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Non-linear dynamic analysis is often used to develop fragility curves in the 

framework of seismic risk assessment and performance-based earthquake 

engineering. In the present article fragility curves are derived from randomly-

generated clouds of structural-response results using: least-squares and sum-of-

squares regression and maximum-likelihood estimation. Different statistical 

measures are used to estimate the quality of fragility functions derived by 

considering varying numbers of ground motions. Graphs are proposed that can be 

used as guidance on how many calculations are required for the three approaches. 

The effectiveness of the results is demonstrated by their application to a structural 

model. The results show that the least-squares method for deriving fragility 

functions converges much faster than the maximum-likelihood and sum-of-

squares approaches. With the least-squares approach a few dozen records might 

be sufficient to obtain satisfactory estimates, while using the maximum-likelihood 

approach may require several times more calculations to reach the same accuracy.  

INTRODUCTION 

Fragility curves provide the probability that a considered structural system suffers a 

certain damage level given an assumed level of earthquake shaking, characterized by an 

intensity measure (IM), such as peak ground acceleration or spectral acceleration at a period 

of interest. In providing the link between the seismic hazard and the structure‟s damage state 

(DS), through the study of the structural response represented by an engineering demand 

parameter (EDP), they are a basis of the majority of modern earthquake risk assessments, as 

well as performance-based earthquake engineering. Consequently many such curves have 

been proposed for various structural types and for different IMs. The various methods of 

fragility evaluation can be divided in two main categories (e.g. Calvi et al., 2006): empirical, 

based on the damage observed after earthquakes, and analytical. In analytical methods, 
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damage distributions are simulated through the analysis of structural models, generally using 

the static push-over method (ATC-40, 1996) or dynamic non-linear analysis.  

The paucity of accelerograms for all earthquake scenarios of interest and the relatively 

high cost of non-linear dynamic calculations encourage the use of a minimum but sufficient 

number of ground motions for deriving fragility curves. Incremental Dynamic Analysis 

(IDA) (Vamvatsikos and Cornell, 2002) intends to overcome the first problem. In IDA a 

structural model is subjected to a series of ground motion records, each scaled to various 

levels of intensity. In this way, several records are produced by progressively increasing the 

ground-motion amplitude, without modifying their spectral shape, to obtain a sufficient 

number of records. The main issue concerns whether the damage states obtained from scaled 

records accurately estimate those obtained from unscaled ones. It has been shown that the 

scatter of structural response depends on the selected IM, which in turn depends on the 

studied structure (e.g., Bommer et al., 2004; Gehl et al., 2013). The accuracy of IDA will thus 

depend on the chosen IM, the type of the structure and the scaling approach (Vamvatsikos 

and Cornell, 2002; PEER, 2009).  

Currently there is little guidance in the literature on how many dynamic runs (time-

histories) need to be used to obtain robust fragility curves. Shome et al. (1998), Hancock et 

al. (2008) and, more recently, Buratti et al. (2011) proposed that only a handful of well-

chosen dynamic runs are required to accurately assess structural response for a given 

earthquake scenario. Fragility curves seek to capture structural response for all possible 

earthquake scenarios and, therefore, it is likely that more time-histories would be needed for 

their robust evaluation than proposed by these authors for a single scenario. Although as 

shown by Shome et al. (1998) for a five-story steel moment-resisting frame (and by others for 

different structures), after conditioning for response spectral acceleration there is little 

dependence in structural response over a wider range of magnitude and distance (i.e. the IM 

is sufficient). The conjecture that many records are required to define fragility curves is 

supported by the numbers used by, for example, Shinozuka et al. (2000) and Karim and 

Yamazaki (2003) to develop fragility curves for bridges using, respectively, 80 and 250 

accelerograms. In a recent study (Saez et al., 2011) the importance of the number of ground 

motions used to provide fragility curves is highlighted. The authors develop fragility curves 

using the maximum-likelihood method considering different numbers of non-scaled ground-

motions. Assuming a log-normal distribution for the fragility curves, the Fisher information 



 

matrix is then used to measure the ability of the data, i.e. the used accelerograms, to estimate 

the parameters of the curves. It is worth noting that the use of the Fisher information matrix is 

restricted to when the maximum-likelihood method is employed. 

Following an introduction to the derivation of fragility curves, this article provides 

guidance on the statistical confidence of fragility curves by randomly generating dozens of 

sets of structural response data from known fragility curves and then applying three 

commonly-used approaches [regression techniques based on least-squares (LS), maximum-

likelihood (MLE) and sum-of–squared errors (SSE) formulations] to derive fragility curves 

from these data, which can then be compared to the original curves. This procedure leads to 

graphs that can be used as guidance concerning how many calculations are required to obtain 

a certain accuracy level in the fragility curve. This guidance is then verified against simulated 

damage computed using a single-degree-of-freedom model of nonlinear structural response. 

The article ends with some brief conclusions.  

STRUCTURAL RESPONSE ESTIMATION FOR THE DERIVATION OF 

FRAGILITY CURVES 

Using the PEER equation (Cornell and Krawinkler, 2000) of the mean annual probability 

of exceeding a given DS=ds, the fragility of a structural system can be written as: 

𝑃 𝐷𝑆 ≥ 𝑑𝑠 𝐼𝑀 =  𝑃 𝐷𝑆 ≥ 𝑑𝑠 𝐸𝐷𝑃 ∙  
𝑑𝑃 𝐸𝐷𝑃 𝐼𝑀 

𝑑𝑒𝑑𝑝
 ∙ 𝑑𝑒𝑑𝑝 (1) 

where EDP represents the engineering demand parameter (e.g. inter-story drift, local strain or 

stress, or accumulated energy in the structural system) and IM stands for the intensity 

measure of the seismic loading (e.g. elastic response spectral displacement or acceleration at 

a period of interest). Maximum inter-story drift ratio is a widely-used EDP, as its 

computation through dynamic analyses is rather straightforward and the link with the damage 

to the structure can be performed through empirical correlations. Therefore, the rest of the 

present study will assume drift as the EDP, although we note that this EDP is not necessarily 

the most appropriate for all structure types and additional parameters, such as peak floor 

acceleration, are advocated by recent guidelines (e.g. ATC-58, 2011). The conclusions drawn 

from the present study apply, however, to the generic probabilistic relation between an IM 

and an EDP, whatever their nature. The scope of this study is limited to the estimation of the 

structural response, i.e. the conditional probability of exceeding a given EDP level with 

respect to an IM. There is indeed a gap in the literature regarding the mapping between EDP 



 

and the resulting DS, which can only be filled through extensive experimentation and 

measurement campaigns (Moehle and Deierlein, 2004). Therefore, most common approaches 

rely on the definition of a certain EDP threshold (i.e. the structural capacity, denoted Cds) that 

will imply the occurrence of a DS. Some studies propose a probabilistic relation between 

EDP and DS (e.g. a lognormal distribution) and its associated standard-deviation; for 

instance, βds = 0.4 as suggested in the HAZUS framework (NIBS, 2004). This approach has 

been adopted here. It is represented by the following equation: 

𝑃 𝐷𝑆 ≥ 𝑑𝑠 𝐸𝐷𝑃 = Φ  
ln 𝐸𝐷𝑃−ln 𝐶𝑑𝑠

𝛽𝑑𝑠
  (2) 

where Φ represents the normal cumulative distribution function and βds is set equal to 0.4. 

Based on this assumption, the combination of Equations 1 and 2 yields the following 

expression of fragility: 

𝑃 𝐷𝑆 ≥ 𝑑𝑠 𝐼𝑀 =  Φ  
ln 𝐸𝐷𝑃−ln 𝐶𝑑𝑠

𝛽𝑑𝑠
 ∙  

𝑑𝑃 𝐸𝐷𝑃 𝐼𝑀 

𝑑𝑒𝑑𝑝
 ∙ 𝑑𝑒𝑑𝑝 (3) 

One widely-used method to estimate the probabilistic relation between the parameters 

EDP and IM is to perform a LS regression on the results of dynamic analyses (e.g. Cornell et 

al., 2002; Ellingwood and Kinali, 2009), assuming a lognormal distribution (Shome and 

Cornell, 1999). The predicted demand parameter 𝐸𝐷𝑃  is represented by a power law, with βε 

being the standard-deviation of the error term of the logarithm of the predicted demand 

parameter (see Figure 1). Parallel developments have been made in the estimation of the 

parameters of fragility curves, based on MLE (e.g. Shinozuka et al., 2000), for which, like the 

LS approach, a lognormal distribution is usually assumed. The median and standard-

deviation (respectively α and β) of the lognormal distribution are then estimated through the 

maximization of a likelihood function (see Figure 1b). Finally, similarly to MLE, an 

approach based on SSE has been investigated by Baker (2013), where the function to 

minimize is defined as follows, using the same notations as in Figure 1: 

𝐿 𝛼, 𝛽 =   𝑦𝑖 − 𝑃𝑖 
2𝑛

𝑖=1  (4) 

The use of the lognormal assumption to represent the relation between EDP and IM 

enables the convolution of the two lognormal cumulative distribution functions. Equation 3 

can consequently be rewritten as follows, with a global standard deviation 𝛽𝑡𝑜𝑡 =  𝛽2 + 𝛽𝑑𝑠
2 : 



 

𝑃 𝐷𝑆 ≥ 𝑑𝑠 𝐼𝑀 = Φ  
ln 𝐼𝑀−ln 𝛼

 𝛽2+𝛽𝑑𝑠
2

  (5) 

MLE was originally used to develop fragility curves from empirical data, like post-

earthquake observations of bridge damage (Shinozuka et al., 2000), as it requires only binary 

information (damage / no damage) and no drift calculations or estimates, which cannot be 

accurately obtained from post-earthquake field surveys (from which only residual drifts can 

be observed). Several studies have also used MLE to post-process the results of non-linear 

time-history analyses (e.g. Kim and Shinozuka, 2004; Zentner, 2010), directly switching 

from drift values to the corresponding binary outcomes in terms of damage states. The use of 

MLE in the latter context may seem counter-productive, as it results in the loss of 

information (i.e. the actual value of the computed drifts). This drawback, however, may turn 

into an advantage when the development of near-collapse or collapse fragility curves is 

considered (Baker, 2013) since in this case most computation codes may return unreliable 

results or may not even converge, thus making LS regression difficult to apply (e.g. Shome 

and Cornell, 2000). In addition, MLE does not assume a predefined relation between IM and 

EDP (e.g. a power law) unlike the LS approach, which may be useful in the case of poorly 

correlated or constrained dynamic results.  

LS regression is an efficient way to establish a robust relation between EDP and IM with 

only a few data points, as it makes use of all the information contained in the simulation 

results. It is also possible to extrapolate the regression line to higher or lower IM values, 

when such levels are not covered by the time-history analyses, although extrapolation is 

generally not recommended since structural behavior may alter beyond the range covered by 

the available analyses. A drawback of this method is that the standard-deviation βε of the 

error term is often computed over the whole IM range, resulting in the same dispersion in the 

fragility curves for various damage levels. This limitation can, however, be avoided by 

performing piece-wise regressions over different IM intervals (e.g. Carausu and Vulpe, 

1996), which allows the power law and the dispersion to vary with the level of the IM.  

 



 

 

Figure 1. (a) Schematic representation of the derivation of fragility curves using the considered 

approaches: (a) least-squares regression and (b) maximum-likelihood estimation when the damage 

threshold Cds is assumed to be exactly known (i.e. βds=0). b and c are coefficients of the power law 

connecting the EDP and the IM and n is the number of calculations.  

The review by Baker (2007) on ways to perform probabilistic structural response 

assessment provides a useful summary of the pros and cons of the different methods. Out of 

the several derivation techniques discussed by Baker (2007), only the so-called “linear 

regression on a cloud” is tested here (i.e. the one corresponding to LS regression); the other 



 

techniques covered by Baker (2007) may be seen as more elaborate variants and they rely 

mostly on the scaling of ground-motion records, which is out of the scope of the present 

paper. Porter et al. (2007) also comprehensively review various techniques to derive fragility 

curves focusing on those used for experimental results, among which the closest one to the 

LS regression evaluated here is called “method A”. Other approaches reviewed by Porter et 

al. (2007) imply the use of expert judgment or the combination of both empirical and 

analytical data, which makes them difficult to apply in the present study.  

TRIAL INVERSION PROCEDURE 

To assess the reliability of fragility curves derived from a limited number of time-history 

analysis we undertake a series of inversions on simulated data. This procedure enables 

comparison between the computed estimates with the true fragility parameters; thus 

constituting an efficient means to evaluate the robustness of the three regression techniques 

as a function of the number of data points (i.e. dynamic analyses). This inversion procedure is 

broken down into the following steps. 

(1) The initial fragility parameters α0 and β0 are set, along with the corresponding 

relation: log 𝐸𝐷𝑃 = log 𝑏0 + 𝑐0 ∙ log 𝐼𝑀 + 𝜀  (𝜀~𝑁 0, 𝛽𝜀
2 ) and a probabilistic damage 

threshold Cds is assumed. Therefore, the global standard deviation of the relation between 

the IM and the damage state can be written as:  𝛽0,𝑡𝑜𝑡 =  𝛽0
2 + 𝛽𝑑𝑠

2 . 

(2) A set of n IM values are defined and the corresponding EDP values sampled based on 

the relation in step 1 and the corresponding error term ε. The n data points represent the n 

dynamic analyses that would yield the pairs (IM, EDP). The IMs are assumed to be 

applicable for all magnitude (M) and distance (R) and consequently for which all possible 

earthquakes scenarios and associated ground motions should be considered. Assuming 

uniform distributions of M and R and lognormal ground-motion variability leads to IMs 

that are lognormally distributed (this has been numerically verified using a large strong-

motion database), which is what is assumed here with a sufficient standard deviation to 

cover the entire range of possible ground motions.  The series of IMs are also chosen in a 

way that roughly half the points are below the damage threshold (Cds) and half above, 

which corresponds to the most favorable configuration for the estimation of the 

parameters via MLE and SSE techniques. Therefore, the use of a lognormal distribution of 

the IMs, with a median corresponding to the damage threshold, represents the ideal case 



 

where the most use can made of the available data samples, as stressed by Kato et al. 

(2008) via their study of information entropy. 

(3) Using the n pairs of IM-EDP values, fragility curves as defined in Equation 5 are 

derived, using the three regression techniques described in the previous section. The 

estimated fragility parameters 𝛼  and 𝛽 𝑡𝑜𝑡 =  𝛽 2 + 𝛽𝑑𝑠
2  can then be compared to the “true” 

ones, α0 and β0,tot. 

(4) The steps 2 and 3 are repeated k times (k>>1) in order to obtain stable estimates of the 

errors and confidence intervals of the estimated fragility parameters. 

Using the set of k fragility estimates, several metrics are computed to obtain objective 

measures of the accuracy of the fragility functions with respect to the number of data points. 

Intuitive indicators are the standard deviations of both 𝛼  and 𝛽 , which can be computed for 

the k pairs using a bootstrap technique (e.g. Efron and Tibshirani, 1993).  

Thanks to the inversion procedure, the fragility parameters obtained from the simulated 

data points can also be compared to the original parameters α0 and β0. This feature can, 

therefore, provide valuable information on the accuracy of the fragility estimates, and not 

only their precision. The accuracy of an estimate can be quantified by how close it is to the 

true value, whereas its precision represents only how narrow the confidence intervals are (i.e. 

standard deviation of the estimate), with no information on the level of bias. Thus, in order to 

compare two fragility curves, it has been chosen to use the Kolmogorov-Smirnov statistic, D, 

measuring the largest absolute difference between the original and estimated lognormal 

distributions. This D metric provides an adequate measure of the maximum bias induced by 

different curves and it can be viewed as an indicator of the accuracy of the fragility curve. 

The use of D however may induce a bias in the interpretation of results especially when 

dealing with low probabilities. A normalized D could be used as a metric measuring the 

difference between two curves because this would give more weight to discrepancies 

between the curves at low probabilities, which could be relatively more important than 

differences at the upper end of the curves. However, because the calculation of normalized D 

requires division by the theoretical (lognormal) distribution it can overemphasize the 

distribution‟s lower tail, which may not describe the real damage distribution satisfactorily 

(e.g. Kennedy et al., 1980), and because the mid-range of the fragility curve is generally the 

most important when, for example, computing the collapse risk (Eads et al., 2013).   



 

RESULTS AND IMPLICATIONS 

The trial inversion procedure introduced above is carried out with k = 10 000 to obtain 

stable statistics. The following robustness indicators are computed for various numbers of 

data points (n ranging from 20 to 500) and for each of the three techniques (LS, MLE and 

SSE): 

- Coefficients of variation (C.O.V., standard deviation divided by the mean) of the 

parameters 𝛼  and 𝛽 , to measure the precision of these terms; 

- The mean of the Kolmogorov-Smirnov distance D over all k simulations, to compare 

the initial “true” distribution with the estimated one. 

