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Introduction

Exposed prograde, retrograde, telescoped, and cyclical metasomatic reaction paths of mineralized iron oxide and alkali-calcic alteration systems in the Great Bear magmatic zone (Canada)-as well as those from southeast Missouri (USA), Romanet Horst (Canada), and Central Mineral Belt (Canada)-provide evidences of genetic links among iron oxide copper-gold ± Co-and Bi-rich variants (IOCG), iron oxide-apatite ± REE-rich variants (IOA), albitite-hosted U or Au-Co-U, skarn, and polymetallic vein deposits. Recognition of such linkages emphasizes the potential in Laurentia to host additional deposits including high-grade metamorphic terranes (e.g., Kwyjibo, Bondy; [START_REF] Corriveau | Prospective metallogenic settings of the Grenville Province[END_REF]; Fig. 1). However, most prospective terranes of Laurentia remain under-explored, under-mapped, and under-valued, as are those of many terranes worldwide, (e.g., Bamble and Kangdian districts; [START_REF] Engvik | Sequence and timing of mineral replacement reactions during albitisation in the high-grade Bamble lithotectonic domain, S-Norway[END_REF][START_REF] Zhao | Sulfide Re-Os and Rb-Sr isotope dating of the Kangdian IOCG metallogenic province, southwest China: implications for regional metallogenesis[END_REF]; Fig. 1). Herein we highlight the diagnostic geological and chemical attributes of iron oxide and alkali-calcic alteration facies, provide case examples, and describe alteration mapping protocols and chemical discrimination plots useful in exploring these ore systems. 

Regional Geological Contexts

The studied ore systems are spatially and temporally associated with, or developed within, mafic to felsic extrusive and intrusive rocks in the southeast Missouri district (~1.49-1.44 Ma), Great Bear magmatic zone (1.87-1.85 Ga), Central Mineral Belt (~1.88-1.85 Ga) and Bondy Gneiss complex (1.4-1.35 Ga). Some of these terranes have juvenile sources. In some examples, the regional-scale, iron oxide and alkali-calcic metasomatism was coeval with caldera formation; batholith emplacement followed a few million years later [START_REF] Day | Regional geologic and petrologic framework for iron oxide ± apatite ± rare earth element and iron oxide copper-gold deposits of the Mesoproterozoic St. Francois Mountains terrane, southeast Missouri, USA[END_REF][START_REF] Montreuil | Tectonomagmatic evolution of the southern Great Bear magmatic zone (Northwest Territories, Canada) -Implications on the genesis of iron oxide alkali-altered hydrothermal systems[END_REF]. In another example, alkaline magmas intruded a carbonate-dominant sedimentary basin (Romanet Horst; [START_REF] Corriveau | Report of activities for the core zone: strategic geomapping and geoscience to assess the mineral potential of the Labrador Trough for multiple metals IOCG and affiliated deposits, Canada[END_REF].

Mineral-resource-bearing metasomatic systems linked to voluminous granitic magmatism can extend a thousand km as part of continental magmatic arcs. Many of the associated magmatic systems are compositionally bimodal and many of the mafic end members have tholeiitic affinities. The felsic (and intermediate rocks where exposed or recognised) are dominantly calcalkaline to shoshonitic and A-type compositions (e.g., 1.87 Ga Great Bear magmatic zone; 1.47 Ga Missouri district and Pinwarian arc of Grenville Province; 1.16 Ga intrusive suites hosting Kwyjibo deposit; [START_REF] Corriveau | Prospective metallogenic settings of the Grenville Province[END_REF][START_REF] Montreuil | Tectonomagmatic evolution of the southern Great Bear magmatic zone (Northwest Territories, Canada) -Implications on the genesis of iron oxide alkali-altered hydrothermal systems[END_REF][START_REF] Day | Constraints on age of magmatism and iron oxide-apatite (IOA) and iron oxidecopper-gold (IOCG) mineral deposit formation in the Mesoproterozoic St. Francois Mountains terrane of southeast Missouri, USA[END_REF].

Alteration Attributes and Field Mapping

A great variety of mineral assemblages and contents, grain sizes, textures, structures, and space-time relationships of metasomatic rocks occurs at the deposit-to regional-scale and poses major challenges to alteration mapping. The morphology (replacements, veins, breccias) and extreme differences in paragenetic sets of altered rocks enable the documentation of a series of distinct alteration facies and their space-time relationships with magmatism and tectonics.

