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ABSTRACT: Land EM methods provide useful information in domains such as geothermal energy, CO2 storage or water
ressources managements. However, the targets are usually close from urban areas where anthropogenic noise such as high
power lines, industries and railways prevents from the use of Magnetotelluric (MT). Controlled-Source EM (CSEM) is thus
generaly prefered to MT. However, unlike for marine CSEM surveys used in oil prospection, logistical constrains on land
surveys limit to the use of a few transmitters, usually 2 polarizations at a single position. Again due to noise constrains, it
is usually prefered to place the transmiter close from the stations, which make impossible the use of CSAMT processing,
as far field assumption is not respected. Thus the 3D inverse problem associated to this kind of survey suffers from very
high sensitivity heterogeneities and singularities, in particular in the vicinity of the transmiter, that prevents from good
convergence of the inversion process.
In order to achieve reliable local inversion with such pathologic sensitivities, several crucial aspect of the algorithm must
be considered. Firstly, Gauss-Newton inversion must be prefered to a gradient-based method, and a very robust solver
such as LSQR is necessary. Then a good parameterization must be chosen. Preconditionning of the system with model
reparameterization must also be used to compensate for the sensitivity loss with depth. But we show that even with a Gauss-
Newton resolution and efficient preconditionning of both data and model parameter, the inversion fails to converge to an
accurate solution with single source position in cases where MT data inversion or CSEM with many transmiters provides
sucessful results. In order to mitigate the sensitivity singularities, we propose to reformulate the CSEM inverse problem
by recasting the data under the form of a pseudo-MT tensor. The associated sensitivities are a linear combinations of the
common CSEM sensitivies for electric and magnetic fields. We show on a synthetic model that this formulation highly
reduce the footprint of the tranmitter in the sensitivities even in the near field. It also provides a natural balance between
the data and between the whole frequency range. Finaly the approach allows the inversion to converge to a reliable result.
This approach has been successefully applied on a 3D land survey in France with very complex geology, where the common
CSEM inversion had provided biased results.
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INTRODUCTION

Anthropogenic noise, cost and logistical constrains
generaly limit to the use of CSEM with a single
transmiter position for the deep imaging of the
electrical conductivity. As the inversion of CSEM
data in the near field using a single transmiter position
suffers from critical sensitivity singularities, we
propose a robust inversion framework adapted to this
ill-conditioned inversion problem. The framework
relies specificaly on a robust Gauss-Newton
solver, several model parameter transformations
to compensate for the heterogeneous sensitivies, and
on the reformulation of the CSEM data under the
form of a pseudo-MT tensor.

We first describe in the paper the approach used
for modeling and inversion implemented in our code

POLYEM3D. Then we detail the new pseudo-MT
formulation. In the last part of the paper, we illustrate
its application on a pathologic synthetic case inspired
from Grayver et al. (2013).

METHODOLOGY

The POLYEM3D code used in this study relies on an
hybrid EM modeling engine in the frequency domain
with 1D semi-analytical modeling for a primary field
in a 1D layered reference resistivity model and a finite-
volume formulation on an irregular cartesian grid for
the secondary field (Streich, 2009). Arbitrary sources
such as long irregular wires can be considered through
the semi-analytical formulation. The finite-volume
formulation provides a linear system to be solved:

A(ρ, ω) E = b. (1)
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where A is the finite-volume operator matrix, ρ a 3D
resistivity distribution, E the 3D electric field and b
the source term.
The computed data dcs,r (component c of the electric
and/or magnetic field at each receiver r generated by
the source s) can be expressed as:

dcs,r = ℘c
r Es (2)

where ℘c
r is a restriction operator that extract the

value of the component of the field from the 3D
electric field computed on the whole grid. It contains
interpolation operators and curl operator for magnetic
field.

Inversion of EM fields is achieved by minimising
the misfit function:

Φ = ∆d†Wd
†Wd∆d (3)

with ∆d = dobs − dcal the data residual vector.
In CSEM inversion the data vectors usually contains
each component of the electric and/or magnetic fields
for each station of the survey, each source and each
frequencies. However, different kind of observable
can be used to build the data vector, for example
amplitudes, phases, maximum of the polarization el-
lipses, angles, or any kind of representation of the
data. In the framework of local linear inversion, we
want at each iteration to determine the model update
∆m solution of the Gauss-Newton equation:

Re(J†J)∆m = −Re(J†Wd∆d) (4)

where J is the sensitivity matrix.

Reparameterization of the problem

The sensitiviy J is proportional to the electric field,
and thus decreases rapidly with depth and with the dis-
tance from the source, resulting in a very poorly condi-
tioned linear system to be solved. In POLYEM3D, this
linear system is solved with LSQR that is known to be
efficient for poorly conditioned linear system. Fur-
thermore, preconditionning can be applied by model
reparameterization. Instead of performing inversion
of ρ, we can inverse m:

m = G−1D−1 C(ρ) (5)

with C a change of variable (such as logarithm), D
a linear operator that rescale the sensitivity loss with
depth (such as in Plessix & Mulder (2008)), and G a
linear operator that change the basis of description of
the model (for instance a basis of splines described on

a coarse grid). Each line of the sensitivity matrix thus
can be written:

Jc
s,r = GtDt 1

C ′(ρ)
Es
∂A

∂ρ
A−1℘c

r
t (6)

A pseudo-MT formulation

The reparameterization allows to perform efficient 3D
inversion for MT or multiple source CSEM. However
it is still not enough to inverse CSEM data when a
single source is used, as the sensitivity singularity at
the source cumulates over each line of J. We found
that recasting the data acquired with two different
transmiters using a MT tensor formulation mitigates
the singularity due to the transmiter both in the data
and in the sensitivities. Taking for a station the
definition of a Z tensor as a transfer function:(

