross-shore), and perturbed bed level (plan view) for two
basic profiles: (a) A = 0.047 m1∕3 and (b) A = 0.190 m1∕3, with 𝛽s = 0.02 for both profiles. In addition, the shown
perturbations are such that Dc equals 6 m and 20 m for Figures 2a and 2b, respectively. The corresponding Ω value is
0.043 (Figure 2a) and 0.86 (Figure 2b).

perpendicular to the wave fronts [Mei, 1989]. In case of curvilinear depth contours, the bathymetry can be
locally approximated by circular contours. Then, the following generalized Snell law kr sin 𝜃 = C0 is valid,
where C0 is a constant, k is the wave number, r is the distance to the center of curvature, and 𝜃 is the angle
between wave rays and the local normal to the contours [Mei, 1989]. Then, if 𝜃 ≠ 0 in deep water, it can never
be 0 in shallower water, and, as a result, wave rays approaching with certain angle can never cross the normal
to the bathymetric lines.

One of the main differences between the work of Idier et al. [2011] and other shoreline sand wave studies is
the existence (or not) of a critical angle or, in other words, if LAWI is active or not. Therefore, it is useful to focus
on the case of offshore waves characterized by an incidence angle normal to the coast (𝜃 = 0∘). In this case
the growth of a bump in the shoreline needs a sediment flux, Q, directed toward the tip at both sides of the
bump. If the depth contours are parallel to the shoreline (P1), this means that the wave rays should cross the
normal to the depth contours, which is impossible according to the generalized Snell law. Therefore, LAWI can
never occur if a P1 perturbation is assumed.

The situation is different in case of a P2 perturbation, because the depth contours are no longer parallel
to the shoreline and their undulations could in fact be more pronounced than the shoreline undulation
(see Figure 2a). If this is the case, the rays can cross the normal to the shoreline without crossing the local nor-
mal to the depth contours during refraction. In this case the sediment fluxes converge at the tip so that LAWI

IDIER ET AL. SELF-ORGANIZED SHORELINE SAND WAVES 5
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Figure 3. Critical surf zone slope 𝛽s(Ω = 1.48) for given values of the closure depth Dc and shoreface slope coefficient A.
For given values of Dc and A, a necessary condition for low-angle instabilities is 𝛽s >𝛽s(Ω = 1.48).

could occur. To examine this possibility, we compute the maximum angle (𝜙) between a perturbed bathymet-
ric contour and the mean shoreline. By linearizing with respect to a the real part of equation (2) for t = 0, this
angle is given by

tan𝜙 = a𝛽sK
f (y)

D′
0(y)

(7)

By inserting the Dean-type profile D0(y) and the P2 shape function f (y), one obtains

tan𝜙 = 3a
2

𝛽sK

Ayc
F(y) (8)

where F(y) = (yc − y)(y + y0)1∕3. This function has a maximum at ym = (yc − 3y0)∕4. If ym > 0, there is a region
between the shoreline, y = 0, and a certain offshore location, y1 (> ym), where the curvature of the depth
contours is larger than the curvature of the shoreline. By using equation (27) of Falqués and Calvete [2005] that
gives y0 as a function of A and 𝛽s and after some algebra, one obtains the location ym of maximum bathymetric
curvature:

ym = 1
4

(
Dc

A

)3∕2 ((
1 + 4

9
Ω
)3∕2

− 32
27

Ω3∕2

)
(9)

where, Ω = A3∕Dc𝛽
2
s is a dimensionless parameter. It can be seen that ym > 0 for

Ω = A3

Dc𝛽
2
s

<
9

4 − 210∕3
≃ 1.48 (10)

Thus, equation (10) provides a necessary condition for having LAWI in case of a P2 perturbation and shows
that LAWI should be favored by small A, large Dc, and large 𝛽s. Such result is consistent with the conclusion
of Idier et al. [2011] who found that instabilities can develop in cases of low-angle or shore normal incidence
under the condition of large enough beach slope and large enough cross-shore extension of the bed pertur-
bation (i.e., large enough closure depth in the case of a P2 perturbation). As soon as Ω ≥ 1.48, ym is located at
the shoreline, as for the P1 perturbation. Figure 2 illustrates the effect of an increase of A (i.e., Ω) on the bathy-
metric undulations. For the small A value (Ω = 0.043, Figure 2a), bathymetric undulations are maximum at a
certain distance from the coast, while for large A (Ω = 0.86, Figure 2b), they reach a maximum closer to the
shoreline such that the P2 bathymetric contours are quite similar to the P1 ones. This analytical development
suggests that we should observe similar results (e.g., similar critical wave angle 𝜃c) between the P1 and P2 per-
turbations for large A and small𝛽s. As soon asΩ ≥ 1.48, only HAWI can develop in the case of a P2 perturbation.
To illustrate the physical conditions corresponding to the critical value Ω = 1.48, assuming physical ranges
for Dc and A, we compute the slope 𝛽s(Ω = 1.48) (Figure 3). For given A and Dc values, if 𝛽s is smaller than
𝛽s(Ω = 1.48), then there is no possibility to observe low-angle instability (as ym is located at the shoreline).

IDIER ET AL. SELF-ORGANIZED SHORELINE SAND WAVES 6



Journal of Geophysical Research: Earth Surface 10.1002/2017JF004197

Table 1. Design of Computer Experimentsa

𝜃 (deg) 𝛽s A (m1∕3) Dc (m) Hs (m) Tp (s)

Min 0 0.01 0.05 2.5 0.25 4

Max 85 0.5 0.3 27.5 4 16

Δ 5 0.01 to 0.1 0.05 to 0.1 2.5 0.25 1

N 18 16 4 6 16 13
aThe range (Min to Max), the sampling step (Δ), and the grid size (N) are

provided for each of the following input parameters used for the stability
analysis computations done with the 1D-morfo model: wave angle 𝜃, surf
zone slope 𝛽s, shoreface slope coefficient A, closure depth Dc , wave height
Hs, and wave period Tp.

The Ω condition is necessary but not
sufficient to trigger LAWI: another nec-
essary condition is that y1 > yb (yb is
the position of the unperturbed break-
ing line), i.e., the region where the
curvature of the depth contours is
larger than the curvature of the shore-
line extends offshore the surf zone
such that the refractive bending of the
rays before breaking can be stronger
than the rotation of the shoreline. This
second necessary condition of a nar-
row (enough) breaking zone depends
on both the wave conditions and the A

coefficient. The above analysis suggests that the conditions prone to sand wave formation for any wave angle
(i.e., also for low angles) are large 𝛽s, small A, and large Dc (i.e., small Ω) but also small wave period and wave
height.

