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Abstract. High-fidelity numerical models (full process based) facilitate accurate simulations of storm responses. For
efficient implementation in probabilistic risk assessment, the simulation of a large number (>10,000s) of
combinations of offshore hydrodynamic conditions (e.g. wave characteristics, offshore water level, etc.) is often
necessary. To optimise this procedure, it can be of interest to concentrate the computation effort by only identifying
the critical set of offshore conditions that lead to inundation on key assets for the studied territory (e.g., evacuation
routes, hospitals, etc.). However, two limitations exist: 1. full-process based models have large computation time cost,
typically of several hours, which often prevent from conducting several simulation scenarios; 2. the full-process based
models are expected to present non-linearities (non-regularities) or shocks (discontinuities). In this study, we propose
a strategy combining meta-modelling (of type Support Vector Machine) and active learning techniques to track with a
limited number of long-running simulations the critical set’s boundary. The developments are done on a cross-shore
case, using the process-based SWASH model (computational time of 10 hours for one run). The dynamic forcing
conditions are parametrized by storm surge S and significant wave height Hs. We validated the approach with respect
to a reference set of 400 long-running simulations in the domain of (S ; Hs). Our tests showed that the tracking of the
critical contour can be achieved with a reasonable number of long-running simulations of a few tens.

1 Introduction

. o Unsafe
Some recent storm events like Katrina in 2005 or

Xynthia in 2010 (see e.g. [1]) illustrate the present-day Critical
coastal damages and injuries that can affect the coastal frontier
area, both in cyclonic and non-cyclonic environment. ’\
Katrina was one of the six most powerful hurricanes ever ~~
registered in the Atlantic, leading to 1836 deaths and
damages of about 80 billion USD, whereas Xynthia was a

. . . . Safe
mid-latitude storm that severely hit low-lying coasts >
located in the central part of the Bay of Biscay on the 27— Offshore
28 February 2010, inducing 53 deaths and material condition 1
damages estimated at more than one billion euros. From a
statistical point of view, the wave heights generated

Offshore
condition 2

Figure 1. Schematic representation of the critical frontier in the

during the Xynthia event could not be considered as
extremes, but what makes this event “rare” is the
combination of a high spring tide with a large storm surge
(enhanced by young wind waves) reaching its maximum
around the tide peak.

a Corresponding author: j.rohmer@brgm.fr

offshore conditions domain. This frontier represents the
boundary between the “safe” and “unsafe” regions (grey-
coloured area), i.e. the boundary of the set of offshore forcing
conditions, which lead to an inundation at the coast. Adapted
from [3]

As discussed by Idier et al. [2], it can be of high
interest to identify the combination of all critical set of
offshore conditions that lead to inundation on key assets
for the studied territory (e.g., assembly points, evacuation
routes, hospitals, etc.), i.e. to track the critical frontier /¢,
which separates the “safe” region from the “unsafe” one
in the offshore conditions domain (e.g. combination of
wave, tide and surge conditions): this is schematically
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depicted in Fig. 1 in 2D. It should be underlined that the
number of offshore conditions could be larger (>10),
depending on considered physical parameters (tide,
atmospheric storm surge, wave height, wave direction,
wave period) and on the way time and/or spatial offshore
conditions are described. Tracking such a critical frontier
is the key element of an inverse methodology of coastal
risk assessment.

The main idea of such an inverse risk method is the
inversion of the usual risk assessment steps [2]: starting
from the maximum acceptable hazard level (defined by
stakeholders as the one leading to the maximum tolerable
consequences) to finally obtain the return period of this
threshold. Such an "inverse" approach would allow the
identification of all the offshore forcing conditions (and
their occurrence probability) inducing a threat for critical
assets of the territory. The benefits are multiple, whether
for: (1) estimating the probability of exceeding the
maximum tolerable inundation height for identified
critical assets, or for (2) providing critical offshore
conditions for flooding in early warning systems, and for
(3) raising awareness of stakeholders and eventually
enhance preparedness for future flooding events by
allowing them to assess risk to their territory.

However, the practicability of such an inverse risk
method can be hindered, because tracking the boundary
of the set of critical conditions (critical frontier) should
rely on an accurate description and modelling of coastal
processes: this requires the use of full-process based
models for coastal flooding simulations, which might
have very large computational time cost (typically of
several hours per simulation). Such a computation burden
often limits the analysis to a few scenarios, hence might
prevent the estimation of the critical frontier. Recently, it
has been shown that meta-modelling approaches can
efficiently handle this difficulty (e.g., [3]). The basic idea
is to replace the long-running code by an approximation
constructed using only a limited number of different
simulation scenarios. Rohmer & Idier [3] further
extended this approach by combining the meta-model
with an adaptive sampling procedure aiming at improving
the local accuracy in the regions of the offshore
conditions that contribute the most to the estimate of the
targeted frontier.

