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Landslide susceptibility assessment by EPBM 
(Expert Physically Based Model): strategy of 
calibration in complex environment 

Yannick Thiery, Rosalie Vandromme, Olivier Maquaire, Séverine Bernardie 

Abstract 

Physically based model may be used to assess landslide susceptibility over large areas. 
However, majority of case studies are applied for complex phenomena for a one event, a 
little site or over large areas when landslides have simple geometry and environmental 
conditions are homogeneous. Thus, assessing landslide prone areas for different type of 
landslides with several geometries and for large areas needs some specific strategies. This 
work presents an application of a specific procedure based on a physically based model for 
one complex area with several landslide types. By different steps, it is demonstrated that it 
is possible to improve susceptibility map and to take into account different slope failure 
with different depths. This first attempt encourages us to continue on this path in order to 
improve the existing susceptibility maps in this area. 
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Introduction 

Landslide hazard assessment (LHA) estimates the 
landslide probability occurrence on a territory within a 
reference period for a given intensity (Corominas et al., 
2014). It is deduced from information on: 

(i) The landslide susceptibility expressed as the 
potential initiation of phenomena based on the spatial 
correlation between landslide initiation areas observed 
in a territory, the predisposing terrain factors (slope, 
land-use, surficial deposits, etc.), and the occurrence of 
triggering factors (rainfalls, earthquakes, etc.) for 
different slope failure surface (Corominas et al., 2014).  

(ii) The landslide intensity which integrates the 
propagation mode depending of the mechanic laws 
governing runout area (Corominas et al., 2014). 

Hence, LHA answers to three questions: where 
(location), when (timing) and at which intensity and 
magnitude (size, propagation and velocity) landslides 
occur. 

In order to answer to the two first questions and 
assess landslide susceptibility, several approaches can 
be led: (i) inventory-based methods (IBMs), (ii) 
knowledge-driven methods (KDMs), (iii) data-driven 
methods (DDMs) and (iv) physically based methods 
(PBMs; Corominas et al., 2014). PBMs are rely on the 
modelling of slope failure processes and generally 
combine hydrogeological model and slope stability 
model. The methods are applied on complex and deep 
seated phenomena on little sites (e.g.. for one event) at 
large scale (< 1: 5 000) or over large areas for landslides 

with simple geometry (i.e. shallow translational 
landslides, Salciarini et al., 2008) and for  homogeneous 
environmental conditions (geological, 
geomorphological, etc., Godt et al., 2008). 

Thus, it appears difficult to analyze jointly both 
shallow and deep seated landslide over large and 
complex areas because (i) the predisposing and 
triggering factors are different and (ii) there are large 
uncertainty and variability on geotechnical parameters. 
Recently some studies attempted to solve these 
drawbacks either by combining different spatial 
approaches (DDMs with KDMs or KDMs with PBMs; 
Thiery et al., 2007; 2014), or by creating physical based 
models trying to consider different landslides’ 
geometries and the environmental heterogeneity of 
study sites (Jia et al., 2012, Mergili et al., 2014a, 2014b). 
Nevertheless, large simplifications about hydrological 
conditions or surficial deposits are made (Jia et al., 
2012). Hence, the implementation of a landslide 
susceptibility analysis for a complex and heterogeneous 
environment over large areas faces two major 
challenges: (i) taking into account different slope 
failure (in term of shape and depth); (ii) taking into 
account the uncertainty of the geotechnical parameters 
due to inherent spatial and temporal variability and 
which affect the final computed FoS (i.e. 
overestimation or under estimation of results; Mergili 
et al., 2014a; 2014b). 

In this work, we present the results of a strategy 
which aim at taking into account the two challenges 
mentioned above. The strategy is based on an expert 
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physically based model (EPBM) able to support (i) a 
complex geomorphology, (ii) several type of surficial 
formations and geology, (iii) uncertainties of the 
environment and (iv) geotechnical parameters 
heterogeneity. A specific calibration was performed by 

using different slope failure geometries (type, size, 
depth) in order to test each hypothesis and obtain a 
robust approach. The model is implemented in a GIS 
environment. 

 

 

Fig. 1 Location of the Barcelonnette Basin, calibration area and location of active landslides (Thiery et al., 2014). 

 

The paper is organized as follows: in section 2, the 
EPBM and its concepts are introduced. They are 
followed by the presentation of the rational and specific 
strategy applied to calibrate and validate results. The 
section 3 focuses on the calibration area representative 
of the total area, and the data used for this research. In 
the section 4, the results are presented.  The section 5 
discusses the results and the model performance. 
Finally we conclude (Section 6) by the future 
improvements of the model. At each step, statistical 
tests and expert exchanges allow validating the results.  

The model and the specific strategy are applied on a 
study site located in the French South Alps where 
numerous different landslide types were observed and 
analyzed. 

Geomorphological settings 

The Barcelonnette Basin (Fig. 1) 

Located in the middle section of the Ubaye Valley, 
the Barcelonnette Basin extends from 1100 to 3000 m 
a.s.l. and is representative of climatic, lithological, 
geomorphological conditions observed in the South 
French Alps. The climate is controlled by mountain and 
Mediterranean influences with (i) high inter-annual 
rainfall variability (734 ± 400mm over the period 1928-
2013) marked by intense and violent summer 
rainstorms (> 50 mm h-1); (ii) significant daily 
temperature range (> 20°C) and (iii) between 120 and 

130 days of freezing per year. Because the valley is 
oriented east-west meso-climatic difference on a small 
scale is current (Maquaire et al., 2003). 

Authentic geological window developed in the 
autochthonous Callovo-Oxfordian black marls, the site, 
over an area of about 300 km2, is surrounded by the 
two allochtonous Eocene crystalline sheet thrusts of 
Parpaillon and Autapie (Maquaire et al., 2003). This 
particular geomorphological context is the 
consequence of glaciers’ action completing by torrential 
erosion which have carved out a large basin of 13 000 ha 
in soft rocks (i.e. black marls; Thiery et al, 2007). 
Constituted by limestones, sandstones, flyschs and 
gypsum, the sheet thrusts shape the high crests and the 
steepest slopes ranging from 2200 and 3100m in 
elevation. Below them, the upper slopes (from 1800 to 
2200m) are covered by scree deposits with a thickness 
from 2 to 10 m. The lower slopes present irregular 
topography with (i) in one hand steep slopes (> 35°) 
carved in black marls outcrops and commonly gullied 
in badlands and (ii) in other hand more gentle slopes 
(5-35°) with planar or hummocky topography. Majority 
of them are composed by moraine deposits (thickness 
from 2 to 20m) overlaying black-marls and are 
generally covered by forests and/or natural grasslands. 
They are affected by large relict landslides, latent and 
active deep seated landslides (i.e complex and 
rotational landslides), active shallow landslides (i.e 
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translational and rotational landslides) and/or surficial 
soil creep. Most of the active landslides are located 
along streams or on gentle slopes where the moraine 
deposits or the contact moraine deposits/black marls 
creates a hydrological discontinuity favorable to failure.  

The test site (calibration area) for this research is 
located on the north facing hillslope of the basin 
(Fig. 1). It extends over an area of about 11 km

2
 and is 

representative of the various predisposing factors 
(lithology, tectonics, climate, and land use) favorable to 
slope instabilities (Thiery et al., 2014). 

Landslides (Fig. 2) 

The characteristics and the activity of these 
instabilities have been studied during the last twenty 
years by several research teams (Maquaire et al., 2003; 
Malet et al., 2005; Thiery et al., 2007; 
Schlögel et al., 2015). On the basis of different 
information source (Thiery et al., 2007; Schlögel et al., 
2015) and a diachronic air photograph interpretation 
between 1974 and 2004 coupling with field 
observations, a landslide inventory was compiled at 
1:10,000 scale. The boundaries of landslides are 
digitized in two zones: (i) the landslide triggering zone 
(LTZ) and (ii) the landslide accumulation zone (LAZ, 
Fig. 2). The geometrical (perimeter, area, and maximal 
length and width) and geomorphological 
characteristics (typology, state of activity, considered 
magnitude, morphometric characteristics) are stored in 
a GIS database. 

 

Fig. 2 Example of different landslide type. A. Shallow 
translational landslide; depth: maximum 3m. Rotational 
landslide; depth: maximum 6m. C. Complex landside 
with rotational failure; depth: maximum 10m. 

