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1. Objective: 

In this paper we present an efficient algorithm to estimate first order and second order Sobol' indices (SI) and its 

relationships with the inputs parameters variation range width. In the variance-based global sensitivity measure, SI are 

quantities defined by normalizing parts of variance in ANOVA decomposition (Sobol’, 1993). They are estimated 

from the ratio between the variance of the conditional expectation of the output given the input and the unconditional 

variance of the output (eq .1). Many techniques have been proposed to estimate these indices. A recent review of these 

methods can be found in (Borgonovo & Plischke, 2015). Among others Monte-Carlo-based algorithm (Sobol’ 1993, 

Saltelli et al., 1999, Jansen 1999, Monod et al., 2006, etc.) require a special random sampling scheme i.e. they cannot 

directly use samples used for the uncertainty propagation. Building on a similar idea than Plischkle (Plischke, 2010) 

we propose a methodology that allows the computation of SI form a set of given data. We propose to start from the 

local conditional variance to derive the global sensitivity indicator by estimating the variance of the conditional 

expectation (Eq. 2). The local information on sensitivity is summarized under the form of a Diagram of Expected 

Variance Reduction (DEVR), which relates the local reduction in uncertainty with the domain of variation of the 

considered input parameter with reduced width. 

2. Methodology: 

SI are given by eq. 1. The variance of the conditional expectation can be expressed as the expectation of 
conditional variance (eq. 2). In order to estimate the variance of the conditional expectation 𝑉[𝐸[(𝑌|𝑥𝑖)]], we 
first estimate the expectation of the conditional variance 𝐸[𝑉[(𝑌|𝑥𝑖)]] by following these steps: (1) Partition of 
the input parameters space into clusters (K-means algorithm with fixed number of samples for example), in 
which the variation of xi is supposed weak (see fig. 1.A). (2) Computation of the local conditional variance 
𝑉[(𝑌|𝑥𝑖)] (LCV) for each cluster (see fig. 1.B). (3) Estimation of the expectation of local conditional variance 
𝐸[𝑉[(𝑌|𝑥𝑖)]] (ELCV) with eq. 2 (fig. 1.C). (4) SI are obtained from the average of the expectation of local 
conditional variance. Higher order effects can be estimated following the same scheme.  

𝑆𝑖 =
𝑉[𝐸[(𝑌|𝑥𝑖)]]

𝑉[𝑌]
 (eq. 1) 

𝑉[𝐸[(𝑌|𝑥𝑖)]] = 𝑉[𝑌] − 𝐸[𝑉[(𝑌|𝑥𝑖)]] (eq. 2) 

The described methodology allows also the computation of the relationship between SI and the inputs parameters 
variation range width (DEVR). In other words, this answers the question of what would be SI values if the initial 
variation range was reduced or true value of parameters was known: this can be achieved without new simulations 

run contrary to classical methods. 

3. Results and Conclusions: 

The proposed algorithm is used to estimate the first order and second order SI and the DEVR on the Ishigami function 

(eq. 3). This widely used test function exhibits strong nonlinearity and non-monotonicity (Sobol' & Levitan 1999) 

which make it challenging.  

𝑦 = 𝑓(𝑥1, 𝑥2, 𝑥3) = sin (𝑥1) + 7 sin2(𝑥2) + 0.1𝑥3
4 sin(𝑥1),  𝑤ℎ𝑒𝑟𝑒 𝑥𝑖~ 𝑈(−𝜋, 𝜋)    (eq. 3) 

We tested the developed algorithm termed ELVR against Jansen’s algorithm (Jansen, 1999) and EASI (Plischke, 

2010) for the first effects (5,000 model run) and against peek and freeze algorithm (Fruth & al 2014) and Monod’s 

formulation (Monod et al. 2006) for the second order effects (10,000 model run). The results are reported in fig. 2 and 

fig. 3: these show a very good convergence for the first order SI index with less than 10,000 simulations as well as for 

the second-order indices especially for indices of high values.  

From the DEVR (fig. 4) many information on local sensitivity can be extracted. Among others: 

- In fig. 2,  𝑆1 = 0.31, which means that if 𝑥1is fixed; a reduction of 31% on the total variance is expected. But 

in the DEVR (fig. 4) we see that depending on the chosen value the reduction can vary between 55% 

(𝑥1
∗ = {−𝜋, 0, 𝜋}) and 0% (𝑥1

∗ = {−𝜋/2, 𝜋/2}). But on average it’s equal to 31%. 

- The reduction of variation range of 𝑥1 from [−𝜋, 𝜋] to [−𝜋/8, 𝜋/8] reduces the total variance of output by 

more than 50%. On the other hand, a reduction from [−𝜋, 𝜋] to [3𝜋/8,5𝜋/8] do not 𝑉[𝑌].  



Fig.1.A. Space partitioning for X1 Fig.1.B. LCV for X1 Fig.1.C. LECV for X1 

 Fig.2. SI first order effects  

 

 

 

 

 

 

 

 

 

 

 

Fig.4. DEVR for X1 

  
Fig.3. SI second order effects  
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