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Abstract. The knowledge of extreme coastal water levels is

useful for coastal flooding studies or the design of coastal

defences. While deriving such extremes with standard anal-

yses using tide-gauge measurements, one often needs to deal

with limited effective duration of observation which can re-

sult in large statistical uncertainties. This is even truer when

one faces the issue of outliers, those particularly extreme val-

ues distant from the others which increase the uncertainty on

the results. In this study, we investigate how historical infor-

mation, even partial, of past events reported in archives can

reduce statistical uncertainties and relativise such outlying

observations. A Bayesian Markov chain Monte Carlo method

is developed to tackle this issue. We apply this method to

the site of La Rochelle (France), where the storm Xynthia in

2010 generated a water level considered so far as an outlier.

Based on 30 years of tide-gauge measurements and 8 histor-

ical events, the analysis shows that (1) integrating historical

information in the analysis greatly reduces statistical uncer-

tainties on return levels (2) Xynthia’s water level no longer

appears as an outlier, (3) we could have reasonably predicted

the annual exceedance probability of that level beforehand

(predictive probability for 2010 based on data until the end

of 2009 of the same order of magnitude as the standard es-

timative probability using data until the end of 2010). Such

results illustrate the usefulness of historical information in

extreme value analyses of coastal water levels, as well as the

relevance of the proposed method to integrate heterogeneous

data in such analyses.

1 Introduction

Extreme value theory has been widely used to estimate the

highest values of coastal water levels (WL). Within risk anal-

yses, the knowledge of extreme WL and their associated an-

nual probabilities of exceedance or return periods are re-

quired for dimensioning coastal defences or for designing

WL scenarios useful in flooding hazard estimations.

A first approach consists of performing a classical extreme

value analysis (EVA) directly on tide-gauge observations

(this approach is called direct) (Arns et al., 2013). However,

such a method provides limited extrapolation time. Indeed,

it is generally considered that one should not estimate levels

whose return periods exceed 4 times the data-span to keep

uncertainties manageable (Pugh, 2004), whereas the analy-

sis is fully constrained by the duration of observations (a few

decades at most). In addition, direct methods are sensitive to

outliers (Tawn and Vassie, 1989), those particularly extreme

values much higher than other observations, thus making re-

sults even more uncertain. An outlier might be an extreme

manifestation of the random variable we want to analyse or it

can be a realisation of a different random process or an error

in recording or reporting the measurement (Grubbs, 1969).

In the first case, the outlying observation should be kept in

the sample as it provides valuable information on the random

variability inherent in the data (Mazas and Hamm, 2011).

An alternative to the direct approach consists of perform-

ing an EVA to the random atmospheric surge signal and then

combining it with the deterministic tidal probability distri-

bution (Tawn and Vassie, 1989; Batstone et al., 2013), thus

allowing extrapolation to larger return periods while being

less sensitive to outliers (Haigh et al., 2010). Such an indi-
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rect method assumes surges and tides are independent. This

assumption being wrong in some places (Idier et al., 2012),

methods have been developed to take into account this par-

tial dependency (Mazas et al., 2014). However, the results are

not yet fully satisfactory, with for instance a notable offset

between direct and indirect methods within the interpolation

domain (i.e. where return periods are less than the duration of

observation). Moreover, even if this approach allows estimat-

ing WL of longer return periods, it is still constrained by the

information measured by the tide gauge. Consequently, out-

liers might not be better described by the final distribution

(typically if the associated atmospheric surges are outliers

in their own distribution), making the estimation of their re-

turn periods problematic. For instance, the maximum hourly

WL recorded at La Rochelle (8.01 m above Z.H. (Zéro Hy-

drographique)) during the storm Xynthia that hit the French

Atlantic coast on 28 February 2010 causing 47 deaths (Bertin

et al., 2012), still appears as an outlier using an indirect ap-

proach and the estimation of its return period is not relevant

(Duluc et al., 2014).

Another possibility is to use regional frequency analysis

(RFA) to artificially increase the duration of observation ,

thereby reducing uncertainties (Duluc et al., 2014; Weiss

et al., 2014a, b). Outliers may thus be better described by

the distribution as their representativity might increase. RFA

consists of pooling together observations from several sites

inside a homogeneous region, assuming the highest obser-

vations in that region follow a common regional probability

distribution, up to a local scale factor representing specific

characteristics of each site. However, this approach raises the

issues of the definition of homogeneous regions and the in-

tersite dependency. Using an RFA of skew surges, Duluc et

al. (2014) estimated a return period of Xynthia’s WL greater

than 1000 years, although they acknowledged uncertainties

were large.