Six types of landslides have been defined according 
to the typology of Dikau et al. (1996). (i) Shallow 
translational slides are relatively small and mainly 
located on steep slopes along streams. They occur on 
the weathered bedrock or at the contact moraines 
deposits/bedrock. (ii) Rotational slides are located 

along streams but more on gentle slopes than the 
shallow translational slides. They occur principally in 
moraine deposits sometimes at the contact between 
surficial deposits and bedrock. (iii) Translational slides 
are located more on gentle slopes at the contact with 
the bedrock, and their sizes are very variable. (iv) 
Complex landslides are a combination of rotational 
landslide (triggering area) and translational landslide 
(accumulation area). They occur in majority in thick 
moraine deposits and sometimes in the weathered 
marls which cover it. (v) Earthflows occur in weathered 
black marls, they are the most active landslide in the 
basin. (vi) Rock-block-slides which occur in black marls 
principally in the bad-lands areas. For this study only 
translational shallow and rotational landslides (Fig. 4) 
are taking into account.  

Model, strategy and materials 

ALICE® model: concept 

ALICE® (Assessment of Landslide Induced by 
Climatic Events) was developed by the French 
Geological Survey (BRGM) to support landslide 
susceptibility mapping for areas ranging from slopes to 
department (Vandromme et al. 2014, Sedan et al. 2013). 
Developed in a GIS environment (MAPINFO®), it is a 
PBM able to support different landslides’ geometries, 
the spatial and inherent heterogeneity of the surficial 
deposits and geology and their geotechnical 
parameters, different triggering factors (i.e. water and 
seismicity) and land use change.  

The geometry of the studied area is entered as a 
dataset in raster format: topography, geometry of 
geological and/or surficial deposits layers represented 
by a DTM (i.e. basal surface of the layer). 
Geomechanical characteristics: cohesion (c’), friction 

angle (’) and volumetric weight (γ’), are associated to 
each geologic and surficial deposits layers. These 
parameters can be implemented by a constant value or 
by probabilistic distributions in order to take into 
account environmental variability and uncertainties. 
The probability distributions can be defined by the 
expert and the help of literature if no survey or 
geotechnical test can be made.  

Additionally, the tool allows defining the geometry 
of failure areas (i.e length, depth, and type -). The 
triggering factors taking into account are (i) the ground 
water level (GWL), or (ii) seismic acceleration. GWL 
can be implemented empirically in the formations 
considered as favorable to instabilities by increasing the 
saturation level form 0 (dry conditions) to 1 (saturated 
conditions) or with the help of a hydrogeological model 
taking into account the effective rainfall. 

Based on a Limit Equilibrium Method (LEM), the 
slope stability calculation is used to solve the forces 
applied on sliding bodies along a potential slip surface 
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for an area. To calculate the FoS, the Morgenstern and 
Price method (1967) was chosen because (i) it satisfies 
the equilibrium conditions and involves the least 
numerical difficulty; (ii) any slip surface geometry can 
be calculated; (iii) it takes into account interslice forces 
across the sliding mass. The iteration process is based 
on the Zhu (2005) concept which reduced the number 
of iteration about the interslice function. The 
hypothetical failure surface is divided into n vertical 
slice. Each slice I is subject to the normal shear 
interslices forces, to the shear resistance: 

  iiiiiiiiii bcbuWR  sectanseccos ''    [1] 

and the moving forces: 

iii WT sin     [2] 

With Wi: weight; i: base inclination; ui: average water 

pressure; bi: width of the slice; ’i: effective friction 
angle; c’i: cohesion along the base; and Ri: sum of the 
shear resistances, except the normal shear interslice 
forces; Ti: component tending to cause instability.  

The fraction of the contrasting forces acting on the 
failure is expressed by the factor of safety (FoS). The 
slope stability assessment is performed on regularly 
spaced 2D profiles automatically produced on the 
whole area and based on maximum gradient lines from 
the topographic raster. 

Once all parameters (geotechnical, landslide, GWL) 
implemented in the model, it performs a random 
selection of each geotechnical value (if they are defined 
by probabilistic distributions) by Monte Carlo 
simulation. Thus, several sliding surface are computed 
along each profile for each cell. The final result is either 
a FoS (if no distributions were defined) or a probability 
of failure (the lowest probability calculated by cell is 
retained) for each cell. 

