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Abstract

Until the last decade, performance of HPC architectures has been almost exclusively quanti-
fied by their processing power. However, energy e�ciency is being recently considered as im-
portant as raw performance and has become a critical aspect to the development of scalable
systems. These strict energy constraints guided the development of a new class of so-called
light-weight manycore processors. This study evaluates the computing and energy performance
of two well-known irregular NP-hard problems — the Traveling-Salesman Problem (TSP) and
K-Means clustering — and a numerical seismic wave propagation simulation kernel — Ondes3D
— on multicore, NUMA, and manycore platforms. First, we concentrate on the nontrivial task of
adapting these applications to a manycore, specifically the novel MPPA-256 manycore proces-
sor. Then, we analyze their performance and energy consumption on those di↵erent machines.
Our results show that applications able to fully use the resources of a manycore can have better
performance and may consume from 3.8x to 13x less energy when compared to low-power and
general-purpose multicore processors, respectively.
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1. Introduction1

Demand for higher processor performance led chipmakers to include into their designs so-2

lutions that are a combination of brute-force and innovation. The increase of processors cache3

size, instruction-level parallelism and working frequency have been for the last decades their4

main tools to accomplish this mission. However, these approaches seem to have reached a point5

in which they, by themselves, are not su�cent to ensure the steep curve of performance improve-6

ment predicted by Moore’s Law and expected by the users [1].7

An exponential increase in power consumption related to a linear increase in the clock fre-8

quency [2] and a higher complexity to design new processors changed the course of development9

of these new processors. Power consumption has become a critical aspect to the development of10

both large and small scale systems. This concern is now enough to warrant the research on the11

use of embedded low-power processors to create the next generation of HPC systems. For in-12

stance, the European Mont-Blanc project [3] was created to evaluate the use of such components13

in an HPC environment [4]. While these low-power multicore processors usually do not o↵er14

the same performance as their regular counterparts, they normally o↵er better energy-to-solution15

results.16

Current highly-parallel processors take this paradigm even further. They normally possess17

hundreds (sometimes thousands) of cores which execute with high energy e�ciency. The execu-18

tion model of these processors usually follows two di↵erent approaches. Light-weight manycore19

processors, such as Tilera Tile-Gx [5] and Kalray MPPA-256 [6], o↵er autonomous cores and a20

shared memory execution model. In this case, traditional tools such as POSIX threads are em-21

ployed to accomplish both data and task parallelism. The use these tools may ease the paradigm22

shift from multicores to manycores, since several parallel applications developed for multicores23

rely on this model. Di↵erently, Graphics Processing Units (GPUs) follow another approach based24

on a Single Program, Multiple Data (SPMD) model, relying on runtime APIs such as CUDA and25

OpenCL. Thus, considerable e↵ort may be necessary to adapt parallel code originally developed26

for multicores to GPUs. Here we are interested in the former.27

In this paper we describe three di↵erent irregular applications and the necessary adaptations28

to use them on four distinct hardware platforms. The Traveling Salesman Problem (TSP), the29

K-Means clustering (K-Means) algorithm, and a Seismic Wave Propagation kernel (Ondes3D).30

Solutions to the TSP and K-Means problems are NP-hard and, for a large enough instance, the31

algorithm can be parallelized to make use of an arbitrary number of threads, assuring the com-32

plete use of the chosen platforms. Ondes3D, on the other hand, employs a numeric seismic33

wave propagation simulation algorithm. These applications were chosen because they represent34

three di↵erent behaviors: CPU-bound (TSP), memory-bound (Ondes3D), and mixed (K-Means).35

However, while all of them are highly parallelizable, they also reveal important issues related to36

imbalance and irregularity: the execution course for the same instance of the problem can dras-37

tically change depending on the order and on the number of employed processor cores.38

We consider two important aspects in this study. The first aspect concerns the programming39

issues and challenges encountered when adapting these irregular applications for the MPPA-25640

manycore processor. The use of Network-on-Chip (NoC) for communication and the absence41

of cache coherence protocols are among the important factors that make the development of42

parallel applications on this processor not trivial. Additionally, processors such as MPPA-25643

have important memory constraints, e.g., limited amount of directly addressable memory (2 MB).44

Furthermore, e�cient execution on this processor requires data transfers in conformance to the45

NoC topology to mitigate the, otherwise high, communication costs. The lessons learned give46
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some insights on what can be faced when adapting parallel applications to manycores.47

The second aspect concerns the performance and energy consumption of multicores and48

manycores. Our experiments were carried out on four di↵erent hardware platforms: Intel Xeon49

E5, SGI Altix UV 2000, Samsung Exynos 5, and Kalray MPPA-256. The first two are composed of50

general-purpose processors, while the remaining two are based on embedded low-power proces-51

sors. We compare the overall performance of these platforms as well as their power e�ciency.52

Our results show that the energy-to-solution for the same instance of the problem can present53

important variations between the experimental platforms. For every application, MPPA-256 pre-54

sented the best energy-to-solution, consuming from 3.8x to 6.9x less energy than the second best55

platform (Exynos 5). When compared to Xeon E5 and Altix UV 2000, MPPA-256 consumed re-56

spectively from 5.7x to 13.1x and from 8.5x to 12.3x less energy. The time-to-solution on the57

other hand was dominated by the Altix UV 2000 platform. MPPA-256 and Xeon E5 showed approx-58

imately equivalent performances, however with a clear advantage to Xeon E5 for memory-bound59

applications. With relation to the Altix UV 2000 platform, the execution of the applications were60

on average from 13.0x to 20.4x, 108.8x to 154.8x and 13.0x to 15.3x slower on the Xeon E5,61

Exynos 5 and MPPA-256 platforms respectively. Next, we compare the Altix UV 2000 and the62

MPPA-256 platforms. Although very di↵erent from each other, these platforms share some simi-63

larities that give us the opportunity to evaluate important aspects of their scalability and energy64

e�ciency. We concluded that both architectures scale well for the chosen applications. While65

on low core counts MPPA-256 may have a higher energy-to-solution, it can quickly fill the gap as66

the increase in the number of cores results in a small increase in the average power consumption.67

The remainder of this paper is organized as follows. Section 2 outlines the evaluated plat-68

forms. A high-level description of the TSP, K-Means and Ondes3D as well as their algorithms69

are detailed in Section 3. Next, Section 4 discusses the challenges encountered when passing70

from multicores to the MPPA-256 manycore processor. Then, Section 5 presents performance71

and energy e�ciency evaluations. Finally, we discuss related works in Section 6 and conclude in72

Section 7.73

2. Experimental Platforms74

In this section we describe the experimental platforms used in this study. These platforms75

represent three di↵erent classes: general-purpose, embedded and manycore.76

2.1. General-Purpose77

Xeon E5. The Intel Xeon E5 is a 64-bit x86-64 processor. In this study we used a Xeon E5-78

4640 Sandy Bridge-EP, which has 8 physical cores running at 2.40 GHz. Each core has 32 KB79

instruction and 32 KB data L1 caches and 256 KB of L2 cache. All the 8 cores share a 20 MB80

L3 cache and the platform has 32 GB of DDR3 memory.81

Altix UV 2000. SGI Altix UV 2000 (Figure 1) is a Non-Uniform Memory Access (NUMA)82

platform designed by SGI. The platform is composed of 24 NUMA nodes. Each node has a83

Xeon E5-4640 Sandy Bridge-EP processor (with the same specifications of the Xeon E5 platform)84

and 32 GB of DDR3 memory. This memory is shared in a ccNUMA fashion through SGI’s85

proprietary NUMAlink6 (bidirectional). This high-speed interconnection provides a point-to-86

point bandwidth of 6.7 GB/s per direction. Overall, this platform has 192 physical cores.87
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Figure 1: A simplified view of Altix UV 2000.