2.3. Computer Experiment Setup
To confirm this analysis and investigate the effect of the physical and model parameters on the instability
onset, a systematic analysis is done by performing a model grid experiment in the space (𝜃, 𝛽s,A,Dc,Hs, Tp). A
wide range of physically possible parameter values on sandy coasts is explored (Table 1).

For each configuration (𝜃, 𝛽s,A,Dc,Hs, Tp) we computed the growth rate with the 1D-morfo model for shore-
line perturbations of wavelengths L ranging from 10 m to 50 km, with a step of 100 m (i.e., for 500 different
wavelengths). The shoreline is considered unstable when at least one perturbation within the wavelength
range is amplified (i.e., max(𝜎r(L))> 0). A large enough wavelength range is considered in order to ensure
capturing the unstable wavelengths at their initiation stage. It should be noted that this study focuses on the
conditions leading to shoreline instability, rather than on characteristics of the linearly most amplified modes
such as the wavelength (for further information on these characteristics, see, for instance, the study of Idier
et al. [2011] which covers the entire range of wave incidence angle, but for a limited number of configurations,
and section 4.2 for a statistical analysis of the wavelengths of the linearly most amplified modes obtained
from the grid experiment).

The range of the parameters Hs and Tp are representative of yearly averaged wave conditions encountered
along the world coasts. They are estimated using global wave model results analysis. The wave data come
from a global wave hindcast done using the Climate Forecast System Reanalysis (CFSR) wind data and the
WAVEWATCH III model (spatial resolution of 0.5∘, temporal resolution of 3 h), within the IOWAGA project
[Rascle and Ardhuin, 2013]. This wave hindcast is also used to estimate the range of possible Dc values on a
decade scale by using the Hallermeier formula [Hallermeier, 1981]. The values of A and 𝛽s are selected based
on existing literature and physical considerations. We choose a maximum value of A = 0.3 m1∕3 based on the
Dean [1987] relationship between the fall velocity and A, which for coarse sand of 2 mm gives A = 0.25 m1∕3. As
a comparison, existing shoreline sand wave studies using a Dean profile [Falqués and Calvete, 2005; Kaergaard
and Fredsoe, 2013a, 2013b; Uguccioni et al., 2006; van den Berg et al., 2012; Idier et al., 2011] considered A coeffi-
cients falling in the range 0.08–0.2 m1∕3. For the maximum value of 𝛽s, a value of 0.2 would be justified accord-
ing to the literature [e.g., Wright and Short, 1984]. However, to account for the inherent degree of uncertainty
and some possible extremely steep surf zones, we extend the 𝛽s range to 0.5. In addition, to ensure consider-
ing physical values, three constraints have been taken into account in the computer grid experiment design:
(C1) the critical wave steepness, (C2) the consistency between surf zone slope and shoreface shape, and
(C3) the closure depth versus the wave conditions. Indeed, waves are characterized in nature by a maximum
steepness, such that the wave period Tp cannot be smaller than a given value for a given wave height Hs.
The Pierson and Moskowitz [1964] criterion is used to estimate the minimum wave period versus the wave
height (constraint C1). Regarding the bathymetric profile, the mean surf zone slope 𝛽s cannot be smaller than
the mean shoreface slope Dc∕yc (constraint C2, see Figure 1). This leads to the constraint that the minimum
value of 𝛽s depends on A and on Dc. Finally, the closure depth Dc (obtained considering the wave conditions
corresponding to the 12 h exceeding wave height over a given time span; see Hallermeier [1981]), by defi-
nition, cannot be smaller than the closure depth that we would obtain using mean wave climate conditions
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Figure 4. Number of simulations per pair of values (𝜃, Xi). In each panel, the total is equal to 1,004,652.

(constraint C3). These constraints imply that the grid experiment is not uniform; i.e., the number of simulations
per bin is not constant (as shown by the nonuniform colors in each panel of Figure 4). For instance, focusing
on the distributions of the computations versus the slope 𝛽s (Figure 4, first panel), the number of simulations
per bin (nb) is not constant (nb is constant for 𝛽s ≥ 0.04 but not for smaller 𝛽s values). This is due to the C2
constraint. The grid experiment data set represents 1,004,652 (i.e., about 1 million) simulations per bathymet-
ric perturbation type. Each run costs 1.2 s of computation on one CPU (central processing unit), such that the
computational effort, in CPU unit, represents 14 days for each perturbation type. The computations have been
done on 40 CPUs.

3. Results
3.1. General Trends
For each configuration (𝛽s,A,Dc,Hs, Tp, 𝜃), the model provides the maximum growth rate (max(𝜎r(L))) for the
explored range of wavelength (10 m to 50 km), i.e., a single deterministic value. If this value is positive, then
there is instability (shoreline sand waves develop).

Analyzing results in the six-dimension space of the input parameters (𝛽s,A,Dc,Hs, Tp, 𝜃) raises the issue of the
visualization for high-dimension problems. To tackle this issue, we analyze the results in terms of probabil-
ity of shoreline sand wave development in two-dimension spaces. This is done by defining the probability
ps(𝜃, Xi) (with i = 1 to 5 and X = (𝛽s,A,Dc,Hs, Tp)) as the ratio of the number of experiments for which insta-
bility develops for a given bin (𝜃, Xi) to the total number of experiments done in this bin. For instance, the
probability ps(𝜃 = 85∘, Dc = 25 m) is equal to the number of cases where instability develops in the space
(𝛽s,A,Dc = 25 m, Hs, Tp, 𝜃 = 85∘) divided by the total number of runs done in this space (see Figure 5a3).

As highlighted in section 2.3, the grid experiment is not uniform (Figure 4). To better highlight the general
trend avoiding side effect due to the nonuniformity, in addition to the “all grid” data set, we consider two
uniform subsets. Both subsets include the entire range of wave angle and shoreface slope but exclude the
surf zone slopes smaller than 0.04. Subset 1 includes the entire range of wave height Hs but includes only the
largest values of Dc (10–27.5 m) and Tp (8–16 s), while subset 2 includes the entire range of Dc and Tp but
includes only the lowest wave height values (0.25–1 m).

Figure 5 shows the probability of shoreline sand wave development ps(𝜃, Xi) for the P1 and P2 perturbations.
First, although the perturbation shapes P1 (profile shift) and P2 (linear bed level decay) may be relatively
similar in some cases (see, e.g., Figure 2b), the probability patterns strongly differ when comparing Figures 5a
and 5b. The most crucial difference is that for P1, there is an (absolute) critical angle 𝜃c0 (∼42.5∘ ± 2.5∘), below
which ps = 0 whatever the physical parameters, whereas for P2, even though ps increases with the angle,
there is no critical angle. Thirty-three percent of the runs done over the entire space (𝜃, 𝛽s,A,Dc,Hs, Tp) exhibit
the same results (instability/stability) for both perturbation shapes, i.e., max(𝜎r(L))> 0 or max(𝜎r(L)) ≤ 0.

