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Abstract—Large-scale simulation of seismic wave propagation
is an active research topic. Its high demand for processing power
makes it a good match for High Performance Computing (HPC).
Although we have observed a steady increase on the processing
capabilities of HPC platforms, their energy efficiency is still
lacking behind. In this paper, we analyze the use of a low-power
manycore processor, the MPPA-256, for seismic wave propagation
simulations. First we look at its peculiar characteristics such as
limited amount of on-chip memory and describe the intricate
solution we brought forth to deal with this processor’s idiosyn-
crasies. Next, we compare the performance and energy efficiency
of seismic wave propagation on MPPA-256 to other common-
place platforms such as general-purpose processors and a GPU.
Finally, we wrap up with the conclusion that, even if MPPA-256
presents an increased software development complexity, it can
indeed be used as an energy efficient alternative to current HPC
platforms, resulting in up to 71% and 81% less energy than a
GPU and a general-purpose processor, respectively.

I. INTRODUCTION

Simulations of large scale seismic wave propagation are
very important for risk mitigation, assessment of damage
in future hypothetical earthquake scenarios, and oil and gas
exploration. Realistic seismic wave propagation simulations
rely on complex models, which demand intensive computations
on large amounts of data. In this context, High Performance
Computing (HPC) appears as the main solution to achieve
reliable results in a reasonable amount of time.

Until the last decade, the performance of HPC architectures
has been quantified almost exclusively by their processing
power, which is usually measured by the number of floating-
point operations per second (or Flops). Nowadays, in some
contexts, energy efficiency (Flops/Watt) is as important as
processing power and has become a critical aspect to the
development of scalable systems. On data-centers, for instance,
power and cooling costs largely dominate the operational
costs (approximately 30% of the energy is used in cooling
and 10-15% is lost in power conversions and distribution
losses [1]). Taking these aspects into consideration, the of-
ficial DARPA/IPTO report [2] emphasized that the acceptable
power budget to reach the exascale would be 20 MW, which
means that an HPC architecture should be able to perform
50 GFlops/W. Yet, the number one ranked machine in the

last (November/2013) Green5001 list (TSUBAME-KFC) has
an efficiency of 4.5 GFlops/W, i.e., it is at least ten times less
efficient than DARPA/IPTO’s recommendation.

The scientific community has been seeking alternatives to
lower current power consumption [3], [4]. Recently, a new
class of highly-parallel processors called light-weight many-
core processors was unveiled. Tilera Tile-Gx [5] and Kalray
MPPA-256 [6] are examples of such processors, providing
high levels of parallelism with hundreds or even thousands
of cores. Differently from Graphics Processing Units (GPUs),
they feature autonomous cores that can be used to accomplish
both data and task parallelism.

Although manycore processors may present better energy
efficiency than state-of-the-art general-purpose multicore pro-
cessors [7], they can also make the development of efficient
scientific parallel applications a challenging task due to their
architectural idiosyncrasies. Some of these processors are built
and optimized for certain classes of embedded applications like
signal processing, video decoding and routing. Additionally,
processors such as MPPA-256 have important memory con-
straints, e.g., limited amount of directly addressable memory
and absence of cache coherence protocols. Furthermore, effi-
cient execution on these processors requires data transfers to
be in conformance with the Network-on-Chip (NoC) topology
to mitigate the, otherwise high, communication costs.

In this paper we outline the architectural distinctiveness
of the 256-core MPPA-256 processor. Considering these char-
acteristics, we describe how the main kernel of a seismic
wave propagation simulator was adapted to this platform. Due
to the limited size of the local memories in MPPA-256, we
developed a new multi-level tiling strategy and a prefetching
mechanism to allow us to deal with real simulation scenarios
and to alleviate communication overheads. We also describe
the difficulties and solutions (some of them generic enough
to be used in different contexts) we employed during this
adaptation. Next, taking as a basis optimized GPU and general-
purpose processor implementations for this kernel, we show
that light-weight manycore processors can be an appealing
energy-efficient alternative to seismic wave propagation sim-
ulation. Our results show that the solution we propose for

1The Green500 (http://www.green500.org) provides a ranking of the most
energy-efficient supercomputers in the world.



the MPPA-256 processor can improve the energy efficiency
of current solutions using GPUs in 71% and in 81% when
compared to general-purpose processors.

