

Mechanistic and kinetic study of pyrite-hydrogen interaction at low temperature using electrochemical techniques

Stéphanie Betelu, Gilles Berger, E. Giffaut, Ioannis Ignatiadis

▶ To cite this version:

Stéphanie Betelu, Gilles Berger, E. Giffaut, Ioannis Ignatiadis. Mechanistic and kinetic study of pyrite-hydrogen interaction at low temperature using electrochemical techniques. Clays in Natural and Engineered Barriers for Radioactive Waste Confinement: Clay Conference 2015, Mar 2015, Brussels, Belgium. hal-01118763

HAL Id: hal-01118763 https://brgm.hal.science/hal-01118763

Submitted on 19 Feb 2015 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Mechanistic and kinetic study of pyrite-hydrogen interaction at low temperature using electrochemical techniques

<u>S. Betelu¹</u>, G. Berger², E. Giffaut³ and *I.Ignatiadis*¹

¹BRGM, Water, Environment and Ecotechnologies Division, 3 Avenue Claude Guillemin, BP 36009, 45060 Orléans Cedex, France (s.betelu@brgm.fr; i.ignatiadis@brgm.fr) ²IRAP, Observatoire Midi-Pyrénées 14 av. E. Belin, 31400 Toulouse, France

³ANDRA, Head of the Transfer and Migration Department R&D Division, 1-7, rue Jean-Monnet, 92298 Châtenay-Malabry, France

Within the context of the investigation of the impact of the geochemical evolutions of the nuclear waste storages on the surrounding material, the objective of the work presented here was the characterization of pyrite interaction with hydrogen at low temperature (25-90°C). The emphasis was put on the understanding in depth of both phenomenology and kinetics.

For this purpose, the use of electrochemical techniques in combination with pyrite mineral electrodes has constituted a novel experimental and complementary approach in comparison with the geochemical research realized by Truche et al. (2010) under hyper-thermaltemperatures, from 90 to 180° C and under H₂partial pressures pH₂ranging from 8 to 18 bars.

Experiments wereconducted in a wide range of conditions (pH, temperature, ionic composition, gaseous environment) close to the expected evolution of the repository groundwater chemistry.

More specifically, after pyriteelectrodes had been designed and assembled (figure 1A), various electrochemical disturbances were applied to FeS_2 electrode (and top latinum electrode (Pt) for comparison) while it was submerged in a partially reconstituted COxpore water solution, enclosed in a High Pressure Thermo-Reactor (HPTR) at 90°C (figure 1A) or in a Low Pressure Thermo-Reactor (LPTR) (figure 1B) at 25°C, in the absence and in the presence of (i) pyritegrains (particle sizer anging from 40 to 63 µm) and (ii) H_2 (p H_2 ranging from 0 or 1 bar).

Experiments that were performed in carbonaceous buffers $(HCO_3^{-7}CO_3^{-2})$ buffer, pH 8.6 and 10.0) in**the HPTR** (at 90°C, which is the maximal temperature expected in the repository) with or without hydrogen led us to determine mechanism and estimate pyrite corrosion rates.

Experiments thatwereperformed in anoxic environment (N₂and/or H₂) in carbonaceous buffer in **the LPTR**(at 25°C) in whichhydrogen was produced*in situ*byelectrolysis led to comfort phenomenology at higher pH, from 9.3 to 11.2. Indeed polarizationprovided H₂ and OH⁻ formation in the solution, and thus its progressive alkalization.

Mechanism was established by using potentiometric measurements, linearsweeppolarization(LSP) and Electrochemical Impedance Spectrometry (EIS).

Both electrochemical (Tafel plots and Polarisation Resistance (R_p))and gravimetric (mass loss) approaches were used as complementary methodologies to estimate pyrite corrosion rates.

In addition to the electrochemical behaviour of platinum and pyrite electrodes, pH, temperature and pressure of the liquid medium were monitored. FeS₂morphological and chemical characterizations were realized by *Scanning Electron Microscopy* (**SEM**) and Energy-dispersive X-ray spectroscopy (**EDS**).

A) Electrochemical measurements into HPTR

B) Electrochemical measurements into LPTR

Figure 1: A) FeS₂ electrode made with "pure" Peruvianpyriteforexperiments realized in a Hastelloy HighPressure Thermo-Reactor (HPTR)

B) Electrolysis scheme experiment of the Low Pressure Thermo-Reactor (LPTR).

The elucidation of the mechanismgoverning the reduction of the sulphur S° of the FeS₂was the first challenge we answered. Indeed, the S° is reducedtosulphide (HS⁻/S²⁻), which is freed in solution, whereas the pyriteturnssuperficially into pyrrhotite (FeS_{1+x} with 0<x<0.125), forming a layerthat slows down the reduction process. Experiments conducted into HPTR and LPTR lead to approach phenomenology (which will be discussed) versus pH.

Investigations conducted by electrochemistry (at 90°C in high pressure thermo-reactor) allowed us to provide Pyrite corrosion rates in the absence and in the presence of hydrogen. It is worth noting that they are of the same order of magnitude 10^{-3} mm.year⁻¹ whatever the pH (in the range 0.5 mm.year⁻¹ 3.6 10^{-3} mm.year⁻¹). In parallel, experiments conducted by gravimetric measurements were of prime importance. Both electrochemical and gravimetric measurements allow us to identify and distinguish the following phenomena on pyrite: (i) corrosion and corrosion-scaling measurable by electrochemistry, (ii) corrosion and chemical dissolution measurable by gravimetric measurements.

Results provided by electrochemical and gravimetric measurements will be discussed and compared to the calculated corrosion rates using the rate law determined by Truche*et al.*(2010).

Acknowledgement

The research has receivedfundingfrom i) the European Union's European Atomic Energy Community's (Euratom) FP7/2007-2011 undergrant agreement n° 212287 (RECOSY project) and ii) the ANDRA under the BRGM-ANDRA partnership (TRANSFERT and CAPTANDRA projects).

References

- Betelu S., Lerouge C., Berger G. Ignatiadis I. (2012) Mechanisticstudy of pyritereductionbyhydrogen in NaCl 0.1 M at 90 °C usingelectrochemicaltechniques. Scientificand Technical contribution in the 4AWS of RECOSY in Karlsruhe (Germany), 23rd 26thJanuary 2012.
- Ignatiadis I., Betelu S., Lerouge C., Berger G. (2012) Mechanisticandkineticstudy of pyritereductionbyhydrogen gas produced in situ by water electrolysis in NaCl 0.1 M at 25°C usingelectrochemicaltechniques. Oralpresentationduring the 4AWS of RECOSY in Karlsruhe (Germany), 23rd 26thJanuary 2012.
- Truche L., Berger G., Destrigneville C., Guillaume D., Giffaut E. (2010) Kinetics of pyritetopyrrhotitereductionbyhydrogen in calcitebuffered solutions between 90 and 180°C: implicationfor the nuclear waste disposal. Geochim. Cosmochim. Acta 74, 2894-2914.

Please tag the appropriate:

 \Box oral presentation

Topic of scientific programme:

□ Alteration processes