These results are presented in a series of graphs (see Figure 2) to show the evolution of 

each of the indicators with respect to the number of dynamic analyses. For the LS approach it 

is possible (e.g. Draper and Smith, 1981) to explicitly express the standard deviation of the 

terms ln b and c in the regression equation, based on the numbers of samples (i.e. n), the 

standard deviation of the regression and the distribution of the input variable (i.e. IM). 

Therefore an analytical estimation of the standard deviations of ln b and c has been 

performed and the C.O.V. of α and β have been evaluated using an error-propagation 

procedure (Ku, 1966). It is found that the analytical results are within 5% of the values 

obtained from the numerical approach, thus validating the results from the inversion 

procedure (See appendix A). These analytical estimations are valuable in checking the 

dispersion of the coefficients of the fragility curve (i.e. their precision) but they are not able 

to predict the accuracy of the curve, for which the Monte Carlo approach is required. 

Figure 2 constitutes objective guidance on how many simulations are required for a given 

objective (value of D) and the derivation technique that is used. For example, if it is decided 

that the fragility curve inaccuracy should not exceed D=0.05 (error of 5%), then this goal 

would imply that the coefficient of variation of α should not exceed 8.4% (top left graph), 

thus requiring around 40 simulations for processing using least-squares regression (top right 

graph). These results show also the poor performance of the MLE and SSE approaches, 

which would require between 150 and 300 runs to attain the same level of accuracy. This 

observation was to be expected, as MLE and SSE approaches rely on binary outcomes and 

require less information than the LS regression (which directly uses EDP values). These 

methods, however, still present other advantages, as explained above (e.g. in case of non-



 

convergence of dynamic runs, when considering collapse or when analyzing post-earthquake 

observations).   

 

Figure 2. (Top left) Correspondence between the uncertainty on the fragility median α and the D 

metric. (Top right) Evolution of the uncertainty on α with the number of simulations. (Bottom left and 

right) Same construction for the fragility standard deviation βtot. The results from the three regression 

techniques (respectively MLE, SSE and LS) are plotted in blue, green and red. 

The number of simulations that are required according to Figure 2 for the maximum-

likelihood approach may seem large at first glance, as it is higher than the number of records 

usually used in previous studies (e.g. Shinozuka et al., 2000). However, using the D metric as 

a measure of the accuracy of the resulting parameters, it can be shown that even with a 

limited number of simulations (i.e. under one hundred), the derived curves would still be 

contained within an error range of around 10%. Figure 2 provides a link between the 

precision and the accuracy of the results: while the precision on the fragility parameters (i.e. 

narrow confidence bounds) can be obtained by using a straightforward bootstrap procedure, 

consequences on the accuracy of the results, which are usually inaccessible without the 

knowledge of the „true‟ distribution, can be approximated by the empirical relations provided 

in the left part of Figure 2. As a result, based on Figure 2, numerical results from the trial 

inversion procedure are presented in Table 1 to provide guidance on the level of performance 

that can be expected for future fragility derivation studies, depending on the regression 

technique and the number of data points. 



 

The introduction of an additional uncertainty in the definition of DS (i.e. βds) puts into 

perspective the effect of the record-to-record variability, which is the focus here. Indeed, 

there is not much point in trying to obtain a perfect estimate of the structural response with 

respect to an IM, since other sources of variability, such as the damage state definition or 

modeling uncertainties, might be higher still and they would tend to dilute the effect of the 

variability due to the seismic input. It is worth noting that the uncertainties related to 

structural response calculation may be reduced by using more accurate structural models 

especially when dealing with a particular structure, while the record-to-record variability is 

related to the random nature of earthquake hazard.  

Table 1. Results from the inversion procedure, providing the link between the number of data points, 

the C.O.V. of α and β and the  Kolmogorov-Smirnov distance D for the three derivation techniques. 

Nb of 

simulations 

C.O.V of α (%) C.O.V. of βtot (%) D 

MLE SSE LS MLE SSE LS MLE SSE LS 

20 24.7 27.0 11.3 26.0 32.3 9.6 0.162 0.182 0.067 
30 19.5 22.5 9.1 21.8 28.5 8.0 0.127 0.156 0.054 
40 16.8 19.2 8.0 18.9 25.3 6.7 0.110 0.134 0.047 
50 14.9 17.0 7.1 17.1 23.2 6.1 0.096 0.120 0.042 
80 11.8 13.4 5.6 13.5 18.7 4.9 0.075 0.093 0.033 

100 10.4 11.8 5.1 12.1 16.9 4.3 0.067 0.082 0.030 
150 8.5 9.5 4.1 9.8 13.5 3.5 0.055 0.065 0.024 
200 7.2 8.1 3.5 8.5 11.5 3.0 0.046 0.055 0.021 
300 6.0 6.6 2.9 7.0 9.4 2.5 0.038 0.045 0.017 
400 5.1 5.7 2.5 6.0 8.1 2.1 0.033 0.039 0.015 
500 4.6 5.1 2.2 5.2 7.1 1.9 0.029 0.034 0.013 

 

The results from Table 1 have been computed by selecting an initial standard deviation 

β0=0.5, which lies within the common range of dispersion for most fragility curves (e.g. 

standard deviations proposed within HAZUS; NIBS, 2004). A sensitivity study has also been 

conducted to check the effect of the standard deviation on the number of required simulations 

(see Table 2 and Figure 3). The calculations are performed for a range of β0 and three values 

of βds. The following observations can be noted: 

- For the three studied techniques, the value of βds has no effect on the precision of α, 

which decreases (i.e. the estimate is associated with a higher standard deviation) 

roughly linearly as β0 increases; 



 

- For the least-squares approach, the precision of βtot is roughly unchanged by β0 and 

βds, although it decreases slightly (i.e. higher C.O.V.) as β0 increases for non-zero βds; 

whereas for the other two approaches, the precision of βtot decreases (i.e. higher 

C.O.V.) to a peak and then increases (i.e. lower C.O.V.) for non-zero βds whereas 

when βds=0 the precision of βtot increases for increasing β0 (the reason for this 

behavior is the interaction between the standard deviation of βtot and the value of βtot, 

which equals  𝛽0
2 + 𝛽𝑑𝑠

2 ); 

- Because of the strong influence of the precision of βtot on the overall accuracy of the 

fragility curve, the dependence of D on changes in β0 and βds is similar to the behavior 

of the curves for C.O.V. of βtot, i.e. little impact of β0 and βds on the accuracy when 

using least-squares, and generally increasing accuracy as β0 increases when using the 

other two approaches. 

Table 2. Evolution of the inversion results with the value of the initial standard deviation β0, for three 

sizes of datasets (50, 100 and 200 simulations) 

Nb of 

simulations 

Value 

of β0 

C.O.V of α (%) C.O.V. of βtot (%) D 

MLE SSE LS MLE SSE LS MLE SSE LS 

20 0.1 10.4 11.3 2.2 3.1 5.4 0.9 0.083 0.082 0.018 

0.5 24.5 26.8 11.3 25.7 31.5 9.9 0.163 0.184 0.067 

1 - 45.4 24.5 - 46.0 13.9 - 0.202 0.085 

30 0.1 8.2 9.2 1.8 2.9 4.6 0.8 0.056 0.076 0.014 

0.5 19.1 21.7 9.4 21.6 28.1 7.8 0.126 0.152 0.055 

1 31.4 34.5 19.0 30.7 39.2 11.2 0.130 0.160 0.069 

40 0.1 8.5 7.5 1.6 2.8 3.9 0.7 0.062 0.062 0.013 

0.5 17.2 19.5 8.0 19.1 25.3 6.7 0.112 0.137 0.047 

1 26.2 28.9 16.3 24.9 32.4 9.7 0.110 0.135 0.059 

50 0.1 6.6 6.5 1.4 2.8 3.8 0.6 0.051 0.055 0.011 

0.5 14.8 16.8 7.1 17.0 23.2 6.2 0.096 0.119 0.042 

1 23.2 25.3 14.5 22.7 29.5 8.6 0.097 0.118 0.052 
100 0.1 4.5 5.1 1.0 2.2 2.9 0.4 0.036 0.041 0.008 

0.5 10.5 11.6 5.0 12.0 16.9 4.3 0.067 0.081 0.030 

1 16.2 17.5 10.2 15.3 19.3 6.2 0.068 0.078 0.037 
200 0.1 3.2 3.6 0.7 1.6 2.3 0.3 0.026 0.030 0.006 

0.5 7.3 8.1 3.6 8.5 11.6 3.1 0.047 0.056 0.021 

1 11.3 12.1 7.2 11.0 13.4 4.3 0.048 0.054 0.026 

 

 



 

 

Figure 3. (Left) Evolution of the C.O.V. of α with the value of β0, for the three regression techniques 

(i.e. MLE in blue, SSE in green and LS in red) and for a sample size of 100 simulations. (Middle) 

Evolution of the C.O.V. of βtot with the value of β0, for the three regression techniques and for a 

sample size of 100 simulations. (Right) Evolution of D with the value of β0, for the three regression 

techniques and for a sample size of 100 simulations. 

APPLICATION TO A SIMPLE STRUCTURAL MODEL 

In this section, the findings above are compared to results obtained considering the 

nonlinear structural response of a single-degree-of-freedom model. The modified Takeda 

model (Takeda et al., 1970) for reinforced-concrete, which has been widely studied by 

Schwab and Lestuzzi (2007) and Lestuzzi et al. (2007), is used here since its robustness and 

low computational demand allow for a very large number of dynamic analyses. The modified 

version of the model, initially developed by Takeda et al. (1970), is proposed by Otani (1974) 

and Litton (1975). The Takeda bilinear model includes many features to accurately mimic the 

behavior of reinforced concrete, such as a parameter governing stiffness degradation due to 

increasing damage and another one for the reloading curve. Three other parameters are used 

to specify the behavior, namely; the initial (i.e., undamaged) stiffness, the yield displacement 

and the post yield stiffness ratio. The model does not take into account strength degradation. 

A fundamental period of 0.5s is chosen for the studied structure, corresponding roughly to a 



 

five-story (medium-rise) building. Standard values are assigned to the parameters describing 

the model (see Table 3). 

To obtain a reference fragility curve – i.e. a “true” distribution – the first step consists in 

submitting the structure to a very large number of records. Since there are not enough natural 

ground motions in existing strong-motion databases, a set of synthetic ground motions was 

generated using the non-stationary stochastic procedure proposed by Pousse et al. (2006). 

These signals have been generated for magnitudes (Mw) between 5.5 and 7.5 and epicentral 

distances between 10 and 100 km. The five Eurocode-8 soil classes are also sampled to 

introduce additional variability in the ground-motion input. Around 100 000 of these records 

are generated and applied to the simplified model to obtain a well-constrained estimate of the 

structural response and its distribution. It is found that the IMs of the generated ground 

motions follow a lognormal distribution, as assumed earlier for the inversion. An arbitrary 

drift threshold is assumed so that approximately half the simulations are below and the other 

half above it (i.e. Cds = 0.16% for drift ratio – note that this does not necessarily correspond 

to any particular damage state).  

Table 3. Parameters of the modified Takeda model of the studied structure. 

Parameter Assigned value 

Yield displacement 0.002 m 

Post-yield stiffness ratio 5% 

Coefficient of stiffness degradation 0.4 

Target for reloading curve 0.0 

Reduction factor 2 

Viscous damping ratio 5% 

 

Using the LS regression approach, the high number of simulations gives us high 

confidence in the estimated fragility parameters (i.e. probability of exceeding the threshold 

Cds given IM, taken as PSA at 0.5s): α0,LS =1.962 m/s² and β0,LS =0.400. However, it can be 

observed from the „cloud‟ graph between PSA(0.5s) and the drift that the dispersion in the 

relation EDP = f(IM) is not constant over the full range of IM (see Figure 4). This 

configuration is, therefore, slightly less ideal than the one used in the inversion procedure 

above and it could lead to some bias. Thus, these parameters are still considered the “true” 

ones (i.e. the reference fragility curve), but only for the LS regression approach. Using MLE 

and SSE respectively, two different sets of “true” fragility parameters are also estimated 



 

using all simulation results; it is found α0,MLE =1.846 m/s² and β0,MLE =0.418, and α0,SSE 

=1.863 m/s² and β0,SSE =0.400 respectively. These are the parameters that are the basis of the 

comparisons to the successive fragility estimates, for both the MLE and SSE techniques.   

 

Figure 4. Correlation between the 100 000 drift values from the Takeda model and the chosen IM 

[PSA (0.5s)]. 