The paper proceeds as follows. Section II discusses the
fundamentals of seismic wave propagation and its standard
approaches. Then, Section III presents the MPPA-256 many-
core processor and discusses the challenges we must overcome
when dealing with parallel seismic wave propagation on this
processor. Section IV presents our approach to perform seis-
mic wave propagation simulations on MPPA-256. Section V
discusses the performance and energy efficiency results. Sec-
tion VI describes related work and Section VII concludes this
paper.

II. BACKGROUND

In this section we first give a brief introduction to seismic
wave propagation. Then, we describe the governing equations
and discuss some of their standard parallel implementations.

A. Seismic Wave Propagation

Predicting strong ground shaking for moderate and large
earthquakes is essential for quantitative seismic hazard as-
sessment. Simulations of seismic wave propagations are often
constrained by the computational and storage capacity of the
hardware platform. Thus seismologists often reduce the scope
of the simulation to a small volume instead of considering the
whole Earth. The memory footprint of each simulation depends
on both the domain of interest and the number of grid points
per wavelength. This last condition guarantees numerical sta-
bility and therefore the accuracy of the simulation. In our case,
we limit our simulations to problem domains that fit into the
2 GB of memory available on the MPPA-256 platform. For that,
we perform regional scale modeling spanning a few hundred
kilometers in each spatial direction.

In this paper we describe the earthquake process as elasto-
dynamics and we use a finite-differences scheme for solving
the wave propagation problem in elastic media [8]. This
approach was first proposed in 1970 and since then it has
been widely employed due to its simple formulation and
implementation.

B. Governing Equations and Numerical Scheme

The seismic wave equation in the case of an elastic material
is:

ρ
∂vi
∂t

=
∂σij
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+ Fi (1)

and the constitutive relation in the case of an isotropic medium
is:
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where indices i, j, k represent a component of a vector
or tensor field in cartesian coordinates (x, y, z), vi and σij
represent the velocity and stress field respectively, and Fi
denotes an external source force. ρ is the material density and λ
and µ are the elastic coefficients known as Lamé parameters.
A time derivative is denoted by ∂

∂t and a spatial derivative

with respect to the i-th direction is represented by ∂
∂i . The

Kronecker symbol δij is equal to 1 if i = j and zero otherwise.

Exponents i, j, k indicate the spatial direction with (σijk =
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and then at time t = (` + 1)∆t, the following unknowns are
computed
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For instance, the stencil applied for the computation of the
velocity component in the x-direction is given by:
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with a1, a2 and a3 defined as three constants.

The finite difference scheme has been generally developed
for equally-spaced structural grids. Thus, the largest numerical
dimension of the theoretical problem considered in the rest of
this paper is 5.4 million grid points. The computational domain
is therefore a cube with 180 grid points in each direction.
At this stage, we remind that the analysis presented in this
paper is restricted to the parallel performance of the seismic
numerical kernel on the MPPA-256 processor. Nevertheless, the
results obtained on MPPA-256 processor have been validated
using reference optimized implementations for x86 and GPU
platforms, as described in the next section.

C. Parallel implementations

The best parallelization strategy for the elastodynamics
equations highly depends on the characteristics of the under-
lying hardware architecture. In this section, we detail the par-
allelization strategy used by the reference implementations on
multicore and GPUs which are employed throughout the rest
of this paper. The reference implementations are those from
Ondes3D, a seismic wave propagation simulator developed by
the French Geological Survey (BRGM).



On shared memory multicore processors, the best way to
extract the inherent parallelism of elastodynamics equations
is to exploit the triple nested loops coming from the three
dimensions of the problem under study. This allows a very
straightforward use of OpenMP directives. However, additional
optimizations must be employed on large scale Non-Uniform
Memory Access (NUMA) architectures, where the memory
access time depends on the memory location relative to the
processor. In this paper, we rely on classical optimizations for
careful data and thread placement using Linux’s default first-
touch memory policy. We exploit the regular memory access
pattern of the finite-differences method to pin threads to cores
and to place the data closer to the threads that access it. This
guarantees that most memory accesses will be local [9].