2.2. Embedded88

Exynos 5. Samsung Exynos 5 is a Multiprocessor System-on-Chip (MPSoC) that implements89

the recent ARM big.LITTLE heterogeneous computing architecture. In this study we used the90

ODROID-XU+E board, which features a Samsung Exynos 5 5410 Octa processor. This proces-91

sor integrates a Cortex-A15 quad-core running at 1.6 GHz with a Cortex-A7 quad-core running92

at 1.2 GHz on the same chip. Both CPUs are connected to 2 GB of LP-DDR3 memory. This93

processor uses a clustered model approach: the operating system scheduler is only aware of four94

out of the total of eight processing cores. If at any point in time the load on the four Cortex-95

A7 cores surpasses a pre-established threshold, the processor itself switches the execution to the96

Cortex-A15 cores. This is done in a way that is transparent to the operating system. The rationale97

here is that, while the Cortex-A15 cores provide better performance, they also incur in a higher98

energy utilization and by switching between the two sets of cores energy can be saved.99

2.3. Manycore100

MPPA-256. Kalray MPPA-256 is a single-chip manycore processor developed by Kalray that101

integrates 256 user cores and 32 system cores. It uses 28nm CMOS technology running at102

400 MHz. These cores are distributed across 16 compute clusters and 4 I/O subsystems that103

communicate through data and control NoCs. This processor targets parallel applications whose104

programming models fall within the following classes: Kahn Process Networks (KPN), as moti-105

vated by media processing; SPMD, traditionally used for numerical kernels; and time-triggered106

control systems [7, 6].107

Figure 2 shows the architecture overview of the MPPA-256. It features two types of cores:108

Processing Elements (PE) and Resource Managers (RM). Although RMs and PEs implement109

the same Very Long Instruction Word (VLIW) architecture, they have di↵erent purposes: PEs110

are dedicated to run user threads (one thread per PE) in non-interruptible and non-preemptible111

mode whereas RMs execute kernel routines and services of NoC interfaces. Operations executed112

by RMs vary from task and communication management to I/O data exchanges between either113

external buses (e.g. PCIe) or SDRAM. For this reason, RMs have privileged connections to NoC114

interfaces. Both PEs and RMs feature private 2-way associative instruction and data caches.115

PEs and RMs are grouped within compute clusters and I/O subsystems. Each compute cluster116

features 16 PEs, 1 RM and a local shared memory of 2 MB, which creates a interconnection with117

high bandwidth and throughput between PEs. Each I/O subsystem relies on 4 RMs with a shared118

D-cache, static memory and external DDR access (2 GB). Contrary to the RMs available on119
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Figure 2: A simplified view of the MPPA-256.

compute clusters, the RMs of I/O subsystems also run user code. An important peculiarity of120

the MPPA-256 architecture is that it does not support cache coherence between PEs, even among121

those in the same compute cluster.122

Parallel applications running on MPPA-256 usually follow the master/worker pattern. The123

master process runs on an RM of the I/O subsystem and it is responsible for spawning worker124

processes. These processes are then executed on compute clusters and each process may create125

up to 16 POSIX threads, one for each PE. In other words, the master process running on the I/O126

subsystem must spawn 16 worker processes and each process must create 16 threads in order to127

make full use of the 256 cores.128

Compute clusters and I/O subsystems are connected by two parallel NoCs, the Data NoC (D-129

NoC) and the Control NoC (C-NoC). Both NoCs have bi-directional links, and there is one NoC130

node per compute cluster, which is controlled by the RM. I/O subsystems, on the other hand,131

have 4 NoC nodes, each one associated with a D-NoC router and a C-NoC router. The D-NoC is132

dedicated to high bandwidth data transfers whereas the C-NoC is dedicated to peripheral D-NoC133

flow control, power management and application messages.134

2.4. Synthesis135

As we previously mentioned, Xeon E5, Altix UV 2000, Exynos 5 and MPPA-256 represent dif-136

ferent platform classes. Both Xeon E5 and Altix UV 2000 belong to the class of general-purpose137

platforms we usually find in servers. These platforms are tuned for performance rather than en-138

ergy e�ciency. Di↵erently from those performance-centric platforms, Exynos 5 targets mobile139

devices in which power is one of the most important concerns. Finally, MPPA-256 belongs to140

the light-weight manycore platform class. It presents a high density of cores in a single chip but141

still is more energy e�cient than general-purpose processors. In the next section we describe the142

three applications we used in this paper to analyze the performance and the energy e�ciency of143

these platforms. These applications can also be categorized into distinct behavioral classes what144

allows us to carry out this study in a comprehensive yet simple manner.145
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3. Case Studies146

Application execution performance can vary a lot depending on the hardware platform on147

which they are being executed. These pieces of software are normally categorized by their be-148

havior taking into account the execution aspect that influences their performance the most. For149

instance, an application in which the time used for memory accesses is a performance bottleneck150

is said to be memory-bound. Similarly, an application in which the execution bottleneck is the151

computation time is said to be CPU-bound. As we show in Section 5, an application that on152

a hardware architecture is CPU-bound can become memory-bound on other architectures if the153

underlying hardware characteristics are not taken into consideration.154

To highlight the impact di↵erent amounts of computation and communication can make on155

the execution performance and the energy e�ciency of the experimental hardware platforms, we156

chose three applications with three distinct behaviors (CPU-bound, memory-bound and mixed).157

We now detail these applications further.158

3.1. Traveling-Salesman Problem159

The TSP consists in solving the routing problem of a hypothetical traveling- salesman. Such160

a route must pass through n cities, only once per city, return to the city of origin and have161

the shortest possible length. It is a very well studied NP-hard problem. More formally, the162

problem could be represented as a complete undirected graph G = (V, E), |V | = n where each163

edge (i, j) 2 E has an associated cost c(i, j) � 0 representing the distance from the city i to j164

(Figure 3a). The goal is to find a hamiltonian cycle with minimum cost that visits each city only165

once and finishes at the city of departure.166
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Figure 3: Example of TSP with 4 cities.

There are several di↵erent approaches to solve this problem [8]. These solutions normally167

employ brute force, simple or complex heuristics, approximation algorithms or a mix of them.168

We are not going to detail the di↵erent available approaches since we are after the evaluation and169

performance comparison of an embarrassingly parallel non-numerical application across di↵er-170

ent architectures. Therefore, we use a brute force exact algorithm based on a simple heuristic [9].171

We first explain the sequential version of our algorithm, then we explain how we extended it to172

work with multiple threads. Finally, we present its distributed version.173
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3.1.1. Sequential Algorithm174

The sequential version of the algorithm is based on the branch and bound method using brute175

force. Algorithm 3.1 outlines this solution. It takes as input the number of cities and a cost176

matrix, and outputs the minimum path length.177

Algorithm 3.1: TSP Sequential(n cities, costs)

global min path
procedure tsp solve(last city, current cost, cities)
if cities = ;

then return (current cost)
for each i 2 cities

do8>>>>>><
>>>>>>:

new cost  current cost + costs[last city, i]
if new cost < min path

then
(

new min tsp solve(i, new cost, cities\{i})
atomic update if less(min path, new min)

main
min path 1
tsp solve(1, 0, {2, 3, ..., n cities})
output (min path)

This algorithm does a depth-first search looking for the shortest path and has complexity178

O(n!). It does not explore paths that are already known to be longer than the best path found179

so far, therefore discarding fruitless branches. Figure 3b shows this behavior. The shaded edges180

are those that the algorithm does not follow, since a possible solution that includes them would181

be more costly than the one it has already identified. This simple pruning technique greatly182

improves the performance of the algorithm. However, it also introduces irregularities into the183

search space. The search depth needed to discard one of the branches depends on the order in184

which the branches were searched.185

3.1.2. Multi-threaded Algorithm186

The multi-threaded version of the algorithm works by creating a queue of tasks from which187

each thread takes the jobs to be executed. A task is nothing more than one of the branches of188

the search tree. The generation of the tasks is done sequentially since the time needed to do189

it is negligible. As soon as one thread runs out of work, it takes a new task from the queue.190