Though the afore-described strategy proved to be very
efficient (achieving a reduction by a factor 20-40 of the
total number of necessary long-running simulations in the
application case of [3]), it still faces a strong limitation
related to the nature of the full-process based models:
they are expected to present strong non-linearities (non-
regularities) or shocks (discontinuities), i.e. dynamics
controlled by thresholds. For instance, in case of coastal
defence, the dynamics of the waterline position is
characterized first by a linear behaviour (increase with
increasing offshore conditions), as long as there is no
overtopping, and then by a very strong increase (as soon
as the offshore conditions are energetic enough to lead to
wave overtopping, and then overflow). Such behaviour
might make the training phase of the meta-model very
tedious (see e.g., [4]).

In the present study, we propose to rely on advanced
machine learning techniques to overcome the afore-

described challenge related to non-regularity. We focus
on the Support Vector Machines SVM (e.g., [5]). A key
aspect is to optimise as much as possible the number of
required simulations for estimating the critical frontier:
this can be performed by relying on active learning
techniques, i.e. on statistical techniques to guide and
select the simulations to be run in order to predict with
high accuracy the boundary of the set of critical
conditions. The objective of this communication is to
show the feasibility of such an approach.

In a first section, we describe the case study, which
motivated the present work. In a second section, we
further describe the statistical methods used to track the
critical set of offshore conditions. In section 4, we apply
them and discuss the results.

2 Case study

2.1 Description

The application case relies on a cross-shore
configuration, as depicted in Fig. 2, and using the
process-based SWASH model [6]. It should be seen as a
test case for the exploration of feasibility of the proposed
method to track the offshore critical conditions. It is
adapted from the wave experiment by Boers [7] by
adding a basin in its rightmost part: we define the critical
conditions as the ones leading to flooding. The dynamic
(time-varying) forcing conditions x are parametrised by
seven factors (storm surge magnitude, significant wave
height, dephasing between tide and surge, etc.) and their
values are scaled with respect to the geometry of the
laboratory experiment through Froude similitude and
dimensional analysis (Table 1), considering a semi-
diurnal tide. In the following, all results are given at the
scale of the wave experiment.

Offshore Parameters Lower bound | Upper bound
Tide magnitude A2 (m) 0.000 0.025
Storm surge magnitude S (m) 0.000 0.025
Duration of the storm surge
increase TSM2 (s) 2278 o113
Duration of the storm surge
decrease TST2 (s) 910 4539
Duration of the storm surge
plateau TS2 (s) 210 4530
Significant wave height Hg 0.000 0375
(m)
Wave Period T}, (s) 1.415 3.400

Table 1. Parameters describing the time-varying offshore
conditions.

A model run, for a given set of offshore conditions’
values, takes approximately 10 hours to simulate two tide
cycles. It should be noted that it includes a uniform depth
channel computations to provide instantaneous water
level conditions physically consistent at the offshore
boundary.
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Figure 2. A) Geometry of the cross-shore model used in the
study; B) Parameters used to represent the time-varying
offshore conditions X (See table 1 for details).

2.2 Extracting the critical set using a direct
approach

The purpose of the present study is to explore the
feasibility of extracting the critical contour using a very
limited number of simulations (a few tens). In this view,
we restricted the analysis to two offshore conditions
namely the significant wave height Hg and storm surge
magnitude S and solved the problem using a direct
approach, i.e. by relying on grid computing architecture
(e.g. [8]): a total of 400 different simulations were run to
estimate the run-up R by respectively varying the
maximal storm surge S between 0.01 and 0.025m
(dimensions with respect to Boers’s experiment) and Hg
between 0.000 and 0.375m while keeping other
parameters constant at their median value. On this basis,
the critical contour was extracted as depicted in Figure 3.
This result represents our reference case to which the
result using the meta-modeling approach will be
compared (Section 4).

As shown in Figure 3, the relationship between the
run-up R and both offshore conditions is highly non-
linear: a region of the SxHg domain does not lead to
flooding, i.e. with R close to its minimum value (around
0) as highlighted by the blue-coloured region in the left
bottom hand corner of Fig. 3. When both offshore
conditions exceed given thresholds (which are unknown
before actually running the code), overtopping occurs and
the basin rapidly fills with sea water so that R steeply
increases from ~0 to ~90% over a narrow region of (S;
Hjs) and then gently increases from ~90% to 100 % over a
large region of the SxHg domain (red coloured region in
the right hand corner in Fig. 3). The objective is to
estimate the black contour as depicted in Fig. 3B but with
a low simulation budget.