However, on GPUs the main difficulty to implement elas-
todynamics equations comes from the fourth-order stencil. The
finite-differences method implies that an important number
of accesses to global memory (at least 13) are needed on
the GPU to handle each grid point. On the other hand, it is
possible to significantly reduce this number if we take into
consideration that threads belonging to the same block can
access common values using the, faster, shared memory. This
drastically improves performance due to a better exploitation
of the spatial parallelism. To further improve data reuse,
the implementation we employed resorts to a sliding-window
algorithm that relies on a two-dimensional tiled decomposition
of the three-dimensional domain [10].

III. THE MPPA-256 MANYCORE PROCESSOR

The MPPA-256 is a single-chip manycore processor de-
veloped by Kalray that integrates 256 user cores and 32
system cores in 28nm CMOS technology running at 400 MHz.
These cores are distributed across 16 compute clusters and 4
I/O subsystems that communicate through data and control
Networks-on-Chip (NoCs). This processor has successfully
been used in some classes of embedded parallel applications
such as signal processing and video decoding [6], [7].
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Figure 1: A simplified view of MPPA-256.

Figure 1 shows an architectural overview of the MPPA-256
processor. It features two types of cores: Processing Elements
(PE) and Resource Managers (RM). Although RMs and PEs
implement the same Very Long Instruction Word (VLIW)
architecture, they have different purposes: PEs are dedicated to
run user threads (one thread per PE) in non-interruptible and

non-preemptible mode whereas RMs execute kernel routines
and services of NoC interfaces. Operations executed by RMs
vary from task and communication management to I/O data
exchanges between either external buses (e.g. PCIe) or DRAM.
Both PEs and RMs have private 2-way associative 32 KB
instruction and data caches.

PEs and RMs are grouped within compute clusters and
I/O subsystems. Each compute cluster has 16 PEs, 1 RM
and a low-latency shared memory of 2 MB which enables a
high bandwidth and throughput between PEs within the same
compute cluster. Each I/O subsystem relies on 4 RMs with
a shared D-cache and static memory. The board used in our
tests has one of the I/O subsystems connected to an external
LP-DDR3 of 2 GB. Contrary to the RMs available on compute
clusters, the RMs of I/O subsystems can also run user code.

An important difference of the MPPA-256 architecture is
that it does not provide cache coherence between PEs, even
among those in the same compute cluster. This means that
applications must explicitly maintain the data consistency
between PEs private caches. Another difference concerns the
Operating System (OS). Each I/O subsystem runs an in-
stance of the Real Time Executive for Multiprocessor System
(RTEMS)2. It is an open source Real Time OS that supports a
variety of open standards such as POSIX and BSD sockets.
On the other hand, compute clusters run a proprietary OS
called NodeOS. NodeOS implements an Asymmetric Multi-
Processing (AMP) architecture, which benefits from the asym-
metry that naturally exists in the clusters between the RM and
the PEs. Since a different instance of the OS runs in each
cluster, about 500 KB of memory is always in use by the OS
leaving about 1.5 MB free to the application data and code.
Additionally, neither of these OSs support virtual memory and
memory transferences from the DDR memory to the local
caches must be done explicitly by the application code.

Parallel applications running on MPPA-256 usually follow
the master/worker model. The master process runs on an RM
of the I/O subsystem and it is responsible for spawning worker
processes. Workers are executed on compute clusters and each
worker may create up to 16 POSIX threads, one for each PE.

A. Challenges

The MPPA-256 is an appealing alternative to current
general-purpose multicore processors and GPUs, since it fea-
tures hundreds of cores operating within a very low power
budget. However, developing efficient parallel scientific appli-
cations for this processor is challenging due to some of its
intrinsic characteristics. In this section, we highlight the chal-
lenges that must be overcome to efficiently perform parallel
seismic wave propagation simulations on this processor.

Memory management. MPPA-256 has a limited amount
of low-latency memory per compute cluster (2 MB), which
is shared by 16 PEs. These memories act as caches, whose
goal is to store data coming from the DDR to be computed by
PEs. However, data transfers between the DDR and compute
clusters’ low-latency memories must be explicitly managed by
the programmer. Moreover, the data needed for simulating real
wave propagation scenarios do not fit into these memories.

2http://www.rtems.org
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Figure 2: Two-level tiling scheme to exploit the memory hierarchy of MPPA-256.

Thus, the global data must be tiled and transferred between
the DDR and the compute clusters’ during computation. Next
section discusses our approach to deal with this memory
constraint.