Strategy of calibration and validation (Fig. 3) 

During the last decade ALICE® was used by the 
BRGM in French mountain areas (Baills et al., 2012; 
Vandromme et al., 2014; Bernardie et al., 2017) and 
West French Indies (Sedan et al., 2013, Thiery et al., 
2015). Nevertheless, for each case study, large 
discrepancies about the calibration strategy were 
observed. As a result, the BRGM has engaged an action 
to develop a calibration method based on different 
steps. The method should be applicable for different 
environment but also for other PBMs similar to ALICE®. 

The strategy is made: (i) to obtain representative 
failure slope type taking into account shallow and deep-
seated landslides, (ii) to reduce the uncertainty linked 
to the environment, (iii) to obtain reliable results 
representative of field observations. To achieve these 
objectives, it is split in three main steps (Fig. 3):  

 
Fig. 3 Strategy used to calibrate ALICE®. 

(i) The first step consists in designing a new 
geotechnical model for the surficial formations (i.e. 
moraines deposits, colluviums, weathered marls, etc…) 
and their depths. 

(ii) The second step aims to introduce each 
variable in the model and the associated value. 

(iii) The third step identifies the different 
parameters to introduce in the model (i.e. optimal 
number and size of slices, geotechnical parameters, 
probability distributions and minimum number of 
random sampling by Monte-Carlo simulation). It is 
split in 3 sub-steps. At each sub-step the best 
parameters retained previously are introduced in the 
followed sub-step (Fig. 2). The landslide size is defined 
according to previous work by Thiery et al. (2007, 2014).  



Proceedings of World Landslide Forum 4, 29 May - 2 June 2017, Ljubljana 

 5 

The validation of each step is performed by 
calculation of (i) the relative error which compares 
landslide inventory depletion areas and the highest 
probabilities calculated and (ii) the calculation of 
success rate (SR) plotting the cumulative percentage of 
observed landslides against the percentage of areas 
classified as positive (with high probability of failure, 
Chung and Fabbri, 2003). The area under curve (AUC) 
is used to assess the success accuracy; more the AUC is 
near 1, more the degree of fit of the model is considered 
as good. 

Materials 

The variables used in this work can be grouped in 

five classes: lithological map (LM), surficial formations 

map (SFM), topography (DTM), surficial formation 

thickness (DTM 1), weathered lithology thickness 

(DTM 2). The SFM is obtained by the segmentation of 

the landscape in homogeneous geomorphological 

macroareas closely associating facies and shape (Thiery 

et al., 2007).  

 

Fig.4 Conceptual scheme of the layer concept by DTMs 
and examples of triangular distribution for moraine 
deposits and weathered marls. 

The DTM is obtained by the kriging of a network of 

triplets issued from the digitization of elevation lines 

from 1:25,000 scale topographic maps enlarged by the 

French Geographical Institute at 1: 10,000 scale.  

The DTM 1 was represented initially by the 

subtraction of the surficial formations thickness class 

(SFT) with DTM (Thiery et al., 2007). In so far as (i) SFT 

oversimplified the different thicknesses of each surficial 

deposit and (ii) it is a key parameter which control 

instabilities (Jia et al., 2012), a new SFT map is derived 

from direct thickness observations of outcrops along 

streams and slopes (min = 0.5 m; max = 20 m). Each 

observation was located by DGPS. The different 

formations are closely in relation with slope degrees 

value (e.g. moraine deposits are located on gentle 

slopes, colluviums are observed on steep slopes, Thiery, 

2007). Thus an exponential regression function 

obtained by plotting thicknesses and slope was 

performed for each surficial type in order to obtain a 

spatial prediction and continuous values. 

The DTM 2 is obtained by subtraction of a constant 

value to DTM1 (i.e. 3m; value generally observed on the 

field area – Thiery et al. 2007). Under it, the substratum 

is considered as continuous and infinite. Fig. 4 shows 

an overview of the layer concept used in ALICE®. 

Results 

Step 1 

The exponential regression function is created to 

predict the spatial distribution of the surficial deposits 

thickness (i.e. moraine deposit, moraine colluviums, 

colluviums, torrential formations). Sample points 

introduced to calculate the regression function were 

used to evaluate the accuracy of DTM1. Three indices 

(Mean absolute error MAE, Root Mean Square Error 

RMSE, Mean Absolute Percentage Error MAPE) are 

calculated from observed value and predicted value.  

Table 1 Statistical accuracy indices for the new DTM1. 
MAE = Mean Absolute Error. RMSE = Root Mean 
Square Error. MAPE = Mean Absolute Percentage Error. 
R

2
 = Determination Coefficient. 