The number of tasks to be generated is a function of the number of threads and is defined by191

the max hops parameter. This is the minimum number of levels of the search tree that must192

be descended so that there is a minimum (parameterizable) number of tasks per thread. The193

total number of tasks as a function of levels l and cities n can be determined by the following194

recurrence relation (Equation 1) which is defined for 0  l < n.195
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t(l, n) =

8>><
>>:

1 l = 0
t(l � 1, n) ⇤ (n � l) otherwise

(1)

Algorithm 3.2 shows the pseudo-code for this approach. This algorithm also receives as a196

parameter the number of threads n threads to be used.197

Algorithm 3.2: TSP Multi-threaded(n cities, costs, n threads,max hops)

global queue,min path
procedure generate tasks(n hops, last city, current cost, cities)
if n hops = max hops

then
(

task  (last city, current cost, cities)
enqueue task(queue, task)

else

8>>>>>>>>>>><
>>>>>>>>>>>:

for each i 2 cities

do

8>>>>>>>><
>>>>>>>>:

if last city = none
then last cost  0
else last cost  costs[last city, i]

new cost  curr cost + last cost
generate tasks(n hops + 1, i, new cost, cities\{i})

procedure do work()
while queue , ;

do
(

(last city, current cost, cities) atomic dequeue(queue)
tsp solve(last city, current cost, cities)

main
min path 1
generate tasks(0, none, 0, {1, 2, ..., n cities})
for i 1 to n threads

do spawn thread(do work())
wait every child thread()
output (min path)

3.1.3. Distributed Algorithm198

The distributed algorithm is similar to the multi-threaded version. It receives as an additional199

parameter the number of distributed peers to be used. The number of peers and the number of200

threads define the total number of lines of execution. For each peer, n threads will be created,201

thus totaling n threads⇥n peers threads. Inside each peer, the execution is nearly identical to that202

of the multi-threaded case. The only di↵erence is that when the min path is updated, this update203

is broadcasted to every other peer so they can also use it to optimize their execution. At the end204

of the execution, one of the peers (typically the 0-th) prints the solution. The final solution might205

have been discovered by any one of the peers, however all of them are aware of it due to the206

broadcasts of each discovered min path.207
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To avoid two peers working on the same subproblem, each peer peer id only works on the208

tasks which were assigned to it. To do so, we specify the desired number of partitions per209

peer. We also specify the percentage of the tasks that will be distributed in the beginning of210

the execution. Afterwards, as the peers run out of work, they will ask a master peer for more211

partitions. To reduce communication, the master peer sends sets of partitions of decreasing size212

at each request [10]. The rationale behind it is that, as the task sizes are irregular, distributing213

a smaller number of partitions during the end of the execution might decrease the imbalance214

between the peers. In this case, for each request the master peer sends a set of partitions S and215

the peer peer id will work on the tasks such that task index mod n partitions 2 S . Since the216

task generation is done locally, the amount of transferred data can be minimized.217

As a runtime optimization, only one thread per peer becomes responsible for asking for218

more partitions when the peer runs out of work. Once this thread receives a new partition from219

the master peer, it generates and populates the peer’s task queue with new tasks. During the220

generation of these tasks, the remaining n threads � 1 threads can begin to process tasks as soon221

as they are enqueued, without the need to wait for the end of the task generation. This behavior222

is further discussed in Section 5.5.223

3.2. The K-Means Clustering Problem224

Clustering analysis plays an important role in di↵erent fields, including data mining, pattern225

recognition, image analysis and bioinformatics [11]. In this context, a widely used and studied226

clustering approach is the K-Means clustering.227

Formally, the K-Means clustering problem can be defined as follows. Given a set of n points228

in a real d-dimensional space, the problem is to partition these n points into k partitions, so as to229

minimize the mean squared distance from each point to the center of the partition it belongs to.230

Figure 4 illustrates an instance of this problem.231

Original data Clustered data

cendroids

Figure 4: An example of K-Means with 5 partitions.

Several distinct heuristics have been proposed to address the K-Means clustering problem232

[12, 13]. One of the most widely employed is the Lloyd’s algorithm [14], also known as K-233

Means algorithm. Such heuristic is based on an iterative strategy that finds a locally minimum234

solution for the problem. In our work we used this algorithm as a case study. In the following235

subsections, we first present the sequential version of the algorithm and then we introduce and236

explain our parallel and distributed versions.237
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3.2.1. Sequential Algorithm238

The sequential version of K-Means is shown in Algorithm 3.3. The main idea is to use the239

notion of minimum Euclidean distance to iteratively partition the data points. The algorithm takes240

as input the set of data points, the number of partitions k, and the minimum accepted distance,241

mindistance, between each point and the partition’s center (centroids). Upon completion, the242

algorithm returns the partitions themselves.243

Algorithm 3.3: K-means Sequential(points, k,mindistance)

global partitions

procedure populate()
for each pnt 2 points

do pnt.partition nearest(pnt, partitions)

procedure compute centroids()
for each part 2 partitions

do part.centroid  compute mean(part.population)

main
random populate(partitions, points)
compute centroids()
repeat(
populate()
compute centroids()

until has changed() and too far()
return (partitions)

The sequential K-Means algorithm works as follows. Initially, data points are evenly and244

randomly distributed among the k partitions, and the initial centroids are computed. Then, the245

data points are re-clustered into partitions taking into account the minimum Euclidean distance246

between them and the centroids — points are assigned to the nearest partition. Next, the centroid247

of each partition is recalculated taking the mean of all points in the partition, and the whole248

procedure is repeated until no centroid is changed and every point is farther than the minimum249

accepted distance.250

It is worthy to note that this algorithm presents a natural irregularity: at any time during the251

execution, the number of points within each partition (population) may di↵er, implying di↵erent252

recalculation times for each partition’s centroid.253

3.2.2. Multi-threaded Algorithm254

The multi-threaded version of the K-Means algorithm is presented in Algorithm 3.4. Com-255

pared to the sequential algorithm, it takes an additional parameter, t, that specifies the total num-256

ber of execution flows. The strategy adopted is to assign to each thread an unique range of points257

and partitions, and split the algorithm in two phases. In the first phase, each thread re-clusters its258
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own range of points into the k partitions. In the second phase, each thread works in its own range259

of partitions, in order to recalculate centroids.260

Algorithm 3.4: K-meansMulti-Threaded(points, k,mindistance, t)

global partitions

procedure do kmeans(work)
repeat(
populate(work. f irst point,work.last point)
compute centroids(work. f irst partition,work.last partition)

until has changed() and too far()

main
random populate(partitions, points)
compute centroids(partitions. f irst, partition.last)
for i 0 to (t � 1)

do

8>>>>>>>><
>>>>>>>>:

work. f irst point  i ⇥ num points ÷ t
work.last point  (i + 1) ⇥ num points ÷ t
work. f irst partition i ⇥ k ÷ t
work.last partition (i + 1) ⇥ k ÷ t
spawn thread(do kmeans(work))

wait every child thread()
return (partitions)

The multi-threaded version of the algorithm still presents some important execution irregu-261

larities. Although the range of points and partitions are evenly distributed among the working262

threads, the amount of work for each thread may vary during each iteration, since for the du-263

ration of the second phase more populated partitions end up requiring more operations to have264

their centroids recalculated.265

3.2.3. Distributed Algorithm266

The distributed algorithm described in this section is widely used in practice [11, 15, 16]267

and a scalability analysis for this algorithm can be seen in the work by Rodrigues et. al. [17].268