The above-described techniques are all initially based on

WL measurements. In the past, before the era of systematic

gauging, extreme events also happened. For those generating

marine submersion, testimonies exist which report the inun-

dated places. This information is often partial, in the sense

that most of the time it indirectly indicates that the sea-level

was at least higher than a given mark, but not which wa-

ter level was actually reached. Recently, Hamdi et al. (2014)

proposed a method to integrate historical information in ex-

treme surge frequency estimation, using the maximum like-

lihood estimators for the distribution parameters. However,

this method requires the knowledge of historical surges, a

piece of information rarely found in archives (see e.g. Baart

et al., 2011). The added value of using historical information

in EVA has been widely recognised for the last 30 years in

the domain of hydrology (see e.g. Benito et al. (2004) for a

review). Among the statistical techniques developed to com-

bine both sources of data (recent observations and histori-

cal information), Bayesian methods provide the most flex-

ible and adequate framework because of their natural abil-

ity for handling uncertainties in extreme value models (Reis

and Stedinger, 2005; Coles and Tawn, 2005). Surprisingly,

we found only one reference (Van Gelder, 1996) develop-

ing such a method for sea water levels. Van Gelder (1996)

set up a Bayesian framework to account for known histori-

cal sea floods in the estimation of sea dikes design level in

the Netherlands. The method consists of using historical data

as prior information to estimate an a priori distribution for

the parameters of the probability distribution. However, the

method cannot deal with partial information (an estimation

of the historical water level is needed), implying that a lot of

historical information cannot be integrated in such a frame-

work.

In the hydrology field, Reis and Stedinger (2005) devel-

oped a Bayesian Markov chain Monte Carlo (MCMC) ap-

proach to tackle the issue of integrating partial historical in-

formation within EVA. The essence of the approach is to

incorporate partial historical data into the model likelihood

as censored observations. In the present study, we build on

this approach to develop a Bayesian MCMC method adapted

for EVA of coastal water levels (called HIBEVA, for Histor-

ical Information in Bayesian Extreme Value Analysis, here-

after). We notably take into account the influence of mean

sea-level rise on tide-gauge data and historical information.

We also take advantage of the Bayesian framework to derive

predictive return levels (Coles and Tawn, 2005). In partic-

ular, we investigate whether it is possible to better predict

the probability of future extreme coastal WL by considering

partial historical information. As a case study, we apply the

HIBEVA method to the site of La Rochelle and investigate

whether (Q1) integrating historical information significantly

reduces statistical uncertainties; (Q2) the WL reached during

Xynthia in 2010 is really an outlier; (Q3) it would have been

possible to predict the annual exceedance probability of that

level before it happened.

Section 2 describes the HIBEVA method. The case study

at La Rochelle is then presented in Sect. 3. In Sect. 4, re-

sults are discussed and some conclusions and perspectives

that such a method opens for extreme statistics are drawn in

Sect. 5.

2 The HIBEVA method

2.1 Theoretical model

The model chosen to represent and extrapolate extreme val-

ues of WL is the generalised Pareto distribution (GPD), ap-

plied to a peaks-over-threshold (POT) sample. This extreme

value model has been widely used and is most commonly

recommended as it makes use of all the high values for

the period under study to adjust the parametric distribution

(Coles, 2001; Hawkes et al., 2008). Bernardara et al. (2014)

recommend a double-threshold (up, us) approach to deal with

auto-correlated environmental variables in a POT frame-
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work. First, physical de-clustering is performed by selecting

a proper physical threshold up above which only the maxi-

mum WL value is selected for each event that exceeds this

threshold. The independence of the maximum WL selected

is ensured by setting a minimum interval between peak wa-

ter levels. This interval is typically chosen to be represen-

tative of storm duration on the site under study. The value

for up is set so that a sample of several hundred peak values

can be selected to include both moderate and strong storm

events. In practice, this corresponds to a number n of events

per year between 5 and 10 in average. The second step of the

double-threshold approach is a statistical optimization con-

sisting in selecting a relevant value of the statistical threshold

us (us > up), which is used in the formulation of the GPD,

limiting both bias and variance (Bernardara et al., 2014). The

choice of us is driven by classical visual tools such as mean

residual life and parameters stability plots (see Coles, 2001).

The GPD is a distribution with two parameters (σ – scale

parameter, and ξ – shape parameter). For a given threshold

us, the cumulative distribution function (CDF) of the GPD is

equal to the probability P (X ≤ x |X > us), where the ran-

dom variable X describes observed peak water levels, and it

can be written as follows:

G(ξ,σ ) (x)=


1−

(
1+

ξ (x− us)

σ

)− 1
ξ

+

if ξ 6= 0

1− exp

(
−
(x− us)

σ

)
if ξ = 0

(1)

for x > us,

where σ > 0 and the notation y+ for y ∈ R is defined as y+ =

max(y,0). The support of the distribution is us < x ≤ us−(
σ
/
ξ
)

if ξ < 0 and x > us if ξ ≥ 0. Whereas σ represents

the scale of the distribution (in units of x), ξ controls the

behaviour of the distribution’s tail. If ξ < 0, the distribution

is bounded, we are in the Weibull domain. If ξ > 0 (resp.

= 0), the distribution is unbounded, we are in the Fréchet

(resp. Gumbel) domain. Contrary to the Weibull domain, a

small change of ξ in the Fréchet domain involves significant

changes of the distribution.

2.2 Bayesian framework

In contrast with classical statistical methods used to compute

the parameters of the distribution and to derive extreme val-

ues (e.g., maximum likelihood, method of moments, prob-

ability weighted moments. . . ), Bayesian techniques provide

a natural framework to deal with uncertainties. They are de-

signed to obtain the full posterior distribution of variables of

interest and not only point estimates (Coles and Tawn, 2005).