In addition to the effect of the perturbation shape, Figure 5 allows analyzing the dependency of the insta-
bility onset on the physical parameters. To avoid misinterpretation of the results, we now consider the ps

values obtained for the uniform subsets 1 and 2. Focusing on perturbation shape P1 in areas of potential
instability (i.e., where ps > 0), the probabilities are overall smaller than for the P2 shape (Figures 5a and 5b).
The probability tends to 1 only for oblique waves characterized by small wave periods, meaning that in such
case, there would be instability whatever the values of the other parameters. The probability ps increases
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Figure 5. Probability ps(𝜃, Xi) of shoreline sand wave development for the (a) P1 and (b) P2 perturbation shapes, and for the “all grid” experiment (AG), subset 1
(S1), and subset 2 (S2). ps(𝜃, Xi) is equal to ni∕nt with ni the number of simulations for which instability develops and nt the total number of simulations, ni and nt
being computed over the experiment subset (𝜃, Xi). For instance, ps(𝜃 = 30∘ , 𝛽s = 0.2) = ni∕nt with ni and nt computed over the experiment subset
(𝛽s = 0.2,A,Dc,Hs, Tp, 𝜃 = 30∘). On the “AG” plots, some discontinuities can be observed. They are related with the nonuniformity of the grid experiment
(see section 2.3). For instance, the discontinuity observed in Figure 5b1 is due to the constraint C2, while the discontinuities observed in Figure 5b4 are due to
both constraints C1 and C3.

with Dc, while there is a slight influence of A and no influence of the surf zone slope 𝛽s and wave height Hs.
Figure 5 suggests the following ranking (from dominant to minor) of the parameters contributions: 𝜃 and Tp,
Dc, A. The null effect of 𝛽s can be readily seen by replacing the P1 perturbation shape function f (y) provided
by equation (5) in the model equation (2), as 𝛽s cancels in this case.

Regarding the P2 perturbation, 𝛽s and A have a positive and negative effect, respectively (Figures 5b1 and
5b2). Thus, the two parameters characterizing the bathymetric profile play opposite roles. Indeed, small A
values lead to stronger wave refraction, whereas large surf zone slope 𝛽s leads to a smaller surf zone width.
According to Idier et al. [2011] who assumed perturbations similar to the P2 type, large refraction and small
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surf zone width favor shoreline sand wave development, especially for low incidence angle. The negative
effect of A for the P2 perturbation will be further discussed in section 4.3. Regarding the closure depth Dc, it
has a positive effect (Figure 5b3), while the wave period Tp and height Hs have a negative effect on shoreline
instability development (Figures 5b4 and 5b5). In terms of relative influence of the parameters, the variations
of probability induced by each parameter suggest that 𝛽s, 𝜃, A, and Dc have significant effects, while Hs and
Tp have minor effects on the instability onset. These results overall confirm the findings of previous work. For
example, Falqués and Calvete [2005] found, for the same perturbation type, that increasing the wave steepness
or decreasing wave height tend to strengthen instability. Idier et al. [2011] showed that increasing 𝛽s or Dc

favors instability. Both papers provided an explanation of the related physical mechanisms. But what was not
clearly identified before is the relative effect of the bathymetric profile (𝛽s and A) and the relative contribution
of the other parameters.

The negative (A) and positive effects (𝛽s and Dc) drawn from the numerical computations are consistent with
the preliminary analysis done in section 2.2 which highlights the necessary condition for instability in case
of normal wave incidence Ω = A3∕Dc𝛽

2
s < 1.48 (i.e., a curvature of the bathymetric contours larger than

the one at the shoreline). In addition, the analysis of the grid experiment results shows that the Ω values of
the unstable configurations range between 0 and 0.3 and that the critical value of Ω below which instability
occurs also depends on Dc, Hs, Tp (see Figure S1 in supporting information). This is consistent with our conclu-
sion of section 2.2: instability should be triggered only when the bathymetric curvature offshore the breaking
line is larger than the shoreline one (i.e., under the necessary condition that Ω is smaller than 1.48 and a nar-
row enough breaking zone). Considering the entire range of wave direction, only 32 configurations over the
829,921 instability cases exhibit an Ω value larger than 1.48. These 32 configurations exhibit a wave incidence
angle 𝜃 ≥ 60∘.

To summarize, the perturbation shape and the related bathymetric curvature play a key role, while instability
onset is favored by large wave incidence (𝜃), large closure depth (Dc), and small wave period (Tp), whatever
the perturbation type.

3.2. Relative Influence of the Parameters Versus Wave Angle
The effect of the physical parameters depends on the wave angle (as shown in Figure 5). To better assess this
dependence, we compute the ratio RXi

(𝜃) = (ps(𝜃,max(Xi)) + 1)∕(ps(𝜃,min(Xi)) + 1), for each parameter Xi ,
with X = (𝛽s,A,Dc,Hs, Tp). RXi

(𝜃)> 1 (RXi
(𝜃) < 1) means that for a given wave angle, an increase of Xi leads

to an increase (decrease) of the probability of shoreline sand wave development. RXi
(𝜃) = 1 means that for

this 𝜃 value the Xi parameter has no effect. A constant RXi
(𝜃) means that the effect of the parameter Xi is

independent of 𝜃. Thus, if RXi
(𝜃) goes close to 1 for increasing 𝜃, this means that the effect of the parameter

Xi is decreasing with 𝜃. RXi
(𝜃) is computed for the entire grid experiment (set called “all grid”) but also for

subsets 1 and 2.

First, we focus on the results obtained with a P2-type perturbation for subset 1. In agreement with the results
of section 3.1 (Figures 5b-S1), 𝛽s and A have the largest effects (positive for 𝛽s and negative for A), while Dc,
Hs, and Tp have smaller effects (Figure 6b, bottom). Hs has a negative effect whose amplitude decreases with
𝜃. In addition, the effects of the cross-shore profile (𝛽s and A) and the closure depth Dc are enhanced by
low wave angles. Finally, the amplitude of the contribution of Tp increases with increasing wave angle until
𝜃 = 60∘ and then decreases, whereas the amplitude of the other contributions mainly decreases with the
wave angle. In terms of relative contribution, it should be recalled that the above analysis is done for subset
1 where the smallest values of Dc and Tp of the grid experiment are not included (see section 3.1). Selecting
subset 2, which includes these small values but excludes the large values of Hs, leads to similar curves but with
larger RDc

values and larger variations of RDc
with 𝜃. These results are confirmed when taking into account the

entire grid experiment (Figure 6b, top): in case of a P2 perturbation, the dominant parameters appear to be
𝛽s, A, and Dc.

