

Multi-scale modelling for the assessment of water quality and land subsidence due to salt layers dissolution

Sébastien Gourdier, Behrooz Bazargan-Sabet, Chan Quang Vong

▶ To cite this version:

Sébastien Gourdier, Behrooz Bazargan-Sabet, Chan Quang Vong. Multi-scale modelling for the assessment of water quality and land subsidence due to salt layers dissolution. EGU General Assembly 2016, Apr 2016, Vienne, Austria. pp.EGU2016-13146. hal-01281095

HAL Id: hal-01281095 https://brgm.hal.science/hal-01281095

Submitted on 1 Mar 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

MULTI-SCALE MODELLING FOR THE ASSESSMENT OFWATER QUALITY AND LAND SUBSIDENCE DUE TO SALT LAYERS DISSOLUTION

<u>Sébastien GOURDIER</u>¹, Chan Quang VONG¹, Behrooz BAZARGAN-SABET² ¹*BRGM, France* ²BRGM& *Université de Lorraine, France* email:<u>s.gourdier@brgm.fr</u>, <u>cq.vong@brgm.fr</u>, <u>b.bazargan-sabet@brgm.fr</u>

Long term evolution of salt mine depends on mechanical behavior of the material but also on specific conditions like the intrusion of water into working areas. Such phenomenon has been observed in the Nancy Basin (East of France) where brine percolates through access shafts accompanied by significant subsidence at the surface level, bringing about growing societal concerns.

In order to understand the mechanisms and kinetics of dissolution of salt inducing the phenomenon of subsidence, a numerical model is implemented. The circulation of water between the salt layer and the impervious layer induces the creation of dissolution channels. In active dissolution zones, the channel network constantly evolves: new channels appear with new dissolution zones while others collapse because of their too important dimensions.

The model simulates the phenomenonof dissolution at the channel scale first, then at the basin scale. Dissolution channels modeling has been realized using COMSOL Multiphysics® with Darcy's Law and Solute Transport interfaces.

At the channel scale, realistic parameters used as input data gave raise to output results consistent with the expected range of values for numerical assessment of the transient period and mass fluxes.

At the basin scale, initial porosity and hydraulic conductivity fields, related to each other by a cubic law, are assumed to follow a Weibull distribution. From this initial state, the transient model calculates the evolution of porosity with time, taking into account Darcy's velocity as it was formulated by Yao *et al.* (2014). Progress in dissolution and transport gives rise to the creation of dissolution channels.

Channels mechanical behavior is investigated through extending 2D model into 3D one. The calculations show that open channels collapse when they reach a width of approximatively one meter. The results of these investigations are consistent with the *in situ* measurements, notably with the estimation of the subsidence rate.

The coupled hydro-mechanical model developed in the frame of this study allows simulation of creation and collapse of dissolution channels. It is a relevant tool for describing the environmental consequences of salt mine closure ongroundwater quality andland stability. It can be easily transposed to karstic environment.

Key words: Salt mine, Dissolution, Model, Subsidence

References:

 Renard, F., J.-P. Gratier, P. Ortoleva, E. Brosse, and B. Bazin. 1998. "Self-Organization during Reactive Fluid Flow in a Porous Medium." Geophysical Research Letters 25 (3): 385–88. doi:10.1029/97GL03781. [2]. Yao, Banghua, Xianbiao Mao, Kai Zhang, and Wei Cai. 2012. "A Non-Linear Fluid-Solid Coupling Mechanical Model Study for Paleokarst Collapse Breccia Pipes Under Erosion Effect." Electronic Journal of Geotechnical Engineering 17.