Let us denote by θ the vector of parameters (ξ,σ ). Its pos-

terior distribution is related to the likelihood of data through

Bayes’ theorem:

f (θ |D)=
f (D|θ)f (θ)

f (D)
, (2)

where f (D |θ) is the likelihood function of a set of observa-

tions D given the parameters vector, f (θ) is the prior distri-

bution of the parameters and f (D) is a normalising constant

depending only on the observations. f (θ) translates the prior

knowledge one may have about the parameters. In our study,

we have no prior information about GPD parameters for our

data set. Consequently, we use a non-informative flat prior

(f (θ)∝ 1) (Payrastre et al., 2011). In that case, f (θ |D) is

proportional to the likelihood function.

To sample effectively the posterior distribution of interest,

we use a Markov chain Monte Carlo (MCMC) algorithm.

MCMC algorithms allow sampling values of the parame-

ters from the posterior distribution, without computing the

normalising constant. In this study, the Metropolis–Hastings

(MH) algorithm (Metropolis et al., 1953; Hastings, 1970)

is used to generate a set of 50 000 vectors θ with density

f (θ |D). The convergence of the chain is checked numeri-

cally with the Geweke test (Geweke, 1992) and visually with

trace plots. We can then compute the corresponding quan-

tiles of WL according to the GPD. In particular, the mode of

the set of vectors θ can be retrieved as the vector maximis-

ing the likelihood function (because of the proportionality

between f (θ |D) and f (D|θ)). The associated quantiles xT
correspond therefore to the maximum likelihood estimates

for WL. Credibility intervals on WL can also be estimated

based on the large set of quantile values. Results can be dis-

played on a return-level plot once the correspondence be-

tween quantiles xT (xT > us) and return periods T has been

set up as follows:

P (X > xT )=
1

nT
, (3)

where n is the mean number of exceedances of threshold

up per year. The quantile xT is said to be the standard es-

timative T -year return level and it is exceeded once on av-

erage by a peak event in T years. Conversely, T is said to

be the standard estimative return period of level xT . Since

P (X > xT )= P (X > us)P (X > xT |X > us), Eq. (3) can

be rewritten in a more suitable form to construct a return-

level plot:

1−Gθ (xT )=
1

λT
, (4)

where λ= nP (X > us) is the mean number of exceedances

of threshold us per year.

One main advantage of the Bayesian analysis is the possi-

bility to integrate all the available information in a unique

predictive distribution for extreme WL values (Coles and

Tawn, 2005), which is defined as follows:

P (X ≤ x|X > us,D)=

∫
θ

Gθ (x)f (θ |D)dθ . (5)

Thus, the predictive distribution of a new observation x

(given it is greater than us) can be easily estimated as

www.nat-hazards-earth-syst-sci.net/15/1135/2015/ Nat. Hazards Earth Syst. Sci., 15, 1135–1147, 2015
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the mean of GPD values calculated at x for the en-

tire set of sampled parameters and can be represented

on a return-level plot after solving the equation T̃ =

1
/
(λP (X > x̃T |X > us,D)), where x̃T is the predictive re-

turn level associated with the predictive return period T̃ . Al-

though the terminology of predictive return period is loose,

it is useful in order to maintain comparison with the stan-

dard analogue T (Coles and Tawn, 2005). Since all the un-

certainty information has been integrated in the final result,

credibility intervals are no longer defined. Instead, the value

p = 1
/ (
nT̃
)

can be interpreted as the probability that, given

all the available information, a future peak WL will exceed

x̃T .

Within the Bayesian framework, it is therefore possible to

calculate and compare both standard estimative return levels

xT (equal to what would have been obtained using a clas-

sical maximum likelihood estimator) and predictive return

levels x̃T . While the predictive return levels incorporate all

the uncertainty information, standard estimative return levels

can be associated with credibility intervals which provide an

overview of the uncertainty related to the quantiles xT when

visualised on a return-level plot.

Finally, it is worth noting that for large return periods, the

annual exceedance probability of a given level is directly

available reading a return-level plot constructed with peak

event return periods, contrary to the peak event exceedance

probability of that level. Indeed, the former is equal to 1 : T

(or 1 : T̃ ) whereas the latter is given by Eq. (3) 1 : nT (or

1 : nT̃ ) (cf. Appendix A).

2.3 Likelihood formulation

The formulation of the likelihood function in Eq. (2) de-

pends on the characteristics of observations D (Payrastre et

al., 2011). We can split the likelihood function into two parts,

thus separating the systematic period (with systematic tide-

gauge records) and the historical period:

f (D |θ)= F(Dsys|θ)︸ ︷︷ ︸
systematic likelihood

· f (Dhis|θ)︸ ︷︷ ︸
historical likelihood

. (6)

Let us assume we have a number s of systematic tide-gauge

observations above us (x1, . . .,xs) and a historical period of

ny years with H = h events above a perception threshold X0

(X0 > us). The h events above X0 during the historical pe-

riod are supposed to be exhaustive. This is a necessary con-

dition. Historical information can be of different types. The

number h can thus be broken down into h1 historical events

whose water levels are known (y1, . . .,yh1
), a number h2 of

historical events that exceeded the perception threshold X0

but whose exact water levels are not known and h3 histori-

cal events whose water levels are known to be within a given

range of values (lower bounds ylb
1 , . . .,y

lb
h3

larger thanX0; up-

per bounds yub
1 , . . .,y

ub
h3

). The general expression of the like-

lihood of systematic data is the following:

f
(
Dsys|θ

)
=

s∏
i=1

gθ (xi) , (7)

where gθ is the probability density function of the GPD for

parameters θ .

