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Abstract 

This paper presents the overall procedure followed in order to assemble the most recent 

pan-European strong-motion databank: Reference Database for Seismic Ground-Motion in 

Europe (RESORCE). RESORCE is one of the by-products of the SIGMA (SeIsmic Ground 

Motion Assessment; projet-sigma.com) project. RESORCE is intended to be a single 

integrated accelerometric databank for broader Europe to understand the regional differences 

in seismic hazard for improving risk studies in Europe and surrounding countries. RESORCE 

principally updates and extends the previous pan-European strong-motion databank 

(Ambraseys et al., 2004a) from recently compiled Greek, Italian, Swiss and Turkish 

accelerometric archives. The updates also include the earthquake-specific literature studies 

published in recent years. The current content of RESORCE includes 5882 multi-component 

and uniformly processed accelerograms from 1814 events and 1540 strong-motion stations. 

The moment magnitude range covered by RESORCE is 2.8 ≤ Mw ≤ 7.8. The source-to-site 

distance interval extends to 587 km and distance information is given by the common point- 

and extended-source distance measures. The paper presents the current features of RESORCE 

through simple statistics that also quantify the differences in metadata and strong-motion 

processing with respect to the previous version of the pan-European strong-motion databank. 
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Evolution of Strong-Motion Data Collection in Europe 

The attempts to collect and compile strong-motion data from Europe and the Middle East 

started in the first half of 1970s in Imperial College, London after the 1967 Debar and 1969 

Portugal earthquakes (Ambraseys, 1978). The volunteer work undertaken in the Imperial 

College was later funded through various grants provided by the governmental agencies of 

the UK and the European Council (Bommer and Douglas, 2004); the latter being 

collaborative projects with different European research centers (Ambraseys, 1990; 

Ambraseys and Bommer, 1990; 1991; Bommer and Ambraseys, 1992). The major focus 

point in these projects is the consistent evaluation of earthquake and strong-motion station 

metadata information as well as uniform processing of strong-motion records, leading to a 

reliable strong-motion databank for earthquake induced hazard and risk studies in Europe. 

The efforts which grew out from these studies resulted in a CD-ROM of 1068 tri-axial 

accelerograph data (Ambraseys et al., 2000) that was expanded later by additional recordings 

from the broader Europe (pan-European) region. The expanded strong-motion databank 

(2213 accelerograms from 856 earthquakes recorded at 691 strong-motion stations) is 

disseminated through the Internet Site for European Strong-Motion Data web page (ISESD; 

http://www.isesd.hi.is; Ambraseys et al., 2004a). The ISESD strong-motion databank 

considers the special studies on earthquakes (released as either institutional reports or articles 

published in peer-reviewed journals) as the primary sources for the earthquake and strong-

motion station metadata. In the absence of such earthquake-specific studies, the earthquake 

metadata (e.g., epicentral location, focal depth as well as magnitude estimations other than 

local magnitude, ML) was mostly taken from the Bulletin of the International Seismological 

Center (www.isc.ac.uk). The local magnitude information was gathered from local and 

national networks. The preferred source of information for earthquake location is the local or 

national networks whenever they were assessed as more reliable with respect to the 
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international seismic agencies. The network owners are rated as the most reliable information 

source for strong-motion station metadata information (e.g., site conditions, station 

coordinates, shelter type) when strong-motion sites lack specific monograms. The soil 

conditions of strong-motion stations are classified using the Boore et al. (1993) scheme that is 

based on certain VS30 intervals (VS30 < 180 m/s; 180 m/s ≤ VS30 < 360 m/s; 360 m/s ≤ VS30 < 

750 m/s; VS30 ≥ 750 m/s) where VS30 is the average shear-wave velocity in the top 30m soil 

profile. However, the unavailable shear-wave velocity profiles in almost all strong-motion 

stations constituted the major difficulty in the classification of strong-motion sites for 

different soil conditions. Almost all the processed strong-motion records in ISESD were 

band-pass filtered using an elliptical filter with constant high-pass and low-pass cut-off 

frequencies (0.25 Hz and 25 Hz, respectively). A subset of ISESD was re-processed using the 

bi-directional (acausal) Butterworth filter with cut-off frequencies adjusted individually for 

each accelerogram. The individual filter cut-off frequencies were determined from the signal-

to-noise ratio of each accelerogram. This subset, later, was released as another CD-ROM 

(ESMD; European Strong-Motion Data; Ambraseys et al., 2004b) after the inauguration of 

the ISESD web site.  