Compared to the multi-threaded algorithm, the distributed K-Means algorithm takes an additional269

parameter p that specifies the number of distributed peers to be used. Each peer by itself spawns270

t working threads, so the total number of threads equals to p ⇥ t.271

The strategy employed in this algorithm is to first distribute the data points and replicate the272

data centroids among peers, and then to loop over a two-phase iteration. In the first phase, par-273

titions are populated, as in the multi-threaded algorithm, and in the second phase, data centroids274

are recalculated. For this recalculation, first each peer uses its local data points to compute par-275

tial centroids, i.e., a partial sum of data points and population within a partition. Next, peers276

exchange partial centroids so that each peer ends up with the partial centroids of the same parti-277

tions. Finally, peers compute their local centroids and broadcast them.278
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One could argue that it would be possible to remove some of the irregularity from the multi-279

threaded version if we used the same partial centroid calculation technique used by the distributed280

implementation. The multi-threaded version of the algorithm splits the computation in two inde-281

pendent phases: populate partitions and compute centroids of partitions. The main advantage of282

using this approach is that it requires fewer thread synchronization structures, when compared283

to the distributed implementation. However, this multi-threaded implementation may introduce284

some irregularity in the application. Instead, if we adopted the same technique used by the dis-285

tributed approach, we could split the overall work into smaller tasks and decrease some of the286

irregularity. However, the decreased irregularity would be achieved at the expense of an impor-287

tant increase in the cost of synchronization structures.288

Nevertheless, the irregularity itself is closely related to the working data set: if partitions are289

too unbalanced, irregularity is strongly present; whereas if points are evenly distributed among290

partitions, irregularity is not so sharply presented. In both the multi-threaded and distributed291

algorithms, we work with a uniformly distributed random data set, and thus irregularity is not292

strongly present. Considering that, if we adopted the distributed approach in the multi-threaded293

implementation, we would further decrease irregularity, but the performance gains obtained by294

that strategy are quickly overcome by the additional synchronization procedures causing, in fact,295

performance degradation.296

3.3. Seismic Wave Propagation297

Understanding the wave propagation with respect to the structure of the Earth lies at the298

core of many analysis both in the oil and gas industry and for quantitative seismic hazard as-299

sessment. In this paper the earthquake process is described as elastodynamics and we use a300

finite-di↵erences scheme for solving the wave propagation problem in elastic media [18]. This301

approach was first proposed in 1970 and since then it has been widely employed due to its simple302

formulation and implementation. In this section we describe the governing equations and discuss303

some of their standard sequential and parallel implementations.304

The seismic wave equation in the case of an elastic material is:305

⇢
@vi

@t
=
@�i j

@ j
+ Fi (2)

Additionally, the constitutive relation in the case of a isotropic medium is:306

@�i j

@t
= ��i j

 
@vx

@x
+
@vy

@y
+
@vz

@z

!
+ µ

 
@vi

@ j
+
@v j

@i

!
(3)

Where indices i, j, k represent a component of a vector or tensor field in Cartesian coordinates307

(x, y, z), vi and �i j represent the velocity and stress field respectively, and Fi denotes an external308

source force. ⇢ is the material density and � and µ are the elastic coe�cients known as Lamé309

parameters. A time derivative is denoted by @
@t and a spatial derivative with respect to the i-th310

direction is represented by @
@i . The Kronecker symbol �i j is equal to 1 if i = j and zero otherwise.311

3.3.1. Sequential Algorithm312

As mentioned before, the finite di↵erences method is one of the most popular techniques313

to solve the elastodynamics equations and to simulate the propagation of seismic waves [18,314

19]. One of the key features of this scheme is the introduction of a staggered-grid [20] for the315

discretization of the seismic wave equation.316
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Indeed, all the unknowns are evaluated at the same location for classical collocated methods317

over a regular Cartesian grid whereas the staggered grid leads to a shift of the derivatives by half318

a grid cell (Figure 5). The equations are rewritten as a first-order system in time and therefore319

the velocity and the stress fields can be simultaneously evaluated at a given time step.320
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Figure 5: Elementary 3D cell of the staggered grid and distribution of the stress (�) and the velocity (v) components.

The computational procedure is described in Algorithm 3.5. Inside the time step loop, the321

first triple nested loop is devoted to the computation of the velocity components, and the second322

loop reuses the velocity results of the previous time step to update the stress field. For instance,323

the stencil applied for the computation of the velocity component in the x-direction is given324

by Equation 4. Exponents i, j, k indicate the spatial direction, �i jk = �(i�s, j�s, k�s), �s325

corresponds to the space step, �t to the time step and a1, a2 and a3 are defined as three constants.326

Algorithm 3.5: Sequential SeismicWave Propagation Kernel(�, v)

for x 1 to x dimension

do

8>>>><
>>>>:

for y 1 to y dimension

do
(

for z 1 to z dimension
do

n
compute stress(�xx,�yy,�zz,�xy,�xz,�yz)

for x 1 to x dimension

do

8>>>><
>>>>:

for y 1 to y dimension

do
(

for z 1 to z dimension
do

n
compute velocity(vx, vy, vz)

One particularity of the three-dimensional simulation of seismic wave propagation is the327

consideration of a finite computing domain whereas the physical problem is unbounded. Addi-328

tional numerical conditions are then required to absorb the energy at the artificial boundaries.329

At the lateral and bottom edges of the three-dimensional geometry, a specific set of equations is330

implemented. For instance, the classical Perfectly Matched Layer (PML) relies on the implemen-331
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tation of a sponge numerical function that provides exponential attenuation in the nonphysical332

region [21]. A fixed size of ten grid points is chosen for the thickness of this layer (represented333

in gray color in Figure 6) and the CPU-cost ratio observed between a boundary grid point and a334

physical domain point varies from two to four.335
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This numerical kernel leads to several challenges when considering its implementation on336

parallel architectures. The load imbalance must be tackled with di↵erent strategies adapted337

to shared or distributed architectures. This first level of irregularity could be worsened by the338

memory-bound nature of this numerical stencil and advanced strategies must therefore be used339

to maximize the performances on hierarchical platforms.340

3.3.2. Multi-threaded Algorithm341

On shared-memory architectures, a popular way to extract parallelism is to exploit the triple342

nested loops coming from the three dimensions of the problem under study. This allows a very343

straightforward use of OpenMP directives. However, two levels of irregularity should be consid-344

ered with this straightforward implementation. Firstly, the imbalance coming from the absorbing345

boundary conditions could be partially addressed by using a dynamic schedule across the loop it-346

erations. This leads to significant improvements in the distribution of the load [22]. This solution347

comes at the expense of introducing an irregular access of the data with higher NUMA penalties348

on hierarchical platforms. In this paper we tackled the imbalance by exploiting a static strategy349

along with an intelligent memory allocation policy. Basically, we guarantee that the memory350

accessed by each thread is allocated close to the thread. This reduces considerably the latencies351

in NUMA platforms. In the same sense, advanced runtime systems also provide good results in352

order to improve threads and memory mapping [23].353

3.3.3. Distributed Algorithm354

On distributed memory architectures, most standard parallel implementations of the elasto-355

dynamics equations are based on cartesian grid decomposition. Although our code is di↵erent,356

our approach is very similar to that used by Cui et al. [24] and Furumura and Chen [25]. Our357

distributed algorithm works by decomposing the computational domain into sub-domains Di in358

such a way that each sub-domain is mapped to one peer. Inside each peer, the execution is nearly359

identical to that of the multi-threaded case. The di↵erence is that peers need to communicate360

with their neighbors to exchange boundary data. Figure 6 shows this decomposition with 3⇥3361

subdomains with an equal number of grid points in each.362

This strategy can be optimized by using non-blocking communications among peers and by363

overlapping communications and computations. For instance, we first compute the boundary364

grid points located between neighbors. Then, these values are exchanged between neighboring365

peers using non-blocking communications. During this exchange phase, each peer computes its366

inner points in parallel.367
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Figure 6: Distributed implementation of the seismic wave propagation kernel with a 3⇥3 decomposition. The gray
regions represent the irregular absorbing boundary condition layers.