The general expression of the likelihood of historical data

is the following:

f (Dhis |θ)= P (H |θ )

h1∏
j=1

gθ ,X|X>X0

(
yj
)

(8)

h3∏
l=1

[
Gθ ,X|X>X0

(
yub
l

)
−Gθ ,X|X>X0

(
ylb
l

)]
.

The first term of the right-hand side is the probability of ob-

serving h= h1+h2+h3 events above X0 during ny years

whereas the two product terms specify the historical infor-

mation for h1 and h3 historical events. Considering that

the peaks exceeding us occur as a Poisson process (Coles,

2001), then the number of exceedances of us in ny years fol-

lows a Poisson distribution of parameter λny . Consequently,

the number of exceedances of X0 in ny years follows a

Poisson distribution of parameter λnyP (X > X0|X > us)=

λny [1−Gθ (X0)]. Thus,

P (H |θ )=

(
λny

[
1−Gθ (X0)

])h
h!

exp
(
−λny

[
1−Gθ (X0)

])
. (9)

Replacing Eq. (9) into Eq. (8) and since gθ ,X|X>X0
(x)=

gθ (x)
/
(1−Gθ (X0)) and Gθ ,X|X>X0

(x)=

Gθ (x)
/
(1−Gθ (X0)), Eq. (8) becomes the following:

f (Dhis|θ)=

(
λny

)h
h!

exp
(
−λny [1−Gθ (X0)]

)
(10)

(1−Gθ (X0))
h2

h1∏
j=1

gθ

(
yj
) h3∏
l=1

[
Gθ

(
yub
l

)
−Gθ

(
ylb
l

)]
.

So far, we have implicitly considered that the POT sample

represents a stationary process. This assumption is system-

atically made in the hydrology field (Gaume et al., 2010).

However, extreme WL exhibit long-term trends that cannot

be ignored. Over the 20th century, these trends have been

shown to be similar to those of mean sea level (MSL) at most

locations worldwide (Woodworth et al., 2011). To account

for this behaviour in the systematic data set, the linear trend

is calculated for the entire tide-gauge record and removed

from the data. Then data are adjusted to have a mean sea-

level equal to that of the reference year of interest. The histor-

ical perception threshold must also be corrected for the MSL

rise (and called hereafter the adjusted perception threshold).
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La Pallice

Figure 1. Study site and water level data localisation.

Once this is done, Eq. (10) becomes

f (Dhis |θ)=

ny∏
m=1

[
λhm

hm!
exp

(
−λ

[
1−Gθ

(
X0,m

)])
(11)

(
1−Gθ

(
X0,m

))h2,m

h1,m∏
j=1

gθ

(
yj
)h3,m∏
l=1

[
Gθ

(
yub
l

)
−Gθ

(
ylb
l

)]]
,

where X0,m is the adjusted perception threshold for histori-

cal yearm and h1,m, h2,m, h3,m are, respectively, the numbers

of historical events with known WL, with unknown WL and

with WL within a range of values, that exceeded X0,m dur-

ing year m. hm is the total number of historical events that

exceeded X0,m during year m (hm =
∑3
i=1hi,m).

3 Application to the Xynthia event at La Rochelle

3.1 Study site and data

The study site is La Rochelle (west Atlantic coast of France,

Fig. 1), focusing on the tide gauge located at La Pallice

harbour (about 30 years of data until 2013). The highest

recorded sea-level is 8.01 m Z.H. and it occurred during Xyn-

thia at high water on 28 February 2010 (see Fig. 2). As a

comparison, the highest tidal level estimated from tidal com-

ponents analysis is 6.86 m Z.H. (SHOM, 2013).

As highlighted in the introduction, to illustrate the use-

fulness of the developed HIBEVA method, we investigate

whether: (Q1) integrating historical information significantly

reduces statistical uncertainties, (Q2) the WL of 8.01 m Z.H.

reached during Xynthia is really an outlier, (Q3) it would

have been possible to predict the annual exceedance prob-

ability of that level beforehand.

Four cases are considered, applying the HIBEVA method,

respectively, to the following: (case 1) the systematic data un-

til year 2009, (case 2) the systematic data including Xynthia’s

year (2010), (case 3) the systematic data until year 2009 with

1880 1900 1920 1940 1960 1980 2000 2020
0

1

2

3

4

5

6

7

8

9

Date (years)

W
L 

(m
)

Xynthia
x

Figure 2. Input data: hourly tide-gauge measurements after remov-

ing the linear trend (black: until the end of 2009; blue: 2010; grey:

2011–2013) and historical information (black dotted lines). The red

line represents the position of the perception threshold (7.1 m Z.H.

in 2010). It varies with time as a consequence of the mean sea-level

rise.

historical information, (case 4) the systematic data including

Xynthia’s year (2010) with historical information.

Whereas all cases are useful to answer our first point (Q1),

cases 2 and 4 aim more specifically at investigating the out-

lier nature of Xynthia’s WL (Q2), and cases 1, 3 and 4 aim at

studying the capability of the HIBEVA method to predict the

exceedance probability of Xynthia’s WL beforehand (Q3).

Regarding the systematic data until 2010, the tide gauge

provides about 27 years of data. Figure 2 shows the data after

removing the linear trend (1.9± 0.1 mm yr−1, in agreement

with the study of Gouriou et al. (2013) in the same area) and

adjusting it to the mean sea-level of 2010 (calculated from

the same data set and equal to 3.93 m Z.H.).