Overlapping data transfers. MPPA-256 allows both syn-
chronous and asynchronous data transfers. A specific API
allows the master process (running on the I/O subsystem
connected to the DDR) to write data to compute clusters’
memory as well as PEs to write the result back to the DDR
after computation. Real wave propagation simulations demand
several data transfers. Thus, we only employ asynchronous
data transfers to alleviate communication costs by overlapping
communication with computation.

Matching NoC topology and communication. Compute
clusters and I/O subsystems are connected by two parallel
NoCs, one for data (D-NoC) and another for control (C-NoC).
There is one NoC node per compute cluster whereas there are 4
NoC nodes per I/O subsystem. To achieve high bandwidth, the
master process running on the I/O subsystem must explicitly
select which NoC node to use for the data transfer in accor-
dance to the NoC topology and the application communication
pattern. Additionally, it is preferable to perform few data
transfers containing large amounts of data instead of several
data transfers containing few data to reduce communication
costs. These characteristics also guided our algorithmic and
implementation decisions discussed in the following section.

IV. ELASTODYNAMICS NUMERICAL KERNEL ON
MPPA-256

Performing stencil computations on the MPPA-256 proces-
sor is a challenging task. This class of numerical kernels has
an important demand for memory bandwidth. This makes the
efficient use of the low-latency memories distributed among
compute clusters indispensable. In contrast to standard x86
processors in which it is not uncommon to find last-level cache
sizes of tens of megabytes, the MPPA-256 has only 32 MB
of low-latency memory divided into 2 MB chunks spread
throughout the 16 compute clusters. These chunks of memory
are directly exposed to the programmer that must explicitly
control them. Indeed, the efficiency of our algorithm relies on
the ability to fully exploit this low-latency memories.

On classical distributed memory architectures, the standard
parallel implementations of the elastodynamics equations are
based on MPI Cartesian grid decomposition. The strategy is

based on data-parallelism in which each processor solves its
own subdomain problem. The time-dependent computational
phase corresponding to the resolution of the first-order system
of equations (1) and (2) is the following: at each time step,
the stress variables are computed first, then each domain ex-
changes interface information with its neighbors and finally the
velocity variables are updated again by exchanging information
on the edges [11].

As we mentioned earlier, the 3D data required for seismic
wave modeling do not fit in MPPA-256 low-latency memories
making this standard distributed approach ineffectual. There-
fore, we need to design efficient master-to-slave and slave-to-
master communications to make use of the 2 GB of memory
connected to the I/O subsystem and carefully overlap commu-
nications with computations to mask communication costs. For
that, we implemented a two-level algorithm that decomposes
the problem with respect to the memory available on both
I/O subsystem and compute clusters. Figure 2 illustrates the
general idea of our two-level tiling scheme.

The three dimensional structures corresponding to the
velocity and stress fields are allocated on the DDR connected
to the I/O subsystem to maximize the overall problem size that
can be simulated. Next, we divide the global computational
domain into several subdomains corresponding to the number
of compute clusters involved in the computation (Figure 2- 1 ).
This decomposition provides a first level of data-parallelism.
To respect the width of the stencil (fourth-order), we maintain
an overlap of two grid points in each direction. These regions,
called ghost zones, are updated at each stage of the computa-
tion with point-to-point communications between neighboring
clusters. Unfortunately, this first level of decomposition is not
enough because three-dimensional tiles do not fit into the 2 MB
of low-latency memories available to the compute clusters.

A second level of decomposition is therefore required.
We performed this decomposition along the vertical direction
as we tile each three-dimensional subdomain into 2D slices
(Figure 2- 2 ). This leads to a significant reduction of the
memory consumption for each cluster but requires maintaining
a good balance between the computation and communication.
Our solution relies on a sliding window algorithm that traverses
the 3D domains using 2D planes and overlaps data transfers
with computations. This can be viewed as an explicit prefetch-
ing mechanism (Figure 2- 3 ) as 2D planes required for the
computation at one step are brought to the clusters during the
computation performed at previous steps.



Although our solution is flexible enough to handle a
variable number of prefetched planes, the maximum value de-
pends on the problem dimensions and the amount of available
memory on each compute cluster. To better exploit the NoC,
we carefully select the NoC node on the I/O subsystem with
which the compute cluster will communicate. This choice is
based on the NoC topology and aims at the reduction of the
number of hops necessary to deliver a message. Moreover,
the prefetching scheme also allows us to send less messages
containing more data, which has been empirically proven to be
more efficient than sending several messages of smaller sizes
due to the important communication latency imposed by the
NoC. Finally, OpenMP directives are employed inside each
compute cluster to compute 2D problems with up to 16 PEs
in parallel (Figure 2- 4 ).

V. EXPERIMENTAL RESULTS

In this section, we evaluate the performance and en-
ergy consumption of seismic wave propagation simulations
on MPPA-256 as well as other common-place platforms.
Section V-A presents the measurement methodology and the
platforms used in this study. Experimental results are discussed
in Sections V-B and V-C. Section V-B concentrates on the
performance and energy efficiency aspects of the execution
whereas Section V-C discusses the scalability of the proposed
algorithm.

A. Methodology

We analyze the energy efficiency and performance of
our seismic wave propagation on MPPA-256 and three other
platforms:

Xeon E5. This platform features a Xeon E5-4640 Sandy
Bridge-EP processor, which has 8 physical cores running at
2.40GHz and 32GB of DDR3 memory.

Altix UV 2000. The SGI Altix UV 2000 is a Non-Uniform
Memory Access (NUMA) platform composed of 24 NUMA
nodes. Each node has a Xeon E5-4640 Sandy Bridge-EP pro-
cessor (with the same specifications of the Xeon E5 platform)
and 32GB of DDR3 memory shared in a ccNUMA fashion
(NUMAlink6). Overall, this platform has 192 CPU cores.

Quadro K4000. The NVIDIA Quadro K4000 graphics
board features NVIDIA Kepler architecture with 768 CUDA
parallel-processing cores running at 800MHz and 3GB of
GDDR5 GPU memory.

We use three metrics to compare the energy and computing
performance: time-to-solution, energy-to-solution and speedup.
Time-to-solution is the time spent to reach a solution for a
seismic wave propagation simulation. Analogously, energy-to-
solution is the amount of energy spent to reach a solution for a
seismic wave propagation simulation. Speedups are calculated
by dividing the time-to-solution of the sequential version
by time-to-solution of the parallel/distributed version with n
cores. All results represent averages of 30 runs to guarantee
statistically relevant values.

The energy-to-solution was obtained through each plat-
form’s specific power measurement sensors. Both Xeon E5
and Altix UV 2000 are based on Intel’s Sandy Bridge microar-
chitecture. This microarchitecture has Intel’s Running Average

Power Limit (RAPL) interface which allows us to measure the
power consumption of CPU-level components through hard-
ware counters. Power measurements obtained from RAPL are
very accurate as shown in [12], [13]. We used this approach to
obtain the energy consumption of the whole CPU package in-
cluding cores and cache memory. Analogously, Quadro K4000
has NVIDIA’s Management Library (NVML), an API for
monitoring and managing various states of the NVIDIA GPU
devices. We used the NVML to gather the power usage for
the GPU and its associated circuitry (e.g., internal memory).
On Kepler GPUs the reading is accurate to within ±5% of
current power draw3. Finally, MPPA-256 features a tool called
K1-POWER to collect energy measurements of the whole chip,
including all clusters, on-chip memory, I/O subsystems and
NoCs. We used this tool to measure the energy consumption of
MPPA-256 when running the seismic wave propagation kernel.
According to the Kalray’s reference manuals, the measurement
precision on MPPA-256 is ±0.25 W.

B. General Energy and Performance Results

In this section we compare the performance and energy
consumption of our solution on MPPA-256 against the other
multicore and GPU reference implementations discussed in
Section II-C. On Xeon E5, we used the solution proposed
in [9], which applies OpenMP to parallelize the seismic wave
propagation kernel. On Quadro K4000, on the other hand, we
used the solution proposed in [10], which is a state-of-the-art
parallel solution for seismic wave propagation simulations on
GPUs. Figure 3 compares the time-to-solution and energy-to-
solution across the processors using a problem size of 2 GB
(1803 grid points) and 500 time steps.

