

Development potential for onshore CO2 geological storage in France

Isabelle Czernichowski-Lauriol, Pascal Audigane, Anne-Gaëlle Bader, Didier Bonijoly, André Burnol, Sébastien Dupraz, Hubert Fabriol, Frédérick Gal, Marie Gastine, Sandrine Grataloup, et al.

▶ To cite this version:

Isabelle Czernichowski-Lauriol, Pascal Audigane, Anne-Gaëlle Bader, Didier Bonijoly, André Burnol, et al.. Development potential for onshore CO2 geological storage in France. 14th Annual Meeting Asia Oceania Geosciences Society (AOGS 2017), Aug 2017, Singapour, Singapore., 2017. hal-01525067

HAL Id: hal-01525067 https://brgm.hal.science/hal-01525067v1

Submitted on 19 May 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Development potential for onshore CO₂ geological storage in France

Isabelle Czernichowski-Lauriol¹, Pascal Audigane¹, Anne-Gaelle Bader¹, Didier Bonijoly¹, André Burnol¹, Louis De Lary De Latour¹, Sébastien Dupraz¹, Hubert Fabriol¹, Frédérick Gal¹, Marie Gastine^{1,2}, Sandrine Grataloup¹, Christophe Kervévan¹, Thomas Le Guénan¹, Annick Loschetter¹; Karine Michel¹, Rowena Stead¹

BRGM, French Geological Survey, 3 av. Claude Guillemin, BP 36009, 45060 Orléans Cedex 2, France
GEODENERGIES, 3 av. Claude Guillemin, BP 36009, 45060 Orléans Cedex 2, France

In order to keep global temperature rise well below 2°C as set out in the Paris Agreement, efforts must accelerate to enable the further development and deployment of CO₂ Capture and Storage. CCS is one of the 7 challenges of Mission Innovation, one of the 10 key actions of the European Strategic Energy Technology Plan and, in France, is part of the National Strategy for Energy Research.

According to previous studies, France would need to store 1Gt of CO₂ over the 2020-2050 period. Studies of the Paris, Aquitaine and South-East basins have shown that they offer sufficient CO₂ storage potential.

In the Paris basin, several structures with storage capacities of 50-100 Mt CO_2 were assessed through dynamic calculations. In the Aquitaine basin, a CCS pilot operated by TOTAL injected 51 Kt of CO_2 into a depleted gas field. In the South-East basin, natural CO_2 occurrences have been studied and a feasibility study for CCUS in the industrial area of Fos-Marseille was performed.

Complementary to the 'classic' way of storing CO_2 in supercritical form, an innovative ' CO_2 -Dissolved' concept of storing CO_2 in dissolved form while extracting geothermal heat is being developed. It is well suited for small industrial CO_2 emitters and local solutions.

France is thus investigating three complementary approaches: large storage offshore in the North Sea or Mediterranean Sea (ca. 10 Mt/a), medium storage onshore (ca. 1 Mt/a), and small decentralised storage combined with heat recovery (ca. 80-150 kt/a).

BRGM is deeply committed to advancing research for enabling CO₂ storage and is currently 1) preparing the ground for an industrial CO₂-Dissolved pilot, 2) coordinating the H2020 ENOS research project 'Enabling Onshore CO₂ Storage in Europe', 3) coordinating the French node of the ECCSEL European Research Infrastructure, and 4) carrying out upstream research on site characterization, monitoring, modelling and risk assessment.