The P1 perturbation exhibits a different behavior (Figure 6a, top). First, consistently with the existence of an
absolute critical angle 40∘ < 𝜃c0 < 45∘ observed in section 3.1, RXi

= 1 until 𝜃 = 40∘. Focusing on subsets 1
and 2, Figure 6a (bottom) also shows that A has a positive effect (contrary to P2) which increases with 𝜃; Dc

has a significant positive effect (as P2) mainly increasing with 𝜃 (contrary to P2); Tp has a significant negative
effect (as P2), whose amplitude increases with 𝜃 (as P2 for 𝜃 ≤ 60∘); and 𝛽s and Hs have no effect (contrary
to P2). The more striking difference with the case of a P2 perturbation is the positive effect of A. This will be
discussed in section 4.3.
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Figure 6. Probability Ratio RXi
versus wave angle 𝜃 considering each parameter Xi , and for perturbation shapes (a) P1

and (b) P2. (top row) RXi
is computed using the entire grid experiment results (“All grid”). (bottom row) RXi

is computed
using subsets 1 and 2 (described in section 2.3) such that within each subset, for any parameter Xi , exactly the same
combinations of parameters Xj are considered with j ≠ i. This figure shows how the effect of each parameter varies with
the wave incidence angle: a decrease (increase) in |RXi

− 1| means that the effect of the Xi parameter decreases
(increases) with the angle.

3.3. Critical Wave Angles 𝜽c and 𝜽c0

The variations of the ps = 0 contours with the parameters Xi (see, e.g., subsets 1 and 2 in Figure 5) indicate
that for a P1 perturbation, changes in 𝛽s and Hs do not affect the critical angle 𝜃c, while the increase of Dc, of
Tp, and to a smaller extent of A leads to a decrease of 𝜃c. For the P2 perturbation, the changes in ps indicate
that 𝜃c decreases with 𝛽s and Dc, while it increases with A and Hs and hardly changes with Tp.

As highlighted above, in the P1 case, whatever the parameters (𝛽s,A,Dc,Hs, Tp), there is an absolute critical
wave angle over the entire experiment (𝜃c0) of 42.5∘ ± 2.5∘. Then, what are the conditions prone for exhibiting
a critical angle equal to the absolute one (𝜃c = 𝜃c0) in case of a P1 perturbation? Contrary to the P1 case, in the
P2 case, there is no absolute critical angle and shoreline sand waves can develop for low angles under certain
conditions. Then, what are the conditions prone for exhibiting no critical angle (i.e., that instability develops
for 𝜃 = 0∘) in case of P2 perturbation?

To tackle these questions and quantify the relative importance of the parameters Xi , first, we compute the
critical angle 𝜃c for every combination (𝛽s,A,Dc,Hs, Tp) (for an example, see Figure S2 in the supporting infor-
mation). Cases where the critical wave angles are strictly equal for perturbations P1 and P2 represent about
8.32% of the experiment, in the space (𝛽s,A,Dc,Hs, Tp). Then, we use a logistic regression method [see Hothorn
and Everitt, 2014, chap. 7], focusing on the probability p that 𝜃c = 𝜃c0 in the P1 case and that 𝜃c does not exist
in the P2 case. The Logit function is defined as Logit(p) = log(p∕(1 − p)) = log(odds ratio) and Logit(p) is
approximated by a linear combination of the parameters, i.e., in the present case (𝛽s,A,Dc,Hs, Tp), such that

Logit(p) = a0 + a𝛽s
𝛽s + aAA + aDc

Dc + aHs
Hs + aTp

Tp (11)

The obtained logistic regression model exhibits a good fit with the data (R2 ∼89% and ∼75%, for the P1
and P2 perturbations, respectively) and a good prediction skill (with an area under the receiver operating
characteristic (ROC) curve of 99.6% and 96.3%, respectively; see Metz [1978] for details on the ROC analysis
principle).
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Table 2. Regression Coefficients of the Logistic Regression in Dimensional and
Normalized (*) Space of the Parameters Xi , for the Perturbation Shapes P1 (Profile Shift)
and P2 (Linear Decay of Bed Level Perturbation)a

f Coefficient Value a0 a𝛽s
aA aDc

aHs
aTp

P1 Dimensional 9.35 NS 14.4 0.589 NS −3.59

Normalized −2.8 NS 3.6 14.8 NS −43.1

P3 Dimensional −0.32 36.02 −29.46 0.25 −0.62 NS

Normalized −0.94 17.65 −7.37 6.40 −2.32 NS
aThe normalized space corresponds to Xi parameters scaled between 0 and 1. “NS”

refers to nonsignificant effect.

First, the logistic regression coefficients (Table 2) show that p(𝜃c = 𝜃c0, X) only depends on A, Dc, and Tp in
case of a P1 perturbation (consistently with the results of the previous subsections). Figure 7a shows, in the
space (A,Dc, Tp), the restricted number (8% of the explored combinations (𝛽s,A,Dc,Hs, Tp)) of cases where
𝜃c = 𝜃c0. In case of a P2 perturbation, the regression coefficients (Table 2) show that p(𝜃c does not exist, X)
only depends on 𝛽s, A, Dc, and Hs (indeed, Tp has a nonsignificant effect as indicated by the high p value of the
Wald statistics). The distribution of the configurations of the grid experiment leading to the nonexistence of
𝜃c0 in the space (𝛽s,A,Dc,Hs) shows that the number of such configurations is high (Figure 7b, in black).

Second, the sign of the coefficients (Table 2) indicate that for P1, A and Dc increase the odds ratio for observing
the absolute critical angle 𝜃c0, while Tp decreases it. For P2, 𝛽s and Dc increase the odds ratio for not observing
any critical angle 𝜃c, whereas A and Hs decrease these odds, consistently with the results of section 3.2.

Figure 7. (a) For the P1 perturbation, grid experiment points (in red) corresponding to the configurations (A,Dc, Tp)
leading to 𝜃c = 𝜃c0. (b1 and b2) For the P2 perturbation, grid experiment points (in blue) corresponding to the
configurations (𝛽s,A,Dc,Hs) leading to the absence of any 𝜃c .
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Figure 8. Dc at a probability p(𝜃c = 𝜃c0) = 0.95 (equation (12)) plotted in the parameter space (Tp,A). The red and black
lines indicate the 10 m and 30 m isovalue contours of Dc , respectively.

