Usefulness of historical information in extreme value analysis of coastal water levels or how to relativize outliers

Thomas Bulteau, Déborah Idier, Jérôme Lambert, Manuel Garcin

To cite this version:

Thomas Bulteau, Déborah Idier, Jérôme Lambert, Manuel Garcin. Usefulness of historical information in extreme value analysis of coastal water levels or how to relativize outliers. EVAN 2015: Advances in Extreme Value Analysis and Application to Natural Hazards, Sep 2015, Santander, Spain. 2015. hal-01184971

HAL Id: hal-01184971
https://brgm.hal.science/hal-01184971
Submitted on 18 Aug 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Usefulness of historical information in extreme value analysis of coastal water levels or how to relativize outliers

Thomas Bulteau¹*, Déborah Idier¹, Jérôme Lambert¹, Manuel Garcin¹
¹BRGM, French Geological Survey, France
* t.bulteau@brgm.fr

Key Words: uncertainties; Bayesian analysis; Xynthia.

Abstract:
The knowledge of extreme coastal water levels is useful for coastal flooding studies or the design of coastal defences. While deriving such extremes with standard analyses using tide gauge measurements, one often needs to deal with limited effective duration of observation which can result in large statistical uncertainties. This is even truer when one faces outliers, those particularly extreme values distant from the others. In a recent work (Bulteau et al., 2014), we investigated how historical information of past events reported in archives can reduce statistical uncertainties and relativize such outlying observations. We adapted to the specific case of coastal water levels a Bayesian Markov Chain Monte Carlo method initially developed in the hydrology field (Reis and Stedinger, 2005). We applied this method to the site of La Rochelle (France), where the storm Xynthia in 2010 generated a water level considered so far as an outlier. Based on 30 years of tide gauge measurements and 8 historical events, the results showed a significant decrease in statistical uncertainties on return levels when historical information is used. Also, Xynthia’s water level no longer appeared as an outlier and we could have reasonably predicted the annual exceedance probability of that level beforehand (predictive probability for 2010 based on data till end of 2009 of the same order of magnitude as the standard estimative probability using data till end of 2010). Such results illustrate the usefulness of historical information in extreme value analyses of coastal water levels, as well as the relevance of the proposed method to integrate heterogeneous data in such analyses.

Reference: