SEM AND μ -RAMAN CHARACTERIZATION OF ELECTRON BEAM DAMAGES ON FLUOR-APATITES - IMPLICATION FOR EPMA ANALYSIS G. Wille^{a,c}, I. Di Carlo^{b,c}, A. Lahfid^{a,c} ^aBRGM, 3 avenue Claude Guillemin, P.O. Box 6009, FR-45060 Orléans Cedex 2, France Université d'Orléans – CNRS/UMR7327 – INSU , 1A Rue de la Férollerie, 45100 Orléans. France ^c UMR CNRS, Université d'Orléans, BRGM Apatites are phosphate minerals of a general formula Ca₅(PO₄)₃(OH,Cl,F). They are are the principal constituent of teeth andbone(natural and synthetic); represent an important accessory minerals in volcano geological environment by means as a storage of elements such as halogens, sulphates, carbonates, Sr and REE; represent a packaging of radionuclides for nuclear waste, trapping heavymetals and finally are mostly used fertilizers. This work is focused on fluorapatite, the Fluorine-rich composition. As mentioned by several authors, SEM and EPMA analysis of F-apatites is complicated by the strong consequences of electron beam damages. This problem is particularly strong for the determination of fluorine concentration. Indeed a complex intensity variation is observed for the fluorine signal collected by the spectrometer; this variation mainly depends on two parameters: crystal orientation of the mineral grain and electron beam setup. Crystallographically-oriented Fluor-apatite were irradiated under the EPMA electron beam, using different setup (i.e. acceleration voltage, beam current, beam size) following the F, Ca and PWDS-variations signal. Beam damages were characterized by SEM and μ -Raman (including Raman-in-SEM). SEM image of the damage caused by irradiation of a F-apatite with the electron beam oriented || to the crystallographic c-axis.