Third, one interest of the statistical analysis is that the obtained normalized coefficients (Table 2) allow to rank
the effect of the parameters. In case of the P1 perturbation, the relative effect of Tp is larger than the one of Dc,
which is much larger than the one of A. From the largest to the smallest, we can also rank the parameters for
the case of a P2 perturbation: 𝛽s, A, Dc, Hs. However, this should not be interpreted as an absolute result as
it is sensitive to the range of Xi (Table 1). The dimensional coefficients can be used to compute the dimen-
sionless ones when different parameter ranges are considered and thus to rank the contributions for the
considered ranges.

Finally, this logistic approach allows to estimate the probability p, using the relationship p = 1∕(1 + e−Logit(p))
and equation (11) to compute Logit(p). Then, in a given site, if the parameters (i.e., the vector X) are known,
the probability p can be estimated using the dimensional regression coefficients and thus without requiring
any additional model run (see section 4.5 for an example).

For instance, for a P1 perturbation, considering different ranges for 𝛽s ([0.02,…,0.1] or [0.02,…,0.2]), A
([0.05,…,0.1] or [0.05,…,0.2] m1∕3), Dc ([5,…,10] or [5,…,20] m) and assuming Hs ∈ [0.5,…,3] m and
Tp ∈ [5,…,15] s, we find that p(𝜃c = 𝜃c0) is most of the time equal to 0, confirming the low probability to
observe 𝜃c = 𝜃c0. Equation (11) can also be used to identify the sites prone to 𝜃c = 𝜃c0 by estimating one of
the three significant parameters (e.g., Dc) as a function of the two others (e.g., A and Tp) for a given value of
the probability p:

Dc = c0 + cpLogit(p(𝜃c = 𝜃c0)) + cTp
Tp + cAA (12)

with c0 = −a0∕aDc
, cp = −1∕aDc

, cTp
= −aTp

∕aDc
, cA = −aA∕aDc

, such that c0 = −15.848 m, cp = 1.695 m,
cTp

= 6.085 m/s, and cA = −24.407 m2∕3. A is 1 to 2 orders of magnitude smaller than Tp, while cTp
and cA

have similar orders of magnitude. This illustrates the minor effect of A, compared to Tp, as shown in Table 2.
Equation (12) is used to identify the combinations prone to exhibit the absolute critical angle, for instance,
with a probability p(𝜃c = 𝜃c0) = 0.95 (Figure 8). Taking into account that large closure depths are not
expected to be much larger than about 30 m, sites where the absolute critical angle is likely to be observed
should be characterized by wave period smaller than 7–8 s (as shown in Figure 8) and even smaller
(e.g., ∼4 s) when considering smaller closure depths (e.g., ∼10 m). Thus, if we assume that in nature, per-
turbations could be of type P1, there should be a low probability to observe the absolute critical angle 𝜃c0

and the sites prone to exhibit it would be those characterized by a small wave period and/or a large closure
depth. Using equation (12) with a large p value could help identifying such sites and, thus, if 𝜃 ≥ 𝜃c0, sites
prone to HAWI.

In the case of P2 perturbation, considering the same parameter ranges as in the previous paragraph, the
probability p that there is no critical angle appears to be quite large, almost never equal to 0. Depending on the
considered ranges, each of the parameters Hs, Dc, A, or 𝛽s may be the dominant parameter. If we assume that
in nature, perturbations could be of type P2, then there should be a strong probability to observe shoreline
sand waves.
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4. Discussion
4.1. Sensitivity to the Bathymetric Perturbation
The instability onset has been investigated for two bathymetric perturbation shapes. The sensitivity of the
results to this choice is investigated considering the following additional perturbation shapes:

P3 ∶ f (y) = 1
𝛽s

dD0

dy

(
1 −

D0

Dc

)
(13)

P4 ∶ f (y) = 1 if y ≤ yb, f (y) = 1 −
y − yb

yc − yb
otherwise (14)

First, as stated in [Falqués and Calvete, 2005], strictly speaking, the profile shift perturbation P1 is incompatible
with the concept of closure depth since in this case there is a bathymetric perturbation which decays offshore
but which extends up to infinity, i.e., beyond the closure depth. As a consequence, the profile shift perturba-
tion has the drawback to present a discontinuity at yc. Even if the jump in bed level at Dc is small, the depth
contours are all parallel to the undulating shoreline until Dc and then suddenly straight, which is unrealistic.
To address these drawbacks, a second shape function (P3) is considered, characterized by a gradual decrease
in the perturbation of the depth contours to straight lines at Dc (equation (13)). Second, the 1D-morfo model
does not resolve the surf zone, which, in one-line models, collapses into the “shoreline.” For this reason, a per-
turbation that starts to decay already in the surf zone seems questionable. Following this idea, a fourth shape
function (P4) is defined such that P4 is equal to 1 in the surf zone and decreases linearly from 1 at the breaking
point to 0 at D = Dc (equation (14)), as in [Idier et al., 2011].

The probability of instability onset (ps) obtained with the P3 and P4 perturbations (Figure S3 in the supporting
information) exhibits similar patterns as those obtained with the P1 and P2 perturbations, respectively: in
case of a P3 perturbation, an absolute critical angle 𝜃c0 = 47.5∘ ± 2.5∘ is found, whereas for a P4 perturbation,
instability cases occur for the entire range of 𝜃 values. This suggests that there are two types of bathymetric
perturbations: those where the curvature of the bathymetric contours is always smaller than (or equal to)
the shoreline curvature (P1, P3) and those where the curvature can be larger than the shoreline curvature
(P2, P4). The first type leads to the existence of an absolute critical angle 𝜃c0, while the second type leads to the
absence of such absolute critical angle. However, P3 leads to much smaller probabilities (2 to 3 times smaller)
than P1 but also to a smaller range of parameters leading to instability. Regarding P4, the quantitative results
are quite close to the ones obtained considering a P2 perturbation: the areas of instability are the same and
the probabilities are only slightly larger, with differences smaller than 10%.

4.2. Shoreline Sand Wave Wavelength
The modeling results highlight the key role of the bathymetric perturbation shape on the instability onset.
In addition to this information, the 1D-morfo model provides the wavelength of the linearly most amplified
mode (LMA) for each investigated configuration (see section 2.3). For both perturbation shapes P1 and P2, the
LMA modes exhibit wavelengths ranging from few hundred meters to several tens of kilometers (Figure 9),
i.e., correspond to kilometer-scale shoreline sand waves. The main difference is that for a P1 perturbation the
quartiles of the wavelengths of the grid experiment decrease with the wave incidence angle, while for a P2
perturbation these statistical moments first increase (until 𝜃 ≃ 50∘) and then decrease with 𝜃. In addition,
the overall LMA wavelengths are larger for a P1 perturbation, while for very oblique waves (𝜃 ≥ 70∘), the
wavelengths are of the same order of magnitude (1 ± 0.5 km) for both perturbation shapes. Thus, the bathy-
metric perturbation shape plays a key role not only on the instability onset but also on the wavelength of the
associated linearly most amplified mode.