This decomposition also implies an irregular load between peers, due to the absorbing bound-368

ary condition layers. The irregularity of the distributed algorithm is investigated by Tesser et369

al. [26]. In this case, quasi-static decomposition, adaptive mesh refinement or parallel mesh par-370

titioning are standard techniques that intend to balance computations. In this paper we applied371

the former technique [27].372

3.4. General Considerations373

In this section we described the three applications we use as case studies. We presented374

TSP, a CPU-bound application, in which only a small amount of data needs to be kept during the375

execution. In the multi-threaded algorithm threads rarely communicate, and when they do so they376

only exchange small amounts of data. Conversely, Ondes3D is a memory-bound application that377

accesses vast amounts of memory during its execution. Threads on the multi-threaded version378

often communicate to exchange information about the borders of the current data set on which379

they are working. K-Means is halfway between these two applications: the time used for data380

accesses is well balanced with computation time. In the multi-threaded version each thread has381

its own set of data that is synchronized at the end of each iteration.382

Both K-Means and TSP present strong irregularity which translates to unpredictable exe-383

cution times. The irregularity itself is linked to the problem (and to the input) and the chosen384

algorithm can only do so much to try to alleviate this issue during runtime [28]. These kind of385

applications have a strong need for dynamic load balancing to manage the irregularity. Weak386

irregularity is also present in these applications and it is normally associated to the chosen algo-387

rithms, data structures, and load-balancing strategy. With varying degrees of e↵ort (and success)388

these weak irregularities might lightened by distinct implementation choices.389

Contrary to TSP and K-Means, Ondes3D is an application that presents only weak irregular-390

ity. It is a predictable application in the sense that the total number of operations and communi-391

cations is known in advance. For this application, given the input, it is even possible with some392

e↵ort to statically perform the load balancing before the actual execution. However, in practice,393

this kind of approach seems to be left aside in favor of a dynamically load-balanced stencil based394

approach. In this kind of solution the irregularity arises from the data and their shape (at the bor-395

der of computation domain and inside the computation domain) and not from the load-balancer.396

The load-balancer is, in fact, the responsible for trying to ensure a more regular execution.397
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By taking into consideration these three applications and the three distinct hardware archi-398

tectures used in our experimental evaluations, we can draw comprehensive (yet straightforward)399

conclusions about execution performance and energy e�ciency of these applications on the dis-400

tinct hardware platform classes.401

Manycores have several distinctive features that must be considered so that applications can402

achieve good performance. In the next section we present the adaptations we did to the applica-403

tions we just presented in order to achieve an e�cient execution.404

4. Adapting Irregular Applications for Manycores405

The adaptation of existing distributed applications to manycores such as the MPPA-256 can406

be straightforward, as in the case of K-Means. On the other hand, some applications as the407

TSP and Ondes3D demand much more e↵ort. In this section we describe the adaptations these408

applications had to go through to e�ciently execute on the MPPA-256 manycore.409

4.1. TSP410

Section 3.1 presented some insights into the algorithms for the resolution of the TSP. How-411

ever, e�ciently passing from multicores to manycores might be a nontrivial task. There are sev-412

eral reasons for that, the most evident being the natural architectural di↵erences between these413

platforms. These di↵erences usually force us to make adaptations to the code. In this section, we414

discuss these architectural aspects and adaptations as well as the rationale behind them.415

POSIX threads are supported by all experimental platforms. This allowed us to execute416

the application on Xeon E5, Altix UV 2000, and Exynos 5 using exactly the same code. In our417

implementation, the global variable min path, defined by Algorithm 3.1, is implemented using a418

simple shared variable that is accessed by every thread. The function atomic update if less() is419

therefore implemented using a regular POSIX lock.420

Unfortunately, this common solution is not appropriate to the MPPA-256 platform since it421

does not possess coherent caches. Despite the fact that the update of min path works as it should422

(on the MPPA-256 platform the POSIX lock implementation invalidates the whole cache) and the423

final path length is correct, each one of the worker threads might be using a stale value of the424

min path variable for a long time (in the worst case until the end of its execution) and wasting425

time on fruitless branches of the search tree. This means that, although correct, the execution426

might be severely slowed down. To correct it, we have used platform specific instructions that427

allow us direct access to the local memory of the cluster, bypassing the cache ( builtin k1428

lwu and builtin k1 swu to load/store data from/to the local memory, respectively). The cost429

of reading the variable in this manner is clearly higher than using the value stored in the caches430

(reading from memory takes 8 cycles whereas reading from cache takes at most 2 cycles). Yet,431

the performance improvement due to the better pruning of the search tree largely outweighs the432

additional cost.433

In order to e�ciently exploit the MPPA-256 platform, we needed to use every cluster of the434

chip. These clusters do not have a global memory space hence the need for the distributed version435

of the algorithm. Conversely, Altix UV 2000 platform has a global memory space, however, as the436

communications between the NUMA nodes are done through the NUMAlink6 interconnection,437

we can make a better use of this system by keeping the memory near the threads that use it and438

avoid using the link to perform anything but global synchronizations and min path propagation.439

The distributed algorithm fits perfectly in this scenario.440
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In general, the distributed algorithm used by MPPA-256 and Altix UV 2000 is the same. Peers in441

the MPPA-256 platform take the form of compute clusters while in the Altix UV 2000 platform each442

peer is represented by a NUMA node. The di↵erence lies on the implementation of the min path443

broadcast and the task distribution. On the Altix UV 2000 platform, the implementation is based444

on shared memory using locks and condition variables. On the other hand, the implementation445

for the MPPA-256 platform is more complex. Since there is no shared memory between clusters,446

we employ asynchronous message exchanges. These message exchanges take the form of remote447

memory write operations. This can be done using proprietary MPPA-256 low-level system calls448

that allow a thread in a cluster to write to the memory of any other cluster on the chip. In both449

cases, the local value of the min path variable is updated atomically. However, due to the time450

needed to broadcast a new value, some threads might use a stale value for a short time until the451

broadcast is completed.452

4.2. K-Means453

Section 3.2 presented the K-Means problem as well as three di↵erent approaches to solve454

it. In this section we discuss how the solution of this problem was adapted to the manycore455

architecture used in this work.456

Xeon E5, Altix UV 2000 and Exynos 5 are platforms in which all cores have access to a global457

shared memory space. Additionally, these platforms support OpenMP. Therefore, for these plat-458

forms we employed the multi-threaded solution presented in Algorithm 3.4 using OpenMP for459

parallelization. Unfortunately this same solution is not appropriate for the MPPA-256 platform.460

Even though MPPA-256 supports OpenMP, cores in the MPPA-256 platform are grouped into 16-461

core clusters. Cores in the same cluster have access to the local shared memory but have no462

access to memory present on the remaining clusters. For this reason we had to embrace the dis-463

tributed version of the application in order to explore the full computational power provided by464

this platform.465

Despite the distributed algorithm presented in Section 3.2.3 being more appropriate to the466

MPPA-256 platform than the multi-threaded version, it has some characteristics that limit its direct467

use on this platform. Local memory available to each cluster (2 MB, of which 500 KB are used by468

the operating system) creates a strong constraint on the number of points that can be dealt with by469

each cluster. Even though the 32 MB (16⇥2 MB) of memory available in the computing clusters470

could store a reasonably sized workload, a static distribution of points at the initialization of the471

algorithm would totally disregard the 2 GB of memory available at the I/O subsystem. Therefore,472

we employed a dynamic solution for the distribution of points to be able to work with a number473

of points that is only limited by the amount of memory available at the I/O subsystem.474

In order to do so, we implemented a variation of the distributed algorithm using a dynamic475

one-level tiling strategy. In this solution the I/O subsystem keeps a copy of all the points and476

partitions. At each iteration, during the populate partitions and compute centroids phases, each477

computing cluster repeatedly downloads chunks of points from the I/O subsystem. These chunks478

are small enough to fit into the available local memory. After these points are processed, they are479

discarded to make space for the next chunk. This download/process/discard process is repeated480

at each iteration until all points are processed. At this point the results for the current iteration are481

uploaded to the I/O subsystem. Then, the I/O subsystem broadcasts the partial results to every482

computing cluster and the next iteration begins.483
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Figure 7: Multi-level tiling strategy to exploit the memory hierarchy of MPPA-256.