COMPILE(WITH(,O3

Processor Problem Cores Time-(s) Energy-(kJ)
Xeon-E5
(8-cores) 256x256x256 8 56.7 2.0
Altix-UV-2000-
(192-cores) 256x256x256 192 2.29 2.7
Quadro-K4000
(768-cores) 256x256x256 768 11.87 0.69
MPPAK256
(256-cores) 256x256x256 256

ofast
x86=1000(time(steps mppa=500(time(steps,(prefetch=8
Processor Problem Cores Time-(s) Energy-(J)
Xeon-E5
(8-cores) 128x128x128 8 20.0 1331
Altix-UV-2000-
(192-cores) 128x128x128 192 1.50 2216
Quadro-K4000
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MPPAK256
(256-cores) 128x128x128 256 44.09 307.7
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Figure 3: Chip-to-chip comparison.

To the best of our knowledge, GPUs are among the most
energy efficient solutions currently in use for seismic wave
propagation simulation. However, the important amount of
registers and shared memory required by seismic wave kernels
on GPUs leads to low overall core occupancy which in turn
results in limited performance. Yet, our proposed solution
on MPPA-256 achieves the best energy-to-solution among the
analyzed processors, consuming 71% less energy than Quadro

3NVML reference manual: http://docs.nvidia.com/deploy/pdf/NVML API
Reference Guide.pdf



K4000 and 81% less energy than Xeon E5. MPPA-256 is a low-
power embedded processor optimized for energy consumption
that in theory presents the best Flops/W ratio. Our results
corroborate this fact experimentally.

When we consider the time-to-solution, on the other hand,
every other processor achieved better performance. One of the
reasons for this significant difference in the execution times is
the time spent in communications. The simulation algorithm
is memory bound and, in our tests, communication accounted
for at least 58% of the wall execution time on MPPA-256.
Contrary to the other architectures, the small (2 MB) amount
of memory available at each compute cluster on MPPA-256
obliges us to perform an important number of data transfers
from/to the DDR. Due to the limited on-chip memory, were
able to prefetch only up to eight planes before exhausting the
available local memory in each compute cluster. Additional
factors to the observed performance difference of Xeon E5
and Quadro K4000 in comparison to MPPA-256 include the
working frequency of the cores (6x and 2x higher on Xeon E5
and Quadro K4000, respectively) and the number of cores (3x
more on Quadro K4000).
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Figure 4: Prefetching impact.

Figure 4 shows the impact of the number of prefetched
planes on communication and computation times. As we
increase the number planes available at the compute cluster
memory level, we improve the reuse of data in the vertical
direction. This allows us to overlap a considerable portion
of data transfers with computations. However, we observed
only slight improvements past six planes. This is due to the
saturation of the NoC as this strategy increases the data traffic
each time we increase the number of prefetched planes.

C. Algorithm Scalability Analysis

In the previous section we compared the overall perfor-
mance and energy consumption of the seismic wave propaga-
tion kernel on MPPA-256 against other processors (Xeon E5
and Quadro K4000). In this section we extend the previous
analysis by comparing the scalability of our solution on MPPA-
256 to the one obtained using an established solution on an
HPC platform: the Altix UV 2000. To isolate the communication
overhead imposed by the NoC on MPPA-256, we first compare
the performance scalability of the parallel version (OpenMP)
on a single compute cluster of MPPA-256 against a single node
of Altix UV 2000. For this experiment, we used a restricted input

3D space of size 163 grid points to be able to allocate all data
in to the compute cluster memory (2 MB) and 50000 time
steps. Figure 5(a) compares both the speedup and the energy-
to-solution with this problem size on both platforms. To make
a fair comparison, we measured the energy consumed by the
entire chip on MPPA-256 and only the energy consumed by a
single processor of Altix UV 2000.

Figure 5(a) shows that our seismic wave propagation
algorithm has similar performance scalability on a single
processor of Altix UV 2000 and a single MPPA-256 compute
cluster. Considering the energy consumption, we observed that
the energy consumption may significantly vary depending on
the number of cores/PEs used. When comparing the energy
efficiency of a single processor of Altix UV 2000 against a
single MPPA-256 compute cluster, we noticed that the former
outperformed MPPA-256 on low core counts. For more than
12 cores, however, the MPPA-256 compute cluster consumed
up to 17.3% less energy with 16 cores. This comes from the
fact that the power consumed by a single processor of Altix UV
2000 almost doubled from 2 to 8 cores (from 18 W to 30 W)
whereas the power consumed by the whole MPPA-256 chip
increased only slightly from 1 PE to 16 PEs (from 4.1 W to
5 W), while achieving the same scalability.