4.3. Shoreface Slope Effect
As shown in section 3.1, the overall shoreface slope, characterized by A, has a positive effect on the instability
in case of P1 and negative in case of P2. The reasons for this can be investigated by looking at the expres-
sion of the complex growth rate provided by Idier et al. [2011, equation (7)]. By examining the e2 and the
e3 terms, related to the perturbation in wave angle and in wave height, respectively, it turns out that only
e2 = 2𝜃′bi∕Ka, where 𝜃′bi is the imaginary part of the perturbed wave angle at breaking, exhibits opposite
trends when increasing A (we here adapted the expression to the notation and the definition of the ampli-
tude, a∕2, in the present paper). It increases (decreases) with A in case of a P1 (P2) perturbation. This term
is related to refraction and is always positive as a result of wave rays tending to rotate in the same direction
as the bathymetric contours. Thus, for both perturbation shapes, the behavior with respect to A is related to
wave refraction.
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Figure 9. Boxplot of wavelength L of the linearly most amplified modes, for the entire grid experiment, i.e., 55,814 runs
per wave direction 𝜃: median (circle), 0.25 quantile, and 0.75 quantile (vertical bar), and values above the 0.75 and below
the 0.25 quantiles (vertical line).

The influence of A and of the shape of the bathymetric perturbation on wave refraction (here on the 𝜃′i vari-
able) can be understood by focusing on normal wave incidence and looking at equation (A3) in Falqués and
Calvete [2005]. Taking the water depth, D = D0(y), as independent variable, this equation can be cast into

d
dD

(k0(D)𝜃′i (D)) = −K
Φ(D)
𝛽(D)

ĥ(D) (15)

where 𝛽(D) = dD0(y)∕dy, k0(D) is the wave number of the water waves, Φ(D) collects various functions of D
defined from linear water wave theory, and ĥ(D) = a𝛽sf (D)∕2. Notice that this equation is linear, with homo-
geneous boundary condition, 𝜃′i (Dc) = 0. Therefore, if the forcing term is multiplied by a constant, the solution
𝜃′i (D) will be the same but multiplied by this constant.

In case of a P2 perturbation, ĥ(D) does not depend on A since it cancels out from the ratio y∕yc in equation (6).
On the other hand, 𝛽(D) is proportional to A3∕2 for each D. Then, the dependence on A is only present in the
forcing term through 𝛽(D) and therefore, the solution 𝜃′i (D) decreases by increasing A, and so 𝜃′bi(D) = 𝜃′i (Db).
Therefore, the instability is favored by decreasing A.

In case of a P1 perturbation, ĥ(D) = a𝛽(D)∕2, so that the forcing term does not depend on A with the result
that 𝜃′bi(D) does not depend on A either. Thus, the instability should be insensitive to A. In the case of oblique
wave incidence, another term appears in equation (A3) of Falqués and Calvete [2005]. The analysis in this case is
not simple, but it turns out that the additional term makes 𝜃′bi(D) increase with A, i.e., that instability is favored
by large A.

4.4. Bed Perturbation in Nature?
To find out whether these types of perturbation shape do represent sand wave bathymetry, we should
analyze bathymetric data in coastal areas exhibiting shoreline sand waves. However, we face two diffi-
culties: (1) detailed observations of self-organized sand waves are scarce, and this is even worse regard-
ing the bathymetry associated with the sand waves and (2) when sand waves are observable they can
hardly be considered in the early stage of formation for linear stability analysis to be applicable. As a first
attempt to characterize the curvature of perturbation shape from real cases in nature, we analyze three
shoreline sand wave sites where processed bathymetric data are available (Figure 10): Holmslands Tange
[Kaergaard et al., 2012] and the distal end and tow of the Long Point spit of Lake Erie [Davidson-Arnott and
van Heyningen, 2003].
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Figure 10. Bed level contours, bathymetric curvature indicators (C̄, Ĉ), and distribution of horizontal slope of depth contours (C(D, x) = |dy∕dx|) versus the water
depth for (a) the Holmslands site, (b) the distal end, and (c) the toe of the Lake Erie Long Point spit. Depth contours are plotted every meter. The black contours
are used in the curvature analysis. For the Holmsland Tange site, the depth contours have been digitized in Figure 12 of Kaergaard et al. [2012]. For the Long
Point sites, the contours come from the NOAA database. The colored surface has been obtained by interpolation (natural neighbor method) of the plotted
bathymetric contours. In the white area, the natural neighbor provides no bathymetric value. C(D, x) is computed along each bathymetric contour of depth D

and every 5 m in the x direction. C̄(D) is the mean of C(D, x) for the depth D, i.e., C̄(D) = (1∕nx)
nx∑

i=1
C(D, xi). Ĉ(D) is obtained by linear regression of C(D, x).

The Holmslands Tange site is characterized by sand waves of small amplitude (a∕L = 0.008, with L = 5 km).
We use the filtered isobathymetric lines digitized from [Kaergaard et al., 2012] (Figure 12 herein, where the
bars have been removed). The depth contours stop at 5 m depth (Figure 10a). However, Kaergaard et al. [2012]
and Falqués et al. [2017] suggest that Dc could be substantially larger than 5 m.

The Long Point sand waves are characterized by larger relative amplitudes [a∕L = 0.1, with L ∼ 1 km,
after Davidson-Arnott and van Heyningen, 2003]. We use the bathymetric contours provided by NOAA (data
available at http://www.ngdc.noaa.gov/mgg/greatlakes/erie.html) (Figures 10b and 10c). These contours do
not include the shoreline D = 0 m. Thus, the analysis focuses on the depth contours D = 1 m to D = Dc, with
Dc ∼ 11 m (see section 4.5 for the estimation of Dc).

To avoid any effect of small features (e.g., sandbars) or larger features (e.g., the spit related curvature), small
and large wavelengths are filtered out from the bathymetric contours (for Holmslands Tange, L < 200 m and
L> 7000 m are filtered out; for the Long Point site, L < 200 m and L> 2000 m are filtered out). Then, we
compute C(D, x) = |dy∕dx| along each depth contour. As the depth contours are undulating, for a given
wavelength, the mean (C̄(D)) of C(D, x) and the linear regression prediction Ĉ(D) (obtained by minimizing
the least mean square error over the entire data set) can be considered as indicators of the maximum curva-
ture associated with a water depth D. Both indicators are increasing (decreasing) in the offshore direction for
Holmslands Tange (Long Point sites) (Figure 10).