Concerning historical events, the data set is based on two

analyses of archives: Garnier and Surville (2010) and Lam-

bert (2014). A convenient perception threshold is the alti-

tude of the old harbour dock of La Rochelle, which has

remained unchanged over the studied period (first identi-

fied event: 1890). When the dock is mentioned as flooded,

the water level is considered to have reached at least the

dock altitude. Following the notations of Sect. 2, we are in

a case where h1 = h3 = 0. Based on a digital terrain model

(DTM) (Litto3D ®, horizontal resolution 1 m, vertical accu-

racy 0.15 m), the mean altitude of the dock, calculated from

457 points surrounding it, is X0 = 7.1 ± 0.1 m Z.H. A total

of eight flooding events of the old harbour dock are identi-

fied since 1890 (Table 1 and Fig. 2). Original archives can be

found in the above-mentioned references. The entire histori-

cal period covers 94.4 years (including gaps in the systematic

period). As explained in Sect. 2.3, this historical data set must

be corrected for the mean sea-level rise. Since the systematic

data trend is close to the global sea-level rise trend (see e.g.

Church and White, 2011) and the vertical land motion at the

study site (monitored by GPS station since 2001) is negli-

www.nat-hazards-earth-syst-sci.net/15/1135/2015/ Nat. Hazards Earth Syst. Sci., 15, 1135–1147, 2015
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Table 1. Summary of the eight historical flooding events that sub-

merged the old harbour dock since 1890. The altitude of the old

harbour dock is 7.1 m Z.H. Each event reported here has therefore

generated a WL higher than 7.1 m Z.H. back in the year of the event.

Notations for the sources: GS – Garnier and Surville (2010); L –

Lambert (2014).

Date (dd/mm/yyyy) Sources WL reached, corrected

for year 2010 (m Z.H.)

22–23/01/1890 GS; L > 7.29

10–11/02/1895 GS; L > 7.29

08–09/01/1924 GS; L > 7.25

10/11/1931 L > 7.25

13–14/03/1937 L > 7.24

16/11/1940 GS; L > 7.23

16/02/1941 GS; L > 7.23

15/02/1957 GS > 7.20

gible (Santamaría-Gómez et al., 2012), we can assume that

the relative sea-level rise in the La Rochelle area is equal to

the absolute global sea-level rise. In other locations where

this cannot be assumed, regional estimations of sea-level rise

should be used instead. Making the hypothesis that this result

is valid over the long term, we use the global sea-level rise

rate of Church and White (2011) over the period 1880–1935

(global linear trend of 1.1± 0.7 mm yr−1) to adjust the per-

ception thresholdX0 for each year since 1890 and until 1935.

For the period 1936–2010, we use the one calculated previ-

ously from local tide-gauge measurements. For example, X0

adjusted for year 1890 becomes X0,1 =X0+ 0.0019(2010-

1936)+ 0.0011 (1936–1890)' 7.29 m.

3.2 Results

The first step of the double-threshold approach detailed in

Sect. 2.1 is the physical de-clustering of systematic data.

With a minimal duration of 72 h (typical storm duration on

the French Atlantic coast) between two peaks to ensure their

independence, the physical threshold up is chosen so that n,

the mean number of peak events per year, is about 10. Then,

the statistical threshold us is selected using the classical tools

described in Sect. 2. This provides a threshold us = 6.68 m

for the case with the smallest data set, i.e. case 1. For this

case, the mean number of peak WL that exceed that threshold

per year is λ= 2.9. It is estimated as the number of peak WL

exceeding us divided by the effective duration of the system-

atic period (about 26 years for case 1). For sake of intercom-

parison, the threshold us is kept constant for every case (1 to

4). It should be noted that the rate λ could be treated as un-

certain under the Bayesian framework, thus making the prob-

lem tri-dimensional. In that case, the likelihood of systematic

data (cf Eq. 7) should be modified to account for the proba-

bility of observing s peak WL during the systematic period.

However, to simplify the presentation, we chose to fix λ at

the proportion observed in the systematic data set.

Results are presented in Fig. 3 and Table 2. As a general

comment, whatever the case, predictive return levels are uni-

formly above standard estimates (Fig. 3). This is a conse-

quence of the parameter uncertainty they account for (Coles

and Tawn, 2005). At low levels, there is little difference be-

tween predictive and standard return levels. At higher levels,

the difference becomes larger as a consequence of the in-

creasing parameter uncertainty.

First, we focus on the impact of historical information on

the standard estimative return levels WLT (T = 50, 100 or

500 years) as well as on their associated credibility inter-

vals (Q1) (Table 2). When historical data are taken into ac-

count, the values of WLT increase whatever the considered

return period (cases 3 and 4 vs. cases 1 and 2, respectively).