Ex

Ey

)
=

[
Zxx Zxy

Zyx Zyy

] (
Hx

Hy

)
, (7)

and considering two different sources (it can be typ-
ically two polarization of a single transmiter), we
can obtain for each station the 4 components of this
pseudo-MT tensor by a combination of the 8 electric
and magnetic fields generated by those two sources:

Zij = f(Ec
s , H

c
s). (8)

Recasting the CSEM data under this form reduce the
number of data by 2 and results in a sensitivity matrix
that is a linear combination of the common CSEM
sensitivities weighted by the values of the fields:

JZij
= f(JEc

s
, JHc

s
, Ec

s , E
c
s) (9)

The pseudo-MT tensor is not to be linked to an
apparent resistivity or a MT tensor because depending
on the frequency and the source-receiver distance con-
sidered, the far field condition is not always respected.
It is however a well balanced observable that can be
inverted if an accurate modeling of the real transmiters
is considered.

APPLICATION ON A SYNTHETIC CASE

We illustrate the behavior of the new formulation on
a 3D synthetic resistivity inspired from the model
of Grayver et al. (2013) represented figures 1 and
3. The survey is composed of 100 stations over a
5Ω.m medium with 3 anomalies at 1Ω.m, 50Ω.m
et 100Ω.m. We consider the inversion of MT data
(far field), and inversion of CSEM data generated
with two orthogonal polarization located at 2km from
the closest station, and 5 frequencies from 32s to
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16Hz. The CSEM data are inverted first using both
normalized electric and magnetic fields, and then
using the pseudo-MTtensor formulation.

Figure 1 Resistivity and acquitision model taken from
Grayver et al. (2013)

The figure 2 represents the gradient of the
cost function at 32s (i.e. Re(J†∆d)) without
the reparameterizations described above and no
regularization, for the MT data, for the CSEM data
using weigths in Wd to normalize the data, and
for the CSEM data with the pseudo-MT tensor
formulation. At 32s the skin depth is 6.4km so the
CSEM survey is such we are clearly not in far field.

With the MT data, the gradient shows as expected
sensitivity to both anomalies and a maximum of
sensitivity just above the station array. With the
CSEM data, when weigthed fields are inverted, the
gradient shows small sensitivities just above the
station array but a very high sensitivity zone close
to the transmiter position. The sensitivity cumulates
under the transmiter and spreads out above the station
array. This effect is very pronouced here due to
the unbalance between the number of transmiters
and the number of stations. The phenomenon is not
visible with MT data for wich sources are supposed
to be far from the array, and is not so critical for
multiple source CSEM, as in Grayver et al. (2013) or
Plessix & Mulder (2008), because the maximum of
sensitivity at the source location spreads out all along
the survey. The last picture in figure 2 shows that
using a pseudo-MT tensor formulation, the sensitivity
anomaly under the transmitter is reduced and is closer
from the MT sensitivity even though we are not in far
field. This behavior is also observed in far field.

The footprint of the transmiter in the sensitivity
is not completly removed but is reduced enough to
allow convergence of the inversion. We show in
figures 3 to 6 the inversion result obtained for MT

Figure 2 Profile of the gradient of the cost function
computed for the 1st frequency (32s) for (a) MT data. (b)
CSEM with normalized data. (c) CSEM with pseudo-MT
tensor formulation.

data, CSEM data with weigthed data and pseudo-
MT tensor formulation using 5 frequencies (32s, 8s,
1Hz, 4Hz and 16Hz). The station array is in far field
condition for the highest frequencies, near field for the
lowest, and intermediate in between. Sharper results
should be obtained with more efficient regularization
but the conclusions should not differ. Even though the
deep resistive anomaly is underestimated and a few
artefacts appear around the shallow anomaly, the MT
data inversion reconstructs quite well the 3 anomalies
in very few iterations (< 20 iterations). The inversion
of CSEM weighted data fails to converge. It gets
stuck in a local minimum after the 1st iteration. We
clearly see in the inverted model the footprint of
the transmiter sensitivity anomaly that dominates the
reconstruction. The deep anomalies are shifted and
smoothed along the wavepath between the sources
and the stations. The shallow anomaly is not re-
constructed, and several artefacts appear close to the
surface. Using the pseudo-MT tensor formulation,
artefacts are still visible under the transmiter, but
the deep anomalies are better reconstructed and the
shallow anomaly is well imaged. Convergence is also
better (15 iterations).
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Figure 3 Exact resistivity model with 3 anomalies, 100
station and 2 orthogonal transmiters (a) (yz) profile (b) top
view at 280m. (c) top view at 1000m.

Figure 4 Final inverted result for the MT data. (a) (yz)
profile (b) top view at 280m. (c) top view at 1000m.

CONCLUSIONS

We proposed an alternative formulation of the CSEM
inversion problem by recasting data as a pseudo-
MT tensor. We show on a synthetic case that this
formulation, when used with an accurate Gauss-
Newton inversion and an efficient reparameterization
allows to perform 3D inversion of CSEM land data
using a single transmiter where common approach
fails.

Figure 5 Final inverted result for the CSEM data with
normalized fields. (a) (yz) profile (b) top view at 280m. (c)
top view at 1000m.

Figure 6 Final inverted result for the CSEM data with the
pseudo-MT tensor formulation. (a) (yz) profile (b) top view
at 280m. (c) top view at 1000m.
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