4.3. Seismic Wave Propagation484

Performing stencil computations on the MPPA-256 processor is a challenging task. This class485

of numerical kernels has an important demand for memory bandwidth. This makes the e�cient486

use of the low-latency memories distributed among compute clusters indispensable. In contrast487

to standard x86 processors, in which it is not uncommon to find last-level cache sizes of tens of488

megabytes, the MPPA-256 has only 32 MB of low-latency memory divided into 2 MB chunks489

spread throughout the 16 compute clusters.490

The 3D data required for seismic wave modeling do not fit in those low-latency memories.491

Therefore, we need to design e�cient master-to-slave and slave-to-master communications to492

make use of the 2 GB of memory available on the I/O subsystem and carefully overlap commu-493

nications with computations to mask communication costs. We implement a two-level algorithm494

that decomposes the problem with respect to the memory available on both the I/O subsystem495

and the compute clusters. Figure 7 shows the algorithm.496

The three dimensional structures corresponding to the velocity and stress fields are allocated497

on the I/O subsystem to maximize the problem size that can be simulated. Next, we divide the498

global computational domain into several subdomains corresponding to the number of compute499

clusters involved in the computation. This decomposition is performed along the horizontal500

direction providing a first level of data-parallelism. To respect the width of the stencil (fourth-501

order), we maintain an overlap of two grid points in each direction. These regions, called ghost502

zones, are updated at each stage of the computation with point-to-point communications between503

neighboring clusters. This decomposition is rather similar to the description provided in section504

3.3.3. Unfortunately, this first level of decomposition is not su�cient as three-dimensional tiles505

do not fit into the 2 MB of memory available on each compute clusters.506

A second level of decomposition is therefore required. This is performed along the vertical507

direction as we tile each three-dimensional subdomain into 2D slices. This leads to a signifi-508

cant reduction in memory consumption for each cluster but requires maintaining a good balance509

between the computation and communication. Indeed the procedure relies on a sliding window510

algorithm that traverses the 3D domains using 2D planes and overlaps data transfers with com-511

putations. This could be viewed as an explicit prefetching mechanism as the 2D planes required512

for the computation at one step are brought to the clusters during the computation performed at513

previous steps. Additionally, this vertical tiling strategy allows us to benefit from the symme-514

try of the domain in the horizontal directions. The costly absorbing boundary conditions grid515
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points located at the bottom of the domain are therefore evenly distributed among the computing516

clusters.517

The number of planes prefetched in advance is parameterizable and its maximum value de-518

pends on the problem dimensions and the amount of available memory on each compute cluster.519

To better exploit the NoC, we carefully select the NoC node on the I/O subsystem with which the520

compute cluster will communicate. This choice is based on the NoC topology and aims at reduc-521

ing the number of hops necessary to deliver a message. Moreover, the prefetching scheme also522

allows us to send less messages containing more data, which has been empirically proven to be523

more e�cient than sending several messages of smaller size. OpenMP directives are employed524

by clusters to compute 2D problems with up to 16 PEs in parallel.525

5. Experimental Results526

In this section, we present performance and energy e�ciency evaluations for the experimental527

platforms. These evaluations were conducted by the execution of parallel and distributed versions528

of the presented applications. We begin by introducing our energy consumption measurement529

methodology along with the metrics used to analyze the results on all platforms. Then, we530

compare their energy and computing performance.531

5.1. Measurement Methodology532

We use two important metrics to compare the energy and computing performance of di↵erent533

multicore and manycore platforms: time-to-solution and energy-to-solution. Time-to-solution is534

the time spent to reach a solution for a given problem. In our case, this is the overall execution535

time of the parallel/distributed version of the applications. Energy-to-solution is the amount of536

energy spent to reach a solution for a problem. Thus, the ratio between energy-to-solution and537

time-to-solution yields the average power consumed during the application execution.538

Table 1 lists the average power consumed by each one of the platforms used in our exper-539

iments during the execution of the parallel and distributed versions of the applications. Even540

though the Altix UV 2000 features 24 Xeon E5 processors, it consumes less than 24 times the541

power observed on Xeon E5. This is an expected phenomenon because Xeon E5 runs a multi-542

threaded version of the applications whereas Altix UV 2000 runs their distributed counterparts.543

Distributed versions experience periods of low processor usage as, for example, those during the544

task request/response cycle and those related to load imbalance. This will be further discussed in545

Section 5.5).546

Xeon E5 Altix UV 2000 Exynos 5 MPPA-256
TSP 67.9 W 1,418.4 W 5.3 W 8.3 W
K-Means 61.5 W 1,420.3 W 5.2 W 9.6 W
Ondes3D 57.5 W 1,353.0 W 4.6 W 8.4 W

Table 1: Average power consumption of the 4 processors while running the applications.

The power consumed by each processor was obtained using the same approach. Both Xeon547

E5 and Altix UV 2000 feature Intel Sandy Bridge microarchitecture, which has Running Average548

Power Limit (RAPL) energy sensors. This allows us to measure the power consumption of549

CPU-level components through Machine-Specific Registers (MSRs). We used this approach to550
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obtain the energy consumption of the whole CPU package including cores and cache memory551

(named RAPL PKG domain). Similarly, MPPA-256 and Exynos 5 also possess hardware sensors552

to measure power consumption of the entire chip. Power measurements using this approach are553

very accurate as shown in [29, 30].554

Small Medium Large
TSP 16 cities 18 cities 20 cities

K-Means 16,384 points 32,768 points 131,072 points
512 centroids 512 centroids 512 centroids

Ondes3D 16x16x16 grid points 48x64x48 grid points 128x128x128 grid points

Table 2: Problem sizes.

We also defined three input problem sizes for all applications (Table 2). These problem sizes555

were chosen based on the execution time on all platforms and amount of memory needed. For556

instance, we used a small problem size when running the applications with low thread counts in557

order to obtain the results in a reasonable time1. Each experiment was repeated as many times as558

needed to ensure a relative error inferior to 2% with 95% statistical confidence using Student’s559

t-distribution.560

5.2. Overall Results561

Figure 8 compares both time-to-solution (right y-axis) and energy-to-solution (left y-axis)562

metrics on all processors. Since we used every core of each processor in these experiments, we563

executed the applications with large problem sizes.564
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Figure 8: Time and energy-to-solution comparison between multicore, NUMA and manycore processors.

1The large problem size along with very low thread counts takes several hours on embedded processors due to their
low clock frequency.
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Time-to-Solution. As expected, applications on Exynos 5 presented the highest execution565

times among all platforms, being from 6.7x (TSP) up to 8.1x (Ondes3D) slower than Xeon E5.566

The reason for that is threefold: (i) it has considerably lower clock frequency than Xeon E5; (ii)567

Xeon E5 is a performance-centric processor that is tuned far more for speed than for low power568

consumption; and (iii) Xeon E5 profits from its higher parallelism, since all applications scale569

considerably well as we increase the number of threads. MPPA-256 presented better execution570

times than Xeon E5 on TSP and K-Means, being 1.6x and 1.5x faster respectively. Even though571

the clock frequency of MPPA-256 PEs is lower than that of the Xeon E5 cores, this embedded572

processor achieved better performance. Once again, this is due to the inherent characteristic573

of these applications. On TSP, peers only need to broadcast data when a new shortest path is574

found. On K-Means, peers communicate more often but this application still performs more575

computation than communication.576

An optimized implementation of the seismic wave propagation algorithm has been consid-577

ered as a baseline for our evaluations. As detailed in Section 3.3, the shared-memory implemen-578

tation relies on e�cient data and thread mapping strategies in order to reduce both the NUMA579

penalty and the load imbalance. It is well known that stencil-based computations like finite580

di↵erences method applied to seismic wave propagation achieve a low fraction of the peak per-581

formance on standard processors such as x86. This is mainly due to the huge demand for memory582

bandwidth typical for this class of algorithms. On average, 30% of peak performance is reported583

for such implementations [31]. A detailed characterization of this behavior taking into consider-584

ation both the architecture and the algorithms is given by the roofline model [32]. Nonetheless,585

a more detailed discussion on the peak performance on the MPPA-256 architecture would require586

revisiting the roofline model which is out the scope of this paper. Our analysis confirmed our587

expectation that an important share of Ondes3D execution time is spent in communications. Al-588

though the prefetching scheme considerably hides the communication costs on MPPA-256, the589

latency and bandwidth of the NoC still hurts its performance, resulting in an execution time ap-590

proximately 10% worse on MPPA-256 compared to Xeon E5. Not surprisingly, Altix UV 2000 plat-591

form presented the best execution times, since it has 24 performance optimized general- purpose592

multicore processors. We further discuss the scalability results on Altix UV 2000 and MPPA-256 in593