Figure 5(b) presents the weak scalability of the seismic
wave propagation kernel on Altix UV 2000 and MPPA-256 when
varying the number of nodes (on Altix UV 2000) and clusters
(on MPPA-256). In this case the problem size assigned to
each node/cluster stays constant as we increase the number of
nodes/clusters. Thus, linear scaling is achieved if the execution
time stays constant at 1.00 while the workload is increased in
direct proportion to the number of nodes/clusters. As it can
be noticed, Altix UV 2000 achieved almost linear scaling. On
MPPA-256, however, we observed a considerable performance
degradation as we increased the number of clusters. Although
the prefetching scheme considerably hides the communication
costs on MPPA-256, the latency and bandwidth of the NoC
still hurts its performance and thus limits the scalability.

Table I: Time-to-solution and energy-to-solution using a prob-
lem size of 2 GB (1803 grid points) and 500 time steps.

Platform Time-to-Solution Energy-to-Solution

MPPA-256 100.2 s 752 J
Altix UV 2000 2.9 s 4418 J

Table I compares the time-to-solution and energy-to-
solution on Altix UV 2000 and MPPA-256 using a problem size
of 2 GB (1803 grid points) and 500 time steps. As expected,
Altix UV 2000 presented much better performance than MPPA-
256, since it has 24 performance optimized general-purpose
multicore processors. However, MPPA-256 consumed 83% less
energy than Altix UV 2000 to compute the same instance of the
input problem.

VI. RELATED WORK

Low-power manycore processors. The use of low-power
manycore processors for HPC is a topic of ongoing research.
Totoni et al. [14] compared the power and performance of
Intel’s Single-Chip Cloud Computer (SCC) to other types of
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Figure 5: Scalability and energy consumption: Altix UV 2000 vs. MPPA-256.

CPUs and GPUs. The analysis was based on a set of parallel
applications implemented with the Charm++ programming
model. Although they showed that there is no single solu-
tion that always achieves the best trade-off between power
and performance, the results suggest that manycores are an
opportunity for the future. Morari et al. [5] proposed an opti-
mized implementation of radix sort for the Tilera TILEPro64
manycore processor. The results showed that the their solution
for TILEPro64 provides much better energy efficiency than an
general-purpose multicore processor (Intel Xeon W5590) and
comparable energy efficiency with respect to a GPU NVIDIA
Tesla C2070. Castro et al. [15] showed that MPPA-256 can
be very competitive considering both performance and energy
efficiency for a fairly parallelizible problem: the Traveling-
Salesman Problem (TSP). While this problem is CPU-bound,
it also displays important issues related to imbalance and
irregularity. The results showed MPPA-256’s performance to be
roughly equivalent to that of an Intel Xeon E5-4640 processor,
which has 8 CPU cores (16 threads with Hyper-Threading)
running at 2.40GHz while consuming approximately 13 times
less energy. Using a different approach, Aubry et al. [7]
compared the performance of an Intel Core i7-3820 processor
against MPPA-256. Their application, an H.264 video encoder,
was implemented using a dataflow language that offers direct
automatic mapping to MPPA-256. Their findings show that
the performance of these traditional processors is on par with
the performance of the MPPA-256 embedded processor which
provides 6.4x better energy efficiency.

In contrast to those previous works, we intended to assess
how well this processor fares when facing a memory-bound
application. We focused on the challenges and on the algo-
rithmic aspects of the use of the MPPA-256 processor in the
context of energy efficient scientific computing. Additionally,
we described some of the programming issues that must be
considered when developing parallel applications to MPPA-
256.

Seismic wave propagation. Adapting seismic wave prop-
agation numerical kernels to emerging parallel architectures
is an active research topic. Due the versatility of the finite-
differences method used both for oil and gas applications
and standard earthquakes modeling, several strategies have
been proposed. For instance, Intel and NVIDIA have proposed
technical reports devoted to the efficient implementation of
such stencils on multicore processors [16], Intel Xeon Phi [17]
and GPUs [18]. These contributions underline the impact

of low-level optimizations but also introduce efficient spatial
blocking for the finite-differences numerical method.