Intervening metasomatites between least-and mostaltered sequences are used as proxies for the incremental progress of alteration. Alteration intensity is classified as subtle, weak, moderate, intense, or megascopically complete depending on the degree to which precursor minerals and textures are preserved, grain sizes of metasomatites, and spatial extent of the alteration zone (Fig. 2). Ultimately, paragenetic sets, rock physical properties, and compositions of each alteration facies are diagnostic due to the distinct cations of the dominant mineral phases in the paragenetic sets [START_REF] Corriveau | Alteration vectors to IOCG mineralisationfrom uncharted terranes to deposits[END_REF][START_REF] Corriveau | Alteration facies linkages among IOCG, IOA, and affiliated deposits in the Great Bear magmatic zone, Canada[END_REF][START_REF] Montreuil | Compositional data analysis of IOCG systems, Great Bear magmatic zone, Canada: to each alteration types its own geochemical signature[END_REF][START_REF] Enkin | Metasomatic alteration control of petrophysical properties in the Great Bear magmatic zone (Northwest Territories, Canada)[END_REF]. The predominant visible grain size of the metasomatites enables the use of a field-based compositional alteration nomenclature (i.e., Na, high temperature (HT) Ca-Fe, HT K-Fe, and low temperature (LT) K-Fe facies; Fig. 2).

Field mapping complexities are largely resolved by (1) focusing description on paragenetic sets and related metasomatic facies, (2) qualifying alteration intensity, reporting mineral assemblages and modes, standardizing terminology for veins, replacements and breccias, mapping crosscutting and overprinting relationships among alteration facies, and documenting alteration facies paragenetic affinities of mineralisation assemblages.

4 Alteration Facies as Vectors to Ore

Prograde metasomatic paths

The metasomatites and linked deposit types are zoned vertically and laterally, recording a regular sequence of fluid-rock reactions that led to prograde paths with Facies 1 Na (albite) transitioning to high temperature (HT) Na-Ca-Fe (albite, amphibole, magnetite, apatite); Facies 2 HT Ca-Fe (amphibole, magnetite, apatite) and IOA deposits; Facies 3 HT K-Fe (magnetite, biotite, K-feldspar) and magnetite group IOCG deposits; Facies 4 K-felsite (Kfeldspar), K-skarn (clinopyroxene, garnet, K-feldspar), and polymetallic Pb-Zn-bearing deposits; Facies 5 lowtemperature (LT) K-Fe (hematite, K-feldspar, sericite, chlorite, carbonates), hematite-group IOCG deposits and light REE-rich variants within LT Ca-Fe-Mg (chlorite, carbonates); and Facies 6 epithermal including vein-type mineral deposits. K-feldspar felsite breccias, not largescale K-feldspar haloes, vector to IOCG mineralisation. the presence of carbonate alteration zones provide evidence that fluids in these systems can generate their own skarn mineral assemblages without a proximal intrusion. A regular spatial and temporal progression is also observed among brecciation, polymetallic mineralization, and the appearance and increasing intensity of K-Fe alteration facies. Co-crystallisation of iron oxide minerals and K-feldspar is, however, megascopically decoupled. Iron oxide minerals are concentrated within the matrix and K-feldspar replaces host protolith and derived fragments in breccias (Fig. 2D,E). Rocks of the HT Ca-Fe alteration facies commonly undergo ductile deformation during metasomatism; other alteration facies experience brittle to brittle-ductile deformation.

Telescoped, cyclical, and retrograde paths

Where exposed (e.g., Great Bear), the IOA deposits are deeper expressions of cogenetic IOCG mineralisation, but fluidised-type IOA breccias also point to the ability of magnetite-apatite mush to ascend to higher structural levels. Fluidisation of HT K-Fe metasomatites also occurs. Faulting can telescope albitites into levels where fluids precipitates U (HT and LT K-Fe fields) [START_REF] Corriveau | Report of activities for the core zone: strategic geomapping and geoscience to assess the mineral potential of the Labrador Trough for multiple metals IOCG and affiliated deposits, Canada[END_REF][START_REF] Montreuil | Formation of albititehosted uranium within IOCG systems: the Southern Breccia, Great Bear magmatic zone, Northwest Territories, Canada[END_REF]; younger REE-rich breccias can form through remobilisation of IOA deposits [START_REF] Harlov | Mineralogy, chemistry, and fluid-aided evolution of the Pea Ridge Fe oxide(Y + REE) deposit, southeast Missouri, USA[END_REF]. Epithermal veins also form within earlier alteration facies during retrograde alteration. Cyclical development of a fertile alteration facies can increase local metal endowment (e.g., 33 Mt Au-Co-Bi NICO deposit; Fig. 1). Collectively, metal enrichment in these ore systems includes ferrous, base (Fe, Cu, Pb, Zn, Ni), precious (Au, Ag, PGE), specialized (Bi, Co, Mo, V, Nb, Ta, W, HREE, LREE), and actinide (U, Th) metals.