When systematic data until the end of 2010 are used (cases

2 and 4), the precision related to estimated return levels also

changes. In particular, the integration of historical data di-

vides by a factor of 2 the relative widths of the credibility

intervals whatever the return period. When systematic data

until the end of 2009 are used (cases 1 and 3), we notice

the relative widths of the credibility intervals are almost the

same, with a slight increase for case 3 where historical data

are integrated. This can be explained by a shift of the distribu-

tion of the GPD parameters towards the Fréchet domain (i.e.

positive values of ξ ) (Fig. 3 a1 and a3). Indeed, as mentioned

in Sect. 2.1, a small change of ξ in the Fréchet domain in-

volves significant changes of the distribution. Consequently,

credibility intervals are wider if the distribution of the GPD

parameters lies in the Fréchet domain than if it lies in the

Weibull domain. If we consider that case 4 is the reference,

then integrating historical data in case 3 leads to more accu-

rate values of WLT compared to case 1, where no historical

information is used, while keeping the relative width of the

credibility interval similar to case 1. Thus, integrating histor-

ical information in the EVA of WL reduces uncertainties with

more accurate and/or more precise estimative return levels.

Now, we investigate the outlier nature of Xynthia’s WL

(Q2), comparing standard estimative return periods for cases

2 and 4 (Fig. 3). In case 2, the bivariate posterior proba-

bility density contours of (ξ,σ ) shows that the shape pa-

rameter of the distribution’s mode is positive, indicating a

heavy-tailed distribution. There is also a large variability of

ξ , resulting in extremely large credibility intervals for the

highest return periods. This is due to the value of the high-

est point (Xynthia) which is about 0.8 m above the second

highest and could be reasonably considered as an outlier.

The standard estimative return period of Xynthia’s WL is

320 years which is much larger than 4 times the observation

period (4× 27= 108 years) and therefore highly uncertain.

In case 4, the bivariate density plot shows that ξ is better

constrained: the historical information has greatly reduced

the uncertainties on ξ as it can be seen on the credibility in-

tervals (Fig. 3 b4). In this case, the water level reached during
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Table 2. Standard estimative return values of WL and widths of the associated 95 % central credibility intervals (absolute – 1CI and relative

– 1CI /WLT ) for several return periods T according to each case: (1) systematic data until the end of 2009, (2) systematic data until the

end of 2010, (3) systematic data until the end of 2009 and historical information, (4) systematic data until the end of 2010 and historical

information.

Case T (years) WLT (m Z.H.) 1CI (m Z.H.) 1CI /WLT (%)

50 7.19 0.62 9

1 100 7.24 0.85 12

500 7.35 1.64 22

50 7.51 1.46 19

2 100 7.68 3.39 44

500 8.15 5.67 70

50 7.46 0.61 8

3 100 7.61 0.91 12

500 8.00 2.10 26

50 7.56 0.70 9

4 100 7.76 1.08 14

500 8.33 2.63 32

Figure 3. Results: (a) bivariate density contours of parameters ξ and σ . Black dots represent the Markov chain of 50 000 simulations. The

white dot is the mode of the bivariate density. (b) return-level plots for the following cases: (1) systematic data until the end of 2009, (2)

systematic data until the end of 2010, (3) systematic data until the end of 2009 and historical information, (4) systematic data until the end of

2010 and historical information. The plotting positions of systematic and historical data are defined using the method developed by Naulet

(2002) (see Appendix B).

Xynthia no longer appears as an outlier. The standard estima-

tion of its return period is 220 years.

Finally, we evaluate if we could have predicted the ex-

ceedance probability of Xynthia’s WL before it happened

(Q3), by comparing results of cases 1, 3 and 4 in terms of

standard estimation and prediction (Fig. 3). Because the cal-

culated return periods of Xynthia’s WL are large (typically

greater than 100 years) and it makes more sense to speak

about predictive exceedance probabilities rather than predic-

tive return periods (see Sect. 2.2), we will compare results

in terms of annual probabilities of exceedance (see Sect. 2.2

and Appendix A). Then we shall recall that the prediction for

a Xynthia-like WL can be interpreted as the probability that

next year’s maximum WL (e.g. in 2010 if we are in 2009)

will exceed Xynthia’s WL. In case 1, the shape parameter

of the distribution’s mode is slightly negative, which indi-

cates a bounded distribution with a maximum of us−σ
/
ξ =

7.98 m. This is lower than Xynthia’s WL, which implies the

standard estimation of the return period for a Xynthia-like

WL is not defined. The obtained prediction of the annual
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probability of exceedance of a Xynthia-like WL for 2010 is

p ' 1 : 1060 years. In case 3, the bivariate density plot for

the GPD parameters shows that the value of ξ for the distri-

bution’s mode is now positive compared to case 1, indicat-

ing a heavy-tailed distribution. The dispersion of ξ is slightly

lower than in case 1, but its distribution is shifted towards

the Fréchet domain, resulting in larger credibility intervals

as mentioned previously (Fig. 3 b3). The standard estimation

of the return period of a Xynthia-like WL is about 520 years.

Considering the predictive return levels, the annual probabil-

ity of exceedance of a Xynthia-like WL is p ' 1 : 270 years.

Thus, by considering historical data, the predictive probabil-

ity of having an annual maximum WL in 2010 of at least

8.01 m is about 5-fold the one calculated in case 1 where no

historical information is used. Finally, results of case 4 can

be used to estimate the predictive quality of the method for

this event on the study site: interestingly, there is not much

difference between cases 3 and 4. The bivariate density plot

of case 4 shows that ξ is slightly greater with smaller disper-

sion and that σ is a bit more constrained. Consequently, the

return-level plots are very similar in both cases. The standard

estimation of the annual exceedance probability of Xynthia’s

WL is 1 : 220 years, a value close to 1 : 270 years predicted

back in 2009 (case 3). Thus, at the end of 2009, applying the

HIBEVA method to the available systematic data at that time,

together with historical information, we could have predicted

the right order of magnitude of the annual exceedance prob-

ability of a Xynthia-like WL.