Dupros et al. [19] presented a review of the scalability
issues for distributed and shared-memory platforms with a
focus on mapping processes/threads on hierarchical clusters.
Dursun et al. [20] introduced several additional strategies,
including inter-node and intra-node optimizations. Recently,
Christenet al. [21] described the use of the Patus framework to
optimize the AWP-ODC finite difference code. They underlined
the impact of vectorization and cache prefetching and reported
a performance improvement up to 15% when running the
complete application with 512 MPI processes. Several research
efforts have been done on the adaptation of seismic wave
kernels on GPUs to overcome the poor arithmetic inten-
sity (FLOPS/transferred byte ratio) offered by elastodynamics
stencils [10], [22]. The results obtained demonstrate that GPUs
could be a relevant alternative to standard general-purpose
processors.

In the context of energy efficiency of seismic wave prop-
agation simulations, Krueger et al. [23] compared the perfor-
mance and energy efficiency of an Intel Nehalem platform,
an NVIDIA Tesla GPU and a simulated general-purpose
manycore chip design optimized for high-order wave equations
called “Green Wave”. They showed that Green Wave can be up
to 8x and 3.5x more energy efficient per node when compared
with the Nehalem and GPU platforms respectively. Differently
from Krueger et al., our experiments and measurements were
carried out on a real manycore processor. MPPA-256 is not op-
timized for high-order wave equations as Green Wave, however
it still achieved important energy efficiency improvements of
∼5x and ∼71% when compared to a multicore Intel Xeon
and NVIDIA Tesla GPU, respectively. Godekke et al. [24]
compared the energy efficiency and performance of an ARM
Cortex-A9 based cluster with a standard x86 cluster to solve
three different classes of numerical solution methods for partial
differential equations. Although they demonstrated good weak
and strong scaling results, they concluded that the energy
efficiency of the ARM-based cluster strongly depends on the
configuration of the problem under study.

VII. CONCLUSION AND PERSPECTIVES

Simulation of seismic wave propagation is a field of
research that demands vast amounts of processing power typi-
cally provided by the newest general-purpose CPUs and GPUs.
The recent introduction of light-weight manycores, such as



MPPA-256, presents an opportunity to perform highly parallel
energy-efficient computations. In this paper, we presented
our approach to the simulation of this physical phenomenon
using the MPPA-256 processor. MPPA-256 is an embedded
low-power manycore processor that has several architectural
peculiarities which must be tamed in order to obtain good
performance. Due to the limited size of the local memories, we
developed a new multi-level tiling strategy and a prefetching
mechanism. Their goal is two-fold. Firstly, they allow us to
work with data bigger than the local-memory sizes. Secondly,
this mechanism lightens the communication overhead imposed
by the NoC. We show that our solution can achieve better
energy efficiency than currently largely used solutions based on
GPUs (improvement of 71%) and general-purpose multicore
processors (average improvement of 82%).

Despite encouraging results, our solution still consumes a
large amount of the total execution time with communication
(58%). This is due to the high traffic on the NoC to access
a single DDR memory. Kalray recently announced a multi-
MPPA solution that features four MPPA-256 processors on
the same board with less than 50 W of power consumption.
In this new solution, each MPPA-256 processor can access
two DDR3 channels in parallel and MPPA-256 processors
are interconnected through NoC eXpress interfaces (NoCX),
providing an aggregate bandwidth of 40 Gb/s. The benefits of
this new solution for seismic wave propagation simulations are
two-fold: (i) this would allow us to deal with input problem
sizes of 32 GB or more; and (ii) distributing data among
different MPPA-256 processors along with the parallel access
to two DDR3 memories in each processor would alleviate the
current communication bottleneck. Thus, we plan to work on
new versions of our multi-level tiling strategy and prefetching
scheme to exploit the full potential of multi-MPPA solutions
as soon as they become available.
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[10] D. Michéa and D. Komatitsch, “Accelerating a three-dimensional finite-
difference wave propagation code using GPU graphics cards,” Geophys-
ical Journal International, vol. 182, no. 1, pp. 389–402, 2010.

[11] F. Dupros, H. Aochi, A. Ducellier, D. Komatitsch, and J. Roman,
“Exploiting intensive multithreading for the efficient simulation of 3D
seismic wave propagation,” in International Conference on Computa-
tional Science and Engineering (CSE). São Paulo, Brazil: IEEE, 2008,
pp. 253–260.

[12] E. Rotem et al., “Power-management architecture of the Intel microar-
chitecture code-named Sandy Bridge,” IEEE Micro, vol. 32, no. 2, pp.
20–27, 2012.
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