MAE RMSE MAPE R2 

1.63 2.18 16.1% 0.67 

Statistical results are presented in the Tab. 3. The 

calculated values for MAE and RMSE respectively are 

low to moderate but they are acceptable from a 

statistical perspective. It should be noted that, the 

determination coefficient (R
2
) of predicted surface for 

surficial deposits is 0,67, which means that 67% of the 

variation in predicted thickness can be explained by the 

exponential function. As mention Jia et al. (2012), it is 

impossible to explain 100% of the variation of surficial 

deposits thicknesses with few variables because other 

factors influence the spatial distribution such as 

deglaciation, vegetation, etc.. Finally, the value of R
2
 is 

in the range of admitted value for different surficial 

deposits properties (i.e. 0.39-0.82; Florinsky et al., 

2002). Once the new DTM 1 calculated, it is introduced 

in the model with DTM, DTM2 to represent the 

different surficial and geological layers. 

Step 2 
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The step 2 consists in using the different geotechnical 

value for each surficial deposits and geology of the 

study area. The values were derived from the literature 

and different studies.  

Step 3 

Fig. 4, Tab. 2 and Tab 3. display the different 

parameters used to calibrate the model. The influence 

of GWL is not performed, its value is constant and 

equal to 1 (saturated material).  

Table 2 Parameters used in ALICE® for each type of 
landslide. R = Rotational landslide. ST = Shallow 
Translational landslide. 

Landslide 
type 

Size of the 
LTZ (m) 

Depth of the 
failure (m) 

Size of slices 
tested (m) 

R 
 
 

30 0-3 0.5; 1; 2; 5; 10 

60 3-6 0.5; 1; 2; 5; 10 

120 6-10 0.5; 1; 2; 5; 10 

ST 30 0-3 0.5; 1; 2; 5; 10 

The first sub-step aims to identify the number and 
the size of slices following the landslide type and size. 
Indeed, this parameter is often neglected and the 
different models use a default value. Nevertheless as 
mentions Pilot (1966), not take into account this 
influence can biased the final results. Large 
discrepancies between simulations with slices of 1 m 
and slices of 10 m were noticed, especially on the 
accuracy test. The different simulations for the two 
landslide types show a step of the model performance 
for slice with a size equal to 1m. This value is retained 
for other simulations. 

The second sub-step should identify the best scarp 
angle for shallow translational landslide because 
following this angle, the internal forces for each slice 
are not the same and the instable volume will be 
modified. Hence, series of simulations were carried out 
with scarp angles of 10°, 30°, 45°, 60° and 90°. Following 
the angle value, models overestimate or underestimate 
results, especially for low scarp angles (> 10°) and very 
high scarp angles (>45°). Best results were obtained 
with an angle of 45°; this value is retained for the sub-
step 3. 

The third sub-step consists in reducing the 
uncertainty linked to the geotechnical characteristics of 
an environment. This step has to define the minimum 
number of random sampling to obtain stable results. 
Indeed, a small number of random sampling with the 
same probability distribution can give different results 
(Thiery et al., 2015). To overcome this point, several 
series of simulation on geotechnical parameters with a 
range from 10 to 20,000 random sampling by Monte-
Carlo simulation were engaged. 21 maps were produced 
for each landslide type.  The different accuracy tests 

(Tab. 3) show a first step around 1,000 random 
sampling and a second step around 10,000 random 
sampling. In general, from 10,000 random sampling the 
discrepancies between results are below 1%, except for 
the shallow translational landslides for which largest 
differences are observed especially on areas where slope 
angles change abruptly. Thereby, 10,000 random 
sampling are considered as a minimum to obtain robust 
probabilities for rotational landslides (shallow and 
deep). For translational landslides 20,000 random 
sampling seems the minimum. 

Table 3 Accuracy tests for some simulations and some 
parameters. R = rotational landslide with depth 
between 3 and 6m. ST = Shallow translational landslide. 

 = relative error. Sr = success rate. - = no calculations. 