Thus, the observed bathymetry at Holmslands Tange supports the essential curvature characteristics of a per-
turbation of type P2, i.e., a maximum curvature of the bathymetric lines away from the shoreline. This suggests
that the type of bathymetric perturbation observed on this site is prone to instability even for wave incidence
angles smaller than ≃42∘. At Long Point, the observed bathymetry would support the curvature characteris-
tics of the P1 or P3 type, suggesting that this site is not prone to LAWI but prone to the existence of an absolute
critical angle. This is one reason for observing 𝜃c ≃ 42∘ on this site (as in Ashton and Murray [2006b]).
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In this analysis, we assumed that (1) in the chosen wavelength range (e.g., 200 m to 2000 m for the Long Point
sites), all the dominant bed forms are related to sand waves, (2) the shoreline sand waves have a small enough
amplitude for assuming that sand waves are at their initiation stage (this could be the case for Holmslands
with a∕L = 0.008, while this is not the case at Long Point spit with a∕L ∼ 0.1). Both assumptions are debatable.
However, it is still remarkable to observe that both cases could happen in shoreline sand waves area: increase
or decrease of depth contour curvature in the offshore direction. Further systematic investigations on other
sand wave sites are necessary to confirm this preliminary analysis, but they require detailed bathymetric data
which are still lacking in such areas.

As a preliminary analysis, it seems that several factors could favor bathymetric anomalies supporting the
essential curvature characteristics of a perturbation of type P2. First, it is worthwhile to notice that offshore
tidal and current sand waves have been observed off the Holmsland coast, at depths ranging from 8 to 18 m
[Anthony and Leth, 2002]. Second, after the study of Limber et al. [2017] on the Rodanthe shoreline (U.S.), shoals
could trigger the development of shoreline sand wave under waves of low incidence angle. On the Rodanthe
site, as a consequence of the shoal, the depth contours reach a maximum curvature larger than the one of
the shoreline. This effect of shoal on shoreline sand wave development under low incidence angle is consis-
tent with the theoretical work of Idier et al. [2011]. Thus, there are indications that offshore morphodynamic
and/or geological features could favor perturbations of type P2. However, further investigations are required
to better understand which conditions favor which perturbation.

4.5. Critical Angle for HAWI
All modeling studies [Ashton et al., 2001; Falqués and Calvete, 2005; Ashton and Murray, 2006a; van den Berg
et al., 2012; Kaergaard and Fredsoe, 2013a] with the exception of Idier et al. [2011] have found the existence of
a critical angle for HAWI, and, indeed, observations suggest that high-angle wave climates correlate with sand
waves existence [Ashton et al., 2001; Ashton and Murray, 2006b; Medellín et al., 2009; Idier and Falqués, 2014;
Kaergaard and Fredsoe, 2013b]. However, to our best knowledge, the value of the critical angle has only been
tested in the spit of Long Point (Lake Erie, Canada) by Ashton and Murray [2006b]. This site is characterized
by a coastal stretch without sand waves in between two stretches with sand waves. The overall shoreline ori-
entation is changing such that under the same deep water wave angles, the incidence angles relative to the
local shoreline exhibit spatial differences of about 25∘. In addition, section 4.4 suggests that the bathymet-
ric perturbation is prone to the existence of an absolute critical angle. Ashton and Murray [2006b] defined a
dimensionless “instability index,” Γ, which assesses the competition between diffusion and antidiffusion for
a wave climate. This index depends on deep water wave height, period, and direction and is based on the
underlying assumption that the bathymetric contours are parallel to the shoreline, i.e., our P1 perturbation.
When using the CERC formula, this index is antidiffusive (Γ < 0) if the weighted proportion of angles 𝜃 larger
than 42∘ is higher than those smaller than 42∘. In other words, it is based on the absolute critical wave angle
𝜃c0 but not on the critical wave angle which also depends on Dc, A, or Tp (in case of a P1 perturbation). Ashton
and Murray [2006b] computed the local instability index along the spit, and they found a good correlation
with the existence or not of sand waves, i.e., sand waves show up when Γ < 0 and they are not present when
Γ> 0. This is a clear indication that sand waves form on that coast whenever deep water waves approach at
angles greater than about 42∘ with respect to the shoreline.

Such value nearly equals the absolute critical angle 𝜃c0 that we obtain for the P1 perturbation and using also
the CERC formula. To assess the probability that the critical wave angle for Long Point spit coincides with
the absolute critical angle, we use the probability function p(𝜃c = 𝜃c0) introduced in section 3.3. This func-
tion depends on A, Dc, and Tp. To estimate Dc and Tp, we use the wave hindcast [Hubert, 1992] of the Wave
Information Studies (WIS) of the U.S. Army Corps of Engineers (USACE) (data available at http://wis.usace.army.
mil/). The analysis of the time series of hourly wave conditions at the station 92193 (42.48∘N, −80.32∘E, 20 m
depth) over the period 1979–2014 provides a mean peak period of 3.7 s and a closure depth of 11.2 m using
the formula of Hallermeier [1978]. It should be recalled that Lake Erie is very elongated such that the fetch
at Long Point spit can be larger than 200 km. This explains the large obtained closure depth, together with
a small mean peak wave period. For the estimation of A, we use the same bathymetric data as in section 4.4
and found values in the range 0.06–0.08 m1∕3. With these values, a high probability, p(𝜃c = 𝜃c0) = 0.97, is
obtained, suggesting 𝜃c ≈ 𝜃c0 on Long Point spit. The wave climate being not steady, p(𝜃 = 𝜃c0) is com-
puted also at each time step of the wave time series, and a probability p(𝜃 = 𝜃c0)> 0.9 during 70% of
the time is obtained (meaning that 𝜃c ≈ 𝜃c0 most of the time on Long Point spit). This would explain why
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Ashton and Murray [2006b] found a good spatial correlation between their instability index and the sand wave
occurrence on this site.

In general, our grid experiment and the analysis of the results (see section 3.3) show that the probability to be
in a configuration such that 𝜃c = 𝜃c0 is small when considering the range of all possible parameter values and
that observing 𝜃c0 (e.g., with a 0.95 probability, Figure 8) requires very specific conditions (small wave period
and large closure depth). The initial purpose of the instability index developed by Ashton and Murray [2006a]
was to provide general guidance rather than exact conditions for predicting shoreline stability/instability.
However, the above analysis highlights that under certain conditions, this index should be more than a general
guide: when negative, the index appears as a necessary (but not sufficient) condition for shoreline instability
but converge to sufficient condition for small wave period and/or large closure depth. This comment holds
for a bathymetric perturbation corresponding to a profile shift (P1).