3 Methods

Due to the highly nonlinear behaviour of the
relationship between R and the offshore conditions,
standard meta-modeling techniques might fail (Gaussian
process, polynomial chaos expansion, etc., see e.g., [4]).
A possible option is to solve the problem from a
classification perspective, i.e. to identify the boundary
between the offshore conditions leading to flooding (class
“unsafe”) and the ones which do not (class “safe”). A

powerful technique is Support Vector Machine (e.g., [9]),
which  has the ability to explicitly define
multidimensional and complex boundaries that optimally
separate two classes of data. In the following, we first
introduce the basic principles of this classification
technique and then describe a strategy to improve its
accuracy for boundary approximation.

3.1. Support Vector Machine

Consider a d-dimensional space sampled with »
training points x;. Each point is associated with a class,
either y;=-1 (unsafe) or 1 (safe). The SVM algorithm
finds the boundary that optimally separates both classes.
The equation of the corresponding boundary holds as
follows:

D(x)=b+ D A yK(x;,x) (1)

i=1

where b is a constant, 4; are Lagrange multipliers
obtained from the quadratic programming optimization
problem used to construct the SVM. The kernel K can
have different forms such as polynomial, Gaussian radial
basis function, etc. Equation (1) allows classifying any
offshore conditions x via the sign of @.
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Figure 3. Run-up (in %, normalised between 0 and 1)
calculated in the SxHg domain discretised into a 40x40 grid.
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3.2 Active Learning

This approach, aka semi-supervised machine
learning, aims at sampling the training points by fulfilling
two requirements:

1) the sampled training points should contribute to
the accuracy improvement of the critical
boundary estimate. Thus, the training point
should lie where the probability of
misclassification is the largest, i.e. in the vicinity
of the boundary between both classes (safe and
unsafe);

2) since the estimate of the boundary relies on the
approximation quality of the SVM meta-model,
the training points should also be selected in
sparsely populated regions of the space.

For this purpose, we relied on the strategy proposed
by Basudhar and Missoum [10] in the domain of
structural reliability. First two samples are selected in
turn by maximizing the distance to the closest training
sample while lying on the SVM boundary. Then, a third
sample is positioned in a region where data from one
class is sparse in the vicinity of the boundary.

The whole procedure described in Table 2 is applied
on the test case described in Sect. 2.2.

Step Description

Randomly sample a given set of training data x;
in the domain of offshore conditions (i=1 to »)
and for each of them, estimate the Run-up by
means of the long-running model;

Based on these training data, construct an initial

2. SVM meta-model;
3 Iteratively select new training data based on the
) Basudhar and Missoum’s algorithm
Stop when the parameters (polynomial
4. coefficients) of the SVM boundary have

converged

Table 2. Main steps for approximating the critical frontier
by combining active learning and SVM meta-modeling.

4 Application

In this section, we aim at assessing whether it is
possible to estimate the critical frontier using a limited
number of long-running simulations. The result is
compared to the solution of the grid-based approach
(Figure 3). We followed the different steps of Table 2:

- Step 1: An initial set of 15 training data was
randomly selected using the centroidal Voronoi
tessellation method (see e.g., [11]);

- Step 2: On this basis, 15 long-running simulations
were conducted and the results were classified as
“safe” when the normalised run-up was close to zero
and unsafe otherwise. In total 14 of the simulations
lead to a non-zero run-up;

- Step 3: A SVM of type linear was constructed using
the 15 training data;

- Step 4: the active learning algorithm was launched
and 6 new training data were iteratively selected until
the SVM boundary’s linear regression coefficient has
converged, i.e. until the changes between the
previous and the actual linear regression coefficient
is no more than 1e™,

Figure 4 illustrates the different iteration steps of the
active learning strategy: the new training data are
primarily selected close to the SVM boundary and, after
each selection, the SVM boundary is updated and finally
approximates with very satisfactory level the true critical
frontier. The total number of necessary long running
simulations reached only 15+6=21, namely ~5% of the
simulation budget of the direct grid-based approach (of
400 simulations).

5 Concluding remarks and further work

In this study, we aimed at estimating with a low
simulation budget (a few tens), the frontier, which
separates the region of the offshore conditions which lead
to flooding and those which do not. In order to set-up a
solution to validate our method, we first solved the
problem by running a large number of simulations for
different offshore conditions. A strategy to identify the
critical frontier with a limited number of simulation was
here proposed and relied on the combination of SVM
meta-modeling techniques and active learning: the
comparison between both results (large number of
simulations vs meta-modeling and limited number of
simulations) showed that the second “SVM-active
learning” strategy is very efficient and can approximate
the critical frontier using only a few tens of long-running
simulations.

These results are very promising: the expected results
are the use of such procedure within a full flood risk
assessment scheme in place of low complexity models as
done for instance by Rueda et al. [12]. Yet, a necessary
future step is testing the performance of the procedure by
integrating a larger number of offshore conditions (for
instance the ones described in Table 1).
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initial training data.
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