Section 5.4.594

Energy-to-Solution. Both Exynos 5 and MPPA-256 presented better energy-to-solution than595

the other platforms. However, the low degree of parallelism available on the ARM processor596

was a clear disadvantage for Exynos 5. Even though this processor consumes less power than597

the others, it ends up executing the applications during a longer period of time. This results598

in a higher energy consumption compared to MPPA-256. Overall, MPPA-256 achieved the best599

energy-to-solution results, reducing the energy consumed by other platforms on TSP, K-Means600

and Ondes3D in at least 6.9x, 6.5x and 3.8x, respectively.601

5.3. Energy E�ciency602

In the previous section, we showed that MPPA-256 presented the best energy-to-solution re-603

sults among all platforms. The main reason is that MPPA-256 o↵ers a high parallelism and yet604

has a low power consumption. In this section, we intend to look in more detail at the energy605

e�ciency of all platforms when we vary the number of cores. We first compare the energy-to-606

solution of all applications when varying the number of cores from 1 to the maximum number of607

cores available in each processor (Figure 9a). In other words, we compare the energy-to-solution608

obtained with a single processor of Altix UV 2000 (which is actually the Xeon E5), Exynos 5 and609

a single compute cluster of MPPA-256 (in this case, we vary the number of PEs). For these tests,610
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Figure 9: Energy-to-solution comparison on all platforms with three problem sizes.

we used a small problem size due to time constraints. Then, we compare the energy-to-solution611

on Altix UV 2000 and MPPA-256 when varying the number of peers (i.e., processors on Altix UV612

2000 and compute clusters on MPPA-256), while using the maximum number of cores available613

on each Altix UV 2000 processor (8 cores) and MPPA-256 clusters (16 PEs). We used a medium614

problem size to compare the energy-to-solution from 2 to 12 peers (Figure 9b) and a large prob-615

lem size for more than 12 peers (Figure 9c). Note that the MPPA-256 architecture is limited to 16616

peers, therefore we only show the results for more than 16 peers on Altix UV 2000.617

Varying the Number of Cores. Exynos 5 achieved the best energy-to-solution for the small618

problem size in all applications. Figure 9a shows this behavior. The reasons for that are twofold.619

First, Exynos 5 is the least power hungry processor among all the experimental platforms. Sec-620

ond, the problem size used in this experiment is too small to scale past 4 cores. When we compare621

the energy e�ciency of a single Altix UV 2000 processor against a single MPPA-256 cluster, we622

notice that Altix UV 2000 outperformed MPPA-256 with low core counts on TSP and K-Means. For623

more than 8 cores, however, the MPPA-256 cluster outperformed the Altix UV 2000 processor. This624

comes from the fact that the power consumed by a single Altix UV 2000 processor considerably625

increased as we increased the number of used cores whereas the power consumed by a single626
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MPPA-256 cluster remained practically unchanged. The only exception occurred on Ondes3D.627

In this case, MPPA-256 consumed much more energy than the Altix UV 2000 processor because628

communications on MPPA-256 could not be overlapped with computations using small problem629

sizes on Ondes3D. Moreover, the NoC bandwidth achieved in this case is poor, since we only630

perform 1-to-1 communications between the I/O subsystem and a single cluster.631

Varying the Number of Peers. The gap between the energy consumed by Altix UV 2000 and632

MPPA-256 became more important as we increased the number of peers. From 2 to 12 peers633

(Figure 9b), MPPA-256 consumed at least 2.3x less energy than Altix UV 2000. This gap was634

even larger from 13 to 16 peers with a large problem size (Figure 9c): in this case, MPPA-256635

consumed on average ⇠11x less energy than Altix UV 2000. Once again, the rationale behind that636

comes from the high energy cost associated to the Altix UV 2000 processors: adding one Xeon E5637

processor usually increases the overall power consumption of Altix UV 2000 by ⇠60 W on average638

whereas adding one MPPA-256 cluster increases the overall power consumption of MPPA-256 by639

⇠0.3 W.640

5.4. Scalability641

So far, we have only compared the energy-to-solution of MPPA-256 and Altix UV 2000, show-642

ing that the former consumed far less energy than latter to solve the same problems. Figure 10643

illustrates the time-to-solution gap between them for a medium problem size when considering644

an equal number of resources (peers) as well as the comparative speedup between the architec-645

tures. The speedup calculation was based on the e↵ect that an increase on the number of peers646

has on performance. For that reason, and to maintain consistency throughout our comparisons,647

we employed as the baseline the execution time of the multi-threaded algorithms using a single648

peer. In other words, we compared the performance of the distributed algorithm using di↵erent649

numbers of fully utilized peers to that of a parallel version using all the resources of single peer,650

i.e., with no inter-peer communications. We measure, therefore, the scalability of the distributed651

version of the algorithms and not that of the of the multi-threaded version. Detailed scalability652

evaluation analysis for the multi-threaded algorithms can be found in the base works presented653

in Section 3.654

Overall, the distributed version of the applications scaled considerably well and execution655

times showed similar trends on both platforms. However, Altix UV 2000 was from 9x up to 13x656

faster than MPPA-256. This result was expected, since peers mean processors running at full speed657

(2.4 GHz) on Altix UV 2000 whereas they represent blocks (compute clusters) of the MPPA-256658

processor running at 400 MHz. In other words, we are comparing sets of entire processors on Altix659

UV 2000 against subsets of a single MPPA-256 processor. We also observed similar performance660

gaps with other problem sizes.661

The near-linear speedups of TSP and K-Means on both architectures show that, although662

the actual implementations of the evaluated applications were adapted to accommodate each663

platform’s idiosyncrasies, they in fact display good and similar scalability. The exception of664

Ondes3D can be explained by the amount communications performed by this algorithm. While665

TSP and K-Means are CPU-bound and communicate at regular but not so frequent intervals,666

communication on the Ondes3D is much more intensive. The weak scalability past six peers667

demonstrates the toll imposed by these communications to the NUMA interconnections on Altix668

UV 2000 and to the NoC on MPPA-256.669

Moreover, in order to avoid NUMA e↵ects on the Altix UV 2000 platform and ensure good670

execution performance, we had to employ some additional runtime optimizations. For all appli-671

cations we employed thread-pinning [33]. Since the TSP was implemented using POSIX threads,672
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Figure 10: Time-to-solution and speedup comparison between Altix UV 2000 and MPPA-256.

we used Linux’s specific system calls to ensure that threads would not be migrated during the673

execution of the application. K-Means and Ondes3D used OpenMP to implement parallelism,674

therefore in these cases we employed the GOMP CPU AFFINITY environment variable to ensure675

threads were correctly bound to the available cores. Additionally, we specially modified the ini-676

tialization phase of the applications so that the first-touch strategy (Linux’s default) could suitably677

place the allocated memory on the NUMA nodes. For that, each application would make each678

thread initialize (either with the actual value or with a dummy value when initialization had to679

be centralized) each private region of memory.680

5.5. Irregularity681

In the last sections, we analyzed the energy-to-solution and the scalability of the distributed682

versions of all applications on both Altix UV 2000 and MPPA-256. The results showed that our dis-683

tributed solutions scaled well, which indicates that the inherent irregularities of each application684

were satisfactorily handled.685

However, Figure 9a and Figure 9b reveal some points where the energy-to-solution abruptly686

increases (e.g., from 6 to 7 and from 13 to 14 peers) in the TSP. In these cases, the addition687

of a peer incurred performance losses (higher execution times). In order to investigate this pe-688

culiar behavior, we traced the execution of the distributed version of TSP. Figure 11 shows the689

execution traces obtained on Altix UV 2000 while running the TSP with 14 peers.690