5. Conclusions

A systematic model exploration of the relative contribution of wave conditions, shoreface shape, and clo-
sure depth to self-organized shoreline sand wave generation is presented. Since the analysis is based on the
one-line approximation, a shape for the bathymetry associated with the sand waves must be defined and
the sensitivity to this shape is investigated. Two perturbation shapes are considered: one defined from a shift
in the cross-shore equilibrium bathymetric profile and the other one defined from a linear seaward decay in
bed level perturbation. Importantly, these definitions imply that the curvature of the depth contours can-
not be larger than the one of the shoreline in the former case, whereas it can be larger in the latter case if
A3∕Dc𝛽

2
s < 1.48 (assuming a Dean profile), i.e., if the shoreface slope is small enough and the closure depth

and surf zone large enough.

As a consequence of these curvature properties, the critical wave angle for instability is highly sensitive
to the shape of the perturbation. For a given profile shift perturbation, there is an absolute critical angle,
𝜃c0 ≈ 40–50∘, below which there is no instability for any condition (HAWI). Observing the absolute critical
angle should be exceptional: the Long Point site is one example illustrating the required specific conditions
(high-angle waves, small wave period, and large closure depth). A bed level perturbation linearly decreasing
in the offshore direction does not exhibit any absolute critical angle, such that, depending on the physical
parameters, the critical angle can span the whole range 0 ≤ 𝜃c ≤ 90∘ and instability can develop also for rel-
atively low angles (LAWI). This is related to the amplitude of the bathymetric undulations being larger than
that of the shoreline. The effect of two other perturbation shapes on the instability onset has also been ana-
lyzed, confirming that the bathymetric perturbation and the related curvature of the depth contours play a
key role in the instability onset, especially for low angles. In fact, the bed perturbation could be classified into
two types: those with depth contour curvatures smaller than or equal to the shoreline one and those with
depth contour curvature that can be larger than the shoreline one offshore the breaking zone. The analysis
of three shoreline sand wave sites suggests that both could exist in nature. This key effect, for the first time
identified, explains some differences in the results of previous studies.

The main results of the exploration of the physical parameters are summarized in Table 3. Interestingly, some
properties of shoreline instability are insensitive to the shape of the bathymetric perturbation: (1) the wave
angle𝜃 is the dominant parameter for the instability onset, (2) large Dc favors instability and reduces the critical
wave angle 𝜃c, (3) the effect of Tp mainly increases with 𝜃, (4) small Tp favors instability and decreases 𝜃c , and (5)
Dc and Tp have the largest effect on 𝜃c value. The most striking difference is the effect of the cross-shore profile
which depends on the perturbation shape: while perturbations of type “profile shift” show little sensitivity to
it, bed level perturbations linearly decreasing are highly sensitive to surf zone mean slope and bathymetric
gradient, with large 𝛽s and small A favoring instability.

The analysis presented in this present paper provide quantitative elements which could help to identify sites
prone to shoreline sand waves (at least in areas of low variability in the wave climate). In any case and thinking
on future field work, the coasts the most prone to shoreline sand waves are those characterized by high-angle
waves, large closure depth, and small wave periods. For relatively low angles, additional conditions for insta-
bility are a small enough bathymetric gradient of the shoreface and a large enough surf zone slope. For field
studies, as the bathymetric anomaly associated with the sand waves has a significant effect on the critical
angle, it will be essential to analyze the existing bathymetric data (or undertake surveys), from the coast to
the closure depth.
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Table 3. Results Synthesis for the P1 and P2 Perturbation Shapes in Terms
of Probability of Shoreline Development (ps), Relative Effect of the Physical
Parameters Versus the Wave Angle (RX ), Probability That the Critical Angle
Is Either Equal to the Absolute Critical Angle p(𝜃c = 𝜃c0) or Does Not Exist
(p(𝜃c∄)), and the Critical Angle Itselfa

f Indicator 𝜃 𝛽s A Dc Hs Tp

P1 ps +b = + +b = −b

RX N.C. | → | | ↗ | | ↗ | | → | | ↗ |
p(𝜃c = 𝜃c0) N.C. = + +b = −b

𝜃c N.C. = − −b = +b

P2 ps +b +b − +b − −
RX N.C. | ↘ | | ↘ | | ↘ | | ↘ | |↗||↘|

p(𝜃c∄) N.C. +b −b +b − =
𝜃c N.C. − + −b + +b

aThe trend of these five types of results are given versus the wave angle
𝜃, the surf zone slope 𝛽s, the shoreface slope coefficient A, the closure
depth Dc , the wave height Hs, and wave period Tp. The plus, equal, and
minus symbols mean positive effect, no effect, and negative effect, respec-
tively. N.C., “Not Concerned.” The underlined cells are cells showing similar
conclusion for both the P1 and P2 perturbations.

bDominant parameters.

Notation

a Shoreline sand wave amplitude (m)
A Shoreface slope coefficient (m1∕3)
𝛼b Wave angle at breaking (deg)
𝛽s Surf zone slope
C Horizontal slope of depth contours
D Water depth (m)

D0 Water depth of the unperturbed bathymetry (m)
Dc Closure depth (m)

f Shape function
𝜙 Maximum angle between the perturbed bathymetric contour and the mean shoreline (deg)
H Wave height (m)

Hb Wave height at breaking (m)
Hs Significant wave height (m)
K Shoreline sand wave wave number (m−1)
L Shoreline sand wave wavelength (m)
p Probability

ps Ratio between a number of simulations for which instability develops and the total number of simulations,
for a given set of parameters

Q Longshore sediment flux (m3 s−1)
RXi

Ratio (ps(max(Xi), 𝜃) + 1)∕(ps(min(Xi), 𝜃) + 1)
𝜎 Growth rate (s−1)
T Wave period (s)

Tp Peak wave period (s)
𝜃 Wave incidence angle (deg)
𝜃c Critical wave incidence angle below which no shoreline sand wave develops (deg)
𝜃c0 Absolute critical wave incidence angle below which no shoreline sand wave develops whatever the

physical parameters (deg)
yb Cross-shore wave breaking position (m)
yc Cross-shore position such that D(yc) = Dc (m)
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ym Cross-shore location of the maximum bathymetric curvature (m)
ys Cross-shore position of the shoreline (m)
zb Seabed level (m)
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