4 Discussion

By integrating historical information in the extreme value

analysis of WL, the proposed method allows a better assess-

ment of standard estimative return levels while reducing sta-

tistical uncertainties. This has been verified on the site of La

Rochelle. Furthermore, the HIBEVA method allows placing

extreme events which can be considered as outliers in classi-

cal EVA, in a broader context, thus relativising their unique-

ness. The standard estimation of the return period of the WL

reached during Xynthia in the complete analysis at La Pallice

(case 4, T = 220 years) is significantly lower than the previ-

ous estimate of Duluc et al. (2014) using the same systematic

data set (T > 1000 years, see Sect. 1). Going one step further,

the method, applied on the full data set (systematic data until

2013 and historical information, all data adjusted to the mean

water level of year 2013), provides a standard return period

of a Xynthia-like WL of about 270 years. It is the smallest

return period we found in the literature regarding Xynthia’s

WL, tending to show it is probably closer to 100 years than

to 1000 years. In terms of prediction, the method provides a

probability of about 1 : 180 years that the maximum WL in

2014 exceeds that of Xynthia.

However, like other EVA approaches, the HIBEVA

method relies on some approximations and assumptions

(both on the data and the statistical model).

First, the use of historical data leads to uncertainties at two

levels. Within this study, we assume WL values at the tide

gauge of La Pallice and inside the harbour of La Rochelle

(about 5 km apart) are comparable. Due to local effects, this

might not be exactly the case. This is a primary difficulty

when using historical data: most of the time, historical ob-

servations are not made at the tide-gauge location. One solu-

tion to deal with this issue, although beyond the scope of this

paper, would be hydrodynamic modelling of last decades’

events to statistically quantify the WL offset, called DZ

hereafter. A second source of uncertainty is the estimation

of the perception threshold. Most of archives’ information

deals with water flooding a given area without more detailed

information. In the present study, archives indicate that the

old harbour dock was flooded without specifying the water

entrance location on the dock. We assume the threshold to be

the mean dock altitude, but this is an approximation. It should

be noted that since the distribution of ξ lies mostly in the

Fréchet domain (especially in cases 2, 3 and 4), the standard

and predictive estimation of large WL should be highly sensi-

tive to theDZ and X0 parameters. Nevertheless, the selected

values (noDZ andX0 = 7.1 m) lead to a standard estimation

of the return periods of the 8 historical events ranging from

about 10 to 15 years (Fig. 3, b4). Such return periods appear

consistent with the observed probability of flooding events (8

in 94.4 years) and as a first approximation, our choice seems

reasonable. For other applications, where DZ and X0 could

be more difficult to estimate, the Bayesian framework should

make the integration of DZ and X0 uncertainties within the

HIBEVA method possible (Reis and Stedinger, 2005).

The statistical model also contains uncertainties. In the

POT/GPD model, a main source of uncertainties is the choice

of the systematic statistical threshold us. Estimated quantiles

are indeed highly dependent on the threshold, the selection

of which is sometimes difficult and often subjective (Li et

al., 2012). In our case study, even if there are still some

uncertainties in the statistical threshold selection (done for

case 1, see Sect. 3.2), the resulting estimative distribution

passed two statistical adjustment tests with a 0.05 level of

risk (χ2 with 10 classes, Greenwood and Nikulin, 1996; and

Kolmogorov-Smirnov, see e.g. Shorack and Wellner, 2009).

A second source of uncertainty comes from the seasonal and

interannual variability of WL which has not been considered

in our model. Regarding the seasonal variability, if us is cho-

sen high enough, which is the case here, the selected events

occur mainly in the winter period (October to March for the

French Atlantic coast) and we can reasonably consider that

seasonal variability is negligible in the POT sample. Inter-

annual variability, on the other hand, can lead to significant

variations of extreme values in time as highlighted by the

work of Menéndez et al. (2009). Finally, we have fitted the

GPD directly on WL measurements, so even with additional
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historical information, our approach could be classified as

direct (see Sect. 1). As such, additional uncertainties may be

involved for high return values compared to an indirect ap-

proach (Haigh et al., 2010). However, integrating historical

information in an indirect approach is challenging. It would

require the characterisation of historical events in terms of

surges rather than WL, a piece of information rarely found in

archives as mentioned in Sect. 1. It would thus also require

the knowledge of historical tides which might be difficult to

estimate as the tide is not a stationary process, as highlighted

for instance by studies of sea-level rise influence on tidal har-

monics (Pickering et al., 2012).

As described in Sect. 3 and Fig. 3, the bivariate distribution

of the GPD parameters for our case study at La Rochelle lies

mostly in the Fréchet domain. A consequence is that small

changes of ξ can generate significant changes in the return-

level plots, especially in the tail of the distribution. There-

fore, regarding the above-described approximations and as-

sumptions done in the present study, the estimated values of

the return period of Xynthia’s WL should be considered with

caution, and interpreted as orders of magnitude rather than

exact values.