The series of 100 000 simulation results is then used to randomly select subsets of IM-

EDP couples, their sizes ranging from 100 to 1 000. For each subset size, 10 000 samplings 

with replacement are carried out (i.e. a bootstrapping technique) to obtain stable statistics on 

the estimates of fragility parameters. The different metrics described in the previous section 

are then computed to measure the performance of the different fragility derivation approaches 

(LS, MLE and SSE) for the different sample sizes and to check whether the results obtained 

with this structural model confirm the generic findings from the trial inversion procedure. In 

order to be consistent with the issue of dependence on the value of β0, the results are 

compared with the ones of the inversion procedure carried out for β0=0.4 (see Figure 5). 

Finally, the computed series of β, as well as the initial β0, are combined with βds = 0.4 to 

account for the uncertainty due to the damage state definition. 



 

 

Figure 5. Comparison of the evolution of the considered metrics with the number of simulations, 

between the theoretical inversion (solid line) and the Takeda model application (dotted line) 

As it can be seen in Figure 5, all metrics vary with the number of simulations in 

accordance with the theoretical inversion. In the case of the LS regression approach, a good 

agreement with the theoretical findings is found and the metrics estimated through the 

inversion procedure are still slightly better than the ones obtained from the numerical model. 

This observation is in line with the assumption that the inversion procedure is based on a true 

power law with a constant dispersion, thus representing the ideal case. On the other hand, for 

the SSE method, the application results are a little less consistent with the theoretical ones, 

even though there are still quite close. The reason for this slight discrepancy is thought to be 

because of the nonlinear relation between the IM and drift and also the non-uniform 

dispersion (Figure 4) in contrast to the assumptions made when developing the theoretical 

results. Moreover, the assumed threshold for the drift does not split all results into exactly 

two equivalent sets (above and below the threshold), which is the ideal case for MLE and 

SSE techniques.  

Whereas the choice of a SDOF model to perform this application may appear too simple 

at first, it results from the observation that the conclusions from the inversion procedure are 

drawn from a basic statistical analysis of the relation between two parameters (i.e. EDP and 

IM) without any consideration of specific structural modeling. These results are, therefore, 

applicable to any type of structure, whether a SDOF or a more elaborate MDOF model, 

provided that the computed EDP can be expressed as a power law with respect to the IM. The 

huge number of runs that is needed to get an estimate of the “true” distribution (i.e. around 

100 000, as explained above) prevents the use of a MDOF model for this validation example. 



 

CONCLUSIONS 

Generally the LS regression method for the derivation of fragility curves is to be 

preferred since it requires far fewer time-histories to obtain an accurate fragility curve than 

the MLE and the SSE approaches. The MLE and SSE methods converge more slowly than 

the LS method when the derived fragility curves are compared with a “true” reference curve. 

However, MLE is recommended when drifts are unknown or inaccurate (e.g. observations 

following earthquakes of damaged/undamaged buildings or for deriving collapse 

probabilities). The use of the inversion procedure has allowed the comparison of the 

estimated fragility parameters with the “true” ones, this giving valuable information that 

could not be reached by just studying the convergence of the estimated parameters (i.e. 

confidence bounds evaluated through bootstrapping, for instance). For this reason the use of 

such an inversion technique would be preferable than the bootstrap approach, even though it 

requires knowledge of the true model, which is generally not the case. The joint study of the 

precision and the accuracy levels enables the proposal of relations between the coefficient of 

variation of the fragility parameters and the resulting error in terms of vulnerability 

assessment. Here we provide, based on a trial inversion procedure and its validation through 

a simple case-study, guidance on the level of performance that can be expected, depending on 

the regression technique and the number of data points. The obtained results can be applied to 

any kind of structure if the computed EDP can be expressed as a power law with respect to 

the IM. However, the number of necessary calculations to obtain a given confidence level 

must be considered as a first estimate as it is calculated for an idealized case. When 

considered in the context of performance-based earthquake engineering, this study has 

focused on the issues related to the prediction of EDP given IM. The results indicate that a 

relatively small error is introduced into the final results by the limited number of analyses 

usually used. This can be easily corrected by performing more simulations. However, this is 

only one component of the risk assessment chain and other stages seem to contribute more to 

the overall uncertainty (e.g. prediction of damage state given EDP). These should receive 

more attention in the future. 
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