Figure 11a shows a global view of the execution aggregated per peer. At the beginning691

(Figure 11b), one thread in each peer asks a master peer for partitions and starts populating692

the local pool of tasks. As tasks become available, other threads in the same peer can start the693

computation. Once the thread assigned to populate the local pool of tasks finishes its job, it694

also starts the computation. Afterwards, as the peers run out of work, they ask a master peer695
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Figure 11: Execution traces of TSP on Altix UV 2000.

for more partitions. This strategy works fairly well throughout most of the execution. However,696

in some cases the load may become imbalanced at the end of the execution. Figure 11c shows697

what happens inside the peers. In this case, only peer 4 keeps processing for a long time while698

other peers are running out of tasks. This happens because the last task associated to Thread699

0 from Peer 4 takes much longer to be completed. This problem can be reduced with a work-700

stealing strategy inside each peer, so that threads can steal segments of this big task to improve701

parallelism. However, we leave this optimization for a future work.702

6. Related Work703

Many works have been focusing on analyzing the performance and energy e�ciency of low-704

power multicore processors. Padoin et al. [34] compared an ARM Cortex-A9 1.0 GHz dual-705

core processor from Texas Instruments to two multiprocessors: one composed of two quad-core706

2.4 GHz Intel Xeon E5 processors and the other composed of four 2.0 GHz 8-core Xeon X7707

processors. They analyzed di↵erent metrics such as time-to-solution, peak power and energy-to-708

solution using 6 benchmarks from the NAS Parallel Benchmarks (NPB). Their results showed709

that the ARM processor outperforms Xeon X7, considering the energy-to-solution metric, for710

most of the analyzed benchmarks. However, the Xeon E5 had the best energy-to-solution among711

the three processors.712

Göddeke et al. [3] also conducted a comparison between ARM and x86 architectures using713

di↵erent classes of numerical solution methods for partial di↵erential equations. They evaluated714
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weak and strong scalability on a cluster of 96 ARM Cortex-A9 dual-core processors and demon-715

strated that the ARM-based cluster can be more e�cient in terms of energy-to-solution compared716

to a cluster of Intel Xeon X5550 processors. Similarly, Ou et al. [35] compared the energy ef-717

ficiency of a ARM-based cluster against an Intel X86 workstation on three applications: a web718

server, an in-memory database and a video transcoding. They concluded that energy/e�ciency719

ratio of the ARM cluster against the Intel workstation depend on the application and may vary720

from 1.21 up to 9.5.721

Recent works are aiming to assess whether light-weight manycore processors can be used as722

basic blocks for future HPC architectures. Totoni et al. [36] compared the power and performance723

of Intel’s Single-Chip Cloud Computer (SCC) to other types of CPUs and GPUs. The analysis724

was based on a set of parallel applications implemented with the Charm++ programming model.725

They showed that there is no single best solution that always achieves the best trade-o↵ between726

power and performance. However, the results obtained with the Intel SCC suggest that many-727

cores are an opportunity for the future. Morari et al. [37] proposed an optimized implementation728

of radix sort for the Tilera TILEPro64 manycore processor. The results showed that the their so-729

lution for TILEPro64 provides much better energy e�ciency than an general-purpose multicore730

processor (Intel Xeon W5590) and comparable energy e�ciency with respect to a GPU NVIDIA731

Tesla C2070. Gharaibeh et al. [38] showed how a synergistic use of CPUs and GPUs can im-732

prove the overall energy-to-solution on large-scale graph processing. In particular their approach733

is similar to our seismic wave simulation application in the sense that they map the problem (the734

input graph) to the interconnection topology of the underlying hardware platform.735

Castro et al. [9] showed that MPPA-256 can be very competitive considering both perfor-736

mance and energy e�ciency for a fairly parallelizible problem: the Traveling- Salesman Problem737

(TSP). The results indicated that the MPPA-256 may achieve better performance than an Intel738

Xeon processor with 8 CPU cores (16 threads with Hyper-Threading) running at 2.40GHz while739

consuming approximately 13 times less energy. Using a slightly di↵erent approach, Aubry et740

al. [7] compared the performance of an Intel Core i7-3820 processor with the MPPA-256. Their741

application, an H.264 video encoder, was implemented using a dataflow language that o↵ers742

direct automatic mapping to MPPA-256. Their findings show that the performance of these tra-743

ditional processors is on par with the performance of the MPPA-256 embedded processor which744

provides 6.4 times better energy e�ciency.745

Unlike the previous works, we have focused on the passage from multicores to manycores746

from the perspective of three irregular applications. We pointed out some of the programming747

issues that must be considered when developing parallel applications to manycores. Moreover,748

we analyzed the performance and energy consumption of these applications on a set of state-749

of-the-art multicore and manycore platforms, ranging from low-power processors to general-750

purpose processors.751

7. Conclusion and Future Work752

In this work we analyzed the performance and the energy-e�ciency of four di↵erent hard-753

ware platforms. For that we employed applications with three di↵erent behaviors. The exper-754

imental results obtained during this research corroborated the widely accepted practice on the755

high-performance research domain that considers an appropriate appreciation of the underlying756

hardware idiosyncrasies essential to obtain good performance and energy e�ciency.757

Manycore processors seem to be the trend in the development of faster energy-e�cient pro-758

cessors. The e�cient use of a light-weight manycore processor demands adaptations to the759
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application code so that it can e�ciently use the whole chip. Often these modifications are not760

trivial. For instance, the MPPA-256 platform has a strong constraint on the amount of available761

local memory. For this reason we had to implement specific tiling mechanisms to be able to762

deal with real-world scenarios (Ondes3D) and arbitrary problem sizes (K-Means). In the case763

of Ondes3D, we also needed to implement a prefetching mechanism to overlap communications764

with computation. On TSP, on the other hand, modifications were similar to those needed to port765

an application to the MPI paradigm. However, the absence of a coherent cache considerably in-766

creased the implementation complexity, requiring the use of full memory barriers or proprietary767

system calls designed to completely bypass the cache. On the Altix UV 2000, we had to employ768

thread pinning and memory placement to ensure performance.769

As it is often the case for parallel applications, such modifications tend to introduce redundant770

computations and extra communications in order to improve the parallelism of the whole solu-771

tion. Not every application is suitable to this kind of modification and, in the worst case scenario,772

a strictly serial application might be limited to the performance of a single core. For these three773

classes of applications (CPU-bound, memory- bound and mixed) we showed that highly-parallel774

platforms can be very competitive, even if the application is irregular in nature. Our results775

showed that MPPA-256 may achieve better performance than a traditional general-purpose multi-776

core processor (Xeon E5) on CPU-bound and mixed workloads. For a memory-bound workload777

(Ondes3D) Xeon E5 performed better than MPPA-256. Although Altix UV 2000 presented the best778

performance results among all platforms it also presented a higher energy consumption when779

communication became more important (K-Means and Ondes3D), however it still showed an780

energy e�ciency similar to Xeon E5. MPPA-256 presented the best energy e�ciency among all781

platforms, reducing the energy consumed on TSP, K-Means and Ondes3D by at least 6.9x, 6.5x782

and 3.8x, respectively.783

This work can be extended in two directions. First, we compared the energy e�ciency of784

state-of-the-art Intel-based platforms (Xeon E5 and Altix UV 2000) to other low-power platforms785

(MPPA-256 and Exynos 5). These specific Intel-based platforms are optimized for performance,786

not for low energy consumption. As future work, we plan to compare the performance of these787

low-power processors to those based on low-power Intel processors such as the Intel Atom and788

the mobile versions of the Sandy Bridge architecture. Next, we intend to compare the perfor-789

mance and energy e�ciency of lightweight manycore processors such as MPPA-256 to other790

manycore processors such as GPUs and the Intel Xeon Phi.791
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