5 Conclusion

To reduce statistical uncertainties and to address the issue of

outliers in extreme value analyses of coastal water levels, we

developed a Bayesian method to integrate historical informa-

tion (even partial) of past events that occurred before the era

of systematic gauging. The proposed method, inspired from

previous works in the hydrology field, is adapted to POT

sample of coastal sea levels, taking into account the influence

of mean sea-level rise. It provides standard estimative as well

as predictive return levels, the latter being particularly useful

for decision makers.

The application of the method on the site of La Rochelle in

France illustrates the usefulness of historical information in

reducing statistical uncertainties in EVA and relativising ap-

parent outliers such as Xynthia’s WL. In particular, it shows

that, back in 2009 before the storm, we could have pre-

dicted the right order of magnitude of the annual exceedance

probability of a Xynthia-like WL. These results are particu-

larly important for raising awareness among decision makers

and eventually enhancing preparedness for future flooding

events. However, some uncertainties remain in the data and

the statistical model, and because of the high variability of

the GPD tail in the Fréchet domain, numerical values pre-

sented in this paper should be considered as indicative only.

The method opens a large field of possibilities for engi-

neers wishing to put into perspectives classical extreme value

analyses of water levels with the richness of historical infor-

mation on coastal floods. Furthermore, beyond the integra-

tion of historical information in the EVA of WL, the pro-

posed method should allow combining data of different na-

tures together with associated uncertainties. For instance, fu-

ture research may focus on combining tide-gauge data not

only with historical data but also with model outputs, thus

filling the holes during tide-gauge failures for example.
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Appendix A: Relation between annual exceedance

probability and peak event return period

Let us denote with “maxy”, the annual maximum. Using

Eq. (3), the probability that the annual maximum of WL is

greater than xT is

P (maxy(WL) > xT )= 1−P(X ≤ xT )
n
= 1−

(
1−

1

nT

)n
. (A1)

For large return periods T , more precisely when nT � 1,

Eq. (A1) becomes

P (maxy(WL) > xT )'
1

T
, (A2)

which can be interpreted as follows: the standard estima-

tion of the annual exceedance probability of level xT is

1 : T years. Thus, in that case, the annual exceedance prob-

ability is directly available reading a return-level plot con-

structed with peak event return periods contrary to the peak

event exceedance probability (cf Eq. 3).

Similarly, in the case of the predictive distribution, we ob-

tain

P (maxy(WL) > x̃T )'
1

T̃
, (A3)

which can be interpreted as follows: the probability that,

given all the available information, next year’s maximum WL

will exceed x̃T , is 1 : T̃ years.

Appendix B: Plotting positions

The method of plotting positions used in this paper is based

on the one developed by Naulet (2002) which is itself based

on the formulation of Hirsch and Stedinger (1987). The plot-

ting positions are used only for plotting return-level estimates

in Fig. 3, they are not involved in the model fitting process.

Let us consider a number m of perception thresholds

X0,k(1≤ k ≤m) with X0,1 = us <X0,2 < .. . < X0,m+1 =

∞ defined over the entire period. The objective is to calcu-

late the empirical exceedance probability P̂i of each observed

water level Xi (systematic or historical). In the case of his-

torical censored observations, Xi is taken either as the cor-

responding lower bound for historical events that exceeded a

value but whose exact water levels are not known, or as the

middle value of the corresponding range for historical events

whose water levels are known to be within a given range of

values. Let PX0,k
be the exceedance probability of perception

threshold X0,k . If X0,k <Xi <X0,k+1, then the probability

P̂i must verify PX0,k+1
< P̂i < PX0,k

.

The exceedance probabilities of the perception thresholds

are determined as follows:

PX0,k
= P

(
X ≥X0,k

)
= P

(
X ≥X0,k+1

)
(B1)

+P
(
X0,k ≤X <X0,k+1

∣∣X <X0,k+1

)
P
(
X <X0,k+1

)
.

Therefore:

PX0,k
= PX0,k+1

+Pck
(
1−PX0,k+1

)
, (B2)

where Pck is the conditional probability of threshold X0,k .

The probabilities PX0,k
can then be calculated step by step

(since PX0,m+1
= 0) as soon as the probabilities Pck are esti-

mated:

P̂ck =
Ak

Ak +Bk +Ck
, (B3)

where Ak is the number of events (systematic and historical

periods) with a WL x such that X0,k ≤ x < X0,k+1, Bk is the

number of events (systematic and historical periods) with a

WL x such that x < X0,k , and Ck is the number of events that

did not reach the perception thresholds X0,1, . . ., X0,k during

the periods of definition of the thresholds. For example, if

X0,2 is defined for 5 years with 2 events above it during these

5 years and X0,3 is defined for 10 years with 1 event above it

during these 10 years, then C3 is estimated as follows: C3 =

15λ−3, with λ the mean number of exceedances of threshold

us per year (see Sect. 2.2).

The empirical exceedance probabilities P̂ ki (1≤ i ≤ Ak),

or plotting positions, of theAk events with WL betweenX0,k

andX0,k+1 ranked in descending order, are finally calculated
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with the following formula:

P̂ ki = P̂X0,k+1
+

(
P̂X0,k

− P̂X0,k+1

) i− a

Ak + 1− 2a
(B4)

1≤ i ≤ Ak,

where a is a constant between 0 and 0.5 characterising the

spacing between plotting positions. For the present work, we

used the value 0.4 (Cunnane, 1978).
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