Exploration and mapping challenges

Metasomatised rocks can resemble common rocks; this can hamper recognition of ore systems. Exemples include: (1) albitites for hornfels, K-feldspar-and hematite-altered or silicified zones, anorthosites, rhyolites, and syenites (Fig. 2B,G); (2) Na-Ca-Fe facies for igneous pegmatites (Fig. 2C); (3) un-metamorphosed HT Ca-Fe or LT K-Fe metasomatites for iron formations, metasedimentary rocks, marls, iron oxide lavas, and amphibolites (Fig. 2H); and (4) K-feldspar alteration for rhyolites or albitites, commonly masking the andesite protoliths [START_REF] Montreuil | Tectonomagmatic evolution of the southern Great Bear magmatic zone (Northwest Territories, Canada) -Implications on the genesis of iron oxide alkali-altered hydrothermal systems[END_REF]. Syn-alteration ductile deformation of HT Ca-Fe metasomatites increases their resemblance with metamorphic rocks, and may lead to misinterpretation of syn-or post-metasomatic regional orogenic metamorphism. Selective K-feldspar or magnetite replacement of breccia fragments can mask the timing of brecciation versus alteration and obscure the nature of protoliths (Fig. 2D,E).

Another challenge is the non-recognition of IOA-IOCG systems and metasomatic linkages among deposits, which can result in the deposits being misclassified, such as: (1) iron formation; (2) VMS; (3) SEDEX; (4) intrusion-related skarns and polymetallic mineralization; (5) diagenetic, metasomatic-metamorphic, sedimentary, magmatic, hydrothermal, shear-hosted, unconformity-type, and stratiform U; (6) polymetallic veins; and (7) syngenetic/diagenetic stratiform Cu, red bed Cu, etc. (e.g., [START_REF] Potter | Potential for iron oxide copper-gold and affiliated deposits in the proposed national park area of the East Arm, Northwest Territories: insights from the Great Bear magmatic zone and global analogs[END_REF][START_REF] Slack | Descriptive and geoenvironmental model for cobalt-copper-gold deposits in metasedimentary rocks[END_REF][START_REF] Corriveau | Report of activities for the core zone: strategic geomapping and geoscience to assess the mineral potential of the Labrador Trough for multiple metals IOCG and affiliated deposits, Canada[END_REF][START_REF] Engvik | Sequence and timing of mineral replacement reactions during albitisation in the high-grade Bamble lithotectonic domain, S-Norway[END_REF]Sparkes 2017 and references therein).

Chemical mapping

By recognizing metasomatites and recording their mineral assemblages, paragenesis, and spatial distribution, it is possible to map the principal cation mobility across ore environments, from fluid and metal sources to deposits [START_REF] Corriveau | Alteration facies linkages among IOCG, IOA, and affiliated deposits in the Great Bear magmatic zone, Canada[END_REF]. Geochemical data refine the majorelement mobility interpreted megascopically. Efficient whole-rock molar proportions allow mapping alteration footprints from the regional to the drill core scale. Such maps can efficiently guide exploration (Fig. 3). 

Chemical Discriminants of Prograde and Telescoped Reaction Paths

The chemical evolution of these systems can be visualised by plotting the element bar codes on the IOCG geochemical alteration discrimination diagram of [START_REF] Montreuil | Compositional data analysis of IOCG systems, Great Bear magmatic zone, Canada: to each alteration types its own geochemical signature[END_REF] (Fig. 4A) and those of [START_REF] Large | The alteration box plot: a simple approach to understanding the relationship between alteration mineralogy and lithogeochemistry associated with volcanic-hosted massive sulfide deposits[END_REF] and [START_REF] Williams | Possible submarine advanced argillic alteration at the Basin Lake prospect, western Tasmania, Australia[END_REF]. The bar code signatures of megascopically and chemically least-altered igneous and sedimentary rocks (Fig. 4B) can also be discriminated from the mixed signatures induced by superposition of alteration types (Fig. 4C) during prograde, telescoped, and/or retrograde metasomatic paths.

Prograde metasomatism results in a counter-clockwise trend (Fig. 4A). These metasomatites with a single alteration type display bar codes dominated by one or two elements; least-altered bar codes have more even cation proportions. Replacement of early metasomatites by other alteration facies (e.g., telescoped or retrograde paths) recombines elements and leads to compositions that occupy the least-altered field (Fig. 4C). Bar codes are however distinct from those of the least-altered rocks (Fig. 4B versus C). 
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 1 Figure 1. Location of districts and deposits discussed in text.
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 2 Figure 2. Great Bear ore systems. A-E. Altered andesite sequence. F-H. Altered sedimentary sequence at NICO deposit. Pink and white varieties of albitites (B and G) independent of protolith types. Ab, albite; Amp, amphibole; Hem, hematite; Kfs, K-feldspar; Mag, magnetite.In carbonate-rich host rocks, skarns (typically clinopyroxene and garnet) form coevally with or slightly after albitites and are locally replaced by HT Ca-Fe alteration mineral assemblages. These skarns, as well as
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 3 Figure 3. Chemical alteration map at Terra, northern Great Bear magmatic zone. Chemical data from Corriveau et al. (2015).

Figure 4 .

 4 Figure 4. Plot of Na-Ca-Fe-K-Mg bar codes on IOCG discriminant diagram of Montreuil et al. (2013) for Great Bear magmatic zone; chemical data from Corriveau et al. (2015). A. Prograde path of alteration facies. B. Felsic to mafic protoliths. C. Replacement of original albitites (light pink) by other alteration facies leading to alteration trends toward least-altered field.
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