Sub-step R ST 
& parameters  Sr  Sr 

01- Slice (m) 
 
 

0.5 0.18 0.85 0.21 0.82 

1 0.18 0.84 0.22 0.82 

2 0.20 0.84 0.23 0.81 

5 0.21 0.75 0.25 0.75 

10 0.05 0.52 0.07 0.62 

02-Scarp angle 
(°) 

10 - - 0.98 0.00 

30 - - 0.09 0.82 

45 - - 0.09 0.81 

90 - - 0.03 0.51 

03-Monte-Carlo 
simulation (n) 

100 0.32 0.75 0.22 0.68 

1.000 0.21 0.82 0.19 0.75 

10.000 0.16 0.84 0.17 0.81 

20.000 0.15 0.84 0.16 0.82 

Discussion 

We presented an Expert Physically Based Model 
based on Morgenstern and Price (1967) equations 
solved with Zhu et al. (2005) algorithm. The model is 
able to take into account several parameters and 
uncertainty of environment. Furthermore, it is able to 
model different slope failure type, which is a key point 
in the landslide susceptibility and hazard assessment 
topic. The model was used for different mountain areas 
recently but with oversimplifications of variables and 
hypotheses. 

Thus, some parameters, to obtain a calibration 
strategy for complex mountainous environments, were 
iteratively modified for different slope failure type (i.e. 
translational, rotational) with different depth (i.e. 
shallow and deep) and size. The different parameters 
tested were: the number of slices, the scarp angle for 
translational landslide, and the number of random 
sampling by Monte-Carlo simulation for geotechnical 
characteristics. 

As expected, it is possible to improve the results 
obtain by Baills et al. (2012). Indeed, their results for the 
same GWL, showed a high probability of landslides 
mostly in badlands carved in weathered black marls 
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and moderate probabilities were located in the moraine 
deposits. This was due to:  

(i) An oversimplification of the geotechnical 
model used. The introduction of a new geotechnical 
model greatly improved results;  

(ii) The use of only one type of phenomenon with 
average characteristics. Obviously, this study proves 
that a particular attention have to be paid to the 
different landslides’ parameters to include in the 
model. By a sensitivity analysis, it is possible to obtain 
an error quantification  and to reduce them; 

(iii) The minimum number of random sampling 
was not tested. Nevertheless, this sensitivity analysis is 
indispensable to obtain reliable results. The Monte-
Carlo theory is based on the law of large numbers and 
because a wide range of geotechnical value is used, it is 
essential to proceed to a large number of random 
sampling to minimize uncertainties. 

Concerning the calibration strategy some 
parameters were not tested yet, as: 

(i) The size of the calculation cells. This work was 
recently hired by Thiery et al. (2015) on small sites but 
need to be improved; 

(ii) The influence of the type of distribution. For 
this work triangular distributions were used, which 
means that at the apex of the distribution there is more 
likelihood that these values were chosen. Compare 
different distributions when significant uncertainty 
exists appears as essential in order to not influence the 
results; 

(iii) The real influence of triggering factors such as 
GWL or seismicity. For this research, simulations were 
performed with a maximum GWL (= 1) in this sense the 
surficial materials are considered fully saturated. This 
consideration does not correspond to reality. A 
sensitivity analysis on the influence of GWL has to 
engaged, as the influence of seismicity on landslides, 
especially for the Barcelonnette area highly subjects to 
earthquakes. 
 

 
Fig. 5. Examples of different results with different number of random sampling by Monte-Carlo simulations for 
rotational landslides with a maximum depth of 6 m. A. Number of random Sampling (NRS) = 100. B. Number of 
Random Sampling (NRS) = 1.000. C. Number of Random Sampling (NRS) = 10.000. D. Number of Random Sampling 
(NRS) = 20.000. E. Differences between D and A. F Difference between D and B. G. Differences between D and C. 

Conclusion and perspectives 

A spatialized physically based model implemented 
in a GIS environment was tested in the Barcelonnette 
area. Several parameters were tested in order to take 
into account the heterogeneity and the complexity of 
this site. The sensitivity analysis on the calibration area 
is still in course and some parameters have to be tested 
to reinforce the reliability of the results. These first 
results encourage us to continue on this path in order 
to improve the existing susceptibility maps in this area 

and once all parameters calibrated, the model will be 
applied on the whole area (i.e. 400 km

2
).  

Finally, considerable efforts are needed (i) to 
improve the model, especially to assess uncertainties of 
computed probabilities; (ii) to integrate future changes 
as precipitation (following some climatic scenarii) and 
landuse like the studies in Cauterets located in 
Pyrenean mountains (Bernardie et al. 2017); (iii) to take 
into account runout area in order to assess landslide 
hazard for several landslide types.  
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