The efforts for the compilation of ISESD strong-motion databank were followed by 

important national and international strong-motion and seismic hazard projects in Europe and 

the surrounding regions. Of these projects the ITalian ACcelerometric Archive Project 

(ITACA; http://itaca.mi.ingv.it; Luzi et al., 2008) and the Turkish National Strong-Motion 

Project (T-NSMP; http://kyh.deprem.gov.tr/; Akkar et al., 2010) are national initiatives to 

compile, process and archive local (national) accelerometric data using state-of-art 

techniques. The ITACA project compiled a total of 2182 accelerograms from 1004 events 

(Luzi et al., 2008) whereas T-NSMP studied 4607 strong-motion records from 2996 

earthquakes recorded at 209 stations (Akkar et al., 2010). Both ITACA and T-NSMP also 
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improved the site characterization of strong-motion stations either by reassessing the existing 

shear-wave velocity profiles and soil column lithology information or by utilizing invasive or 

noninvasive site exploration techniques to compute the unknown VS30 and other relevant site 

parameters (e.g., Sandıkkaya et al., 2010). A similar effort has also been started in Greece 

after 2000 to archive the uniformly processed Greek records of strong-motion stations 

operated by ITSAK (http://www.itsak.gr/; Theodulidis et al., 2004) under the HEAD 

(HEllenic Accelerogram Database) databank. The Seismic Hazard HARmonization in 

Europe project (SHARE; www.share.eu.org), a grant provided by the European Council, 

compiled a strong-motion databank (Yenier et al., 2010) by collecting shallow crustal 

accelerometric data from the worldwide strong-motion databanks (ISESD, ESMD, ITACA 

and T-NSMP are among these databanks) to test the performance of candidate ground-motion 

prediction equations (GMPEs) for hazard calculations in Europe. This databank (13500 

records from 2268 events recoded at 3708 stations) neither updates the metadata information 

nor develops a uniformly processed accelerometric data archive from the existing events of 

the selected strong-motion databanks. However, the developers of the SHARE strong-motion 

databank gave careful consideration for removing duplicated entries in the event, station and 

waveform information through a hierarchical approach. 

 

Motivation behind the Development of RESORCE 

Despite of the significant efforts put forward in the development of ISESD, it suffers from 

poor strong-motion site characterization and the use of constant filter cut-offs in data 

processing. The latter feature has been proven to be inappropriate as it may result in 

misrepresentation of actual ground-motion frequency content of the recorded events (e.g., 

Akkar and Bommer, 2006). Recent national strong-motion projects (major ones have already 

been discussed in the previous section) tried to prevent these drawbacks but they evolved as 
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individual attempts. These projects implemented their own methodologies while assembling 

the databases that may result in lack of uniformity in metadata compilation and record 

processing for their integration under a single strong-motion databank. The SHARE project 

gathered strong-motion data from recent strong-motion databanks but no attempt was made to 

homogenize the data processing of accelerograms. Improvements of earthquake and station 

metadata from recent studies in the literature were also out of scope of the SHARE strong-

motion databank. The recordings from recent earthquakes of engineering significance in the 

broader European region (e.g., 2009 L’Aquila Earthquake Mw 6.3; 2011 Van Earthquake Mw 

7.1; 2011 Van-Edremit Earthquake Mw 5.6; 2011 Kütahya-Simav Earthquake Mw 5.9; 2010 

Elazığ-Kovancılar Earthquake Mw 6.1) are either entirely or mostly disregarded in the 

SHARE strong-motion databank.  

The primary motivation behind RESORCE is to be a single integrated accelerometric 

databank for broader Europe. The basic ingredient of RESORCE is the pan-European subset 

of the SHARE strong-motion databank (Yenier et al., 2010). It updates and expands ISESD 

accelerometric archive using the information gathered from recently carried out strong-

motion database projects as well as from other relevant earthquake-specific studies in the 

literature. The uniform data processing of accelerograms as well as improved magnitude and 

source-to-site distance distributions constitute other important steps in RESORCE. 

RESORCE is one of the by-products of the SIGMA (SeIsmic Ground Motion Assessment) 

project whose main goal is to improve seismic hazard assessment methods in France and 

neighboring regions, with realistic characterization of aleatory and epistemic uncertainties. 

RESORCE, which is built over a consistent methodology, is one of the building blocks for 

achieving these objectives. The development of RESORCE is realized as a collaborative 

work under SIGMA-Work Package 2 that consists of researchers from Électricité de France 

(EDF), Institut des Sciences de la Terre (ISTerre), Bureau de Recherches Géologiques et 
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Minères (BRGM), Euro-Mediterranean Seismological Centre (EMSC), Istituto Nazionale di 

Geofisica e Vulcanologia (INGV), Laboratoire de detection et de Géophysique (LDG) and 

Middle East Technical University (METU). The last institute is responsible from the 

compilation and processing of RESORCE whereas the first five institutions are heavily 

involved in its scientific revision, coordination and dissemination. RESORCE went through a 

peer review process during its evolution to provide verified accelerometric data together with 

reliable metadata that can be used in engineering seismology and earthquake engineering 

studies. The steps followed in assembling RESORCE are described in the following sections 

with emphasis on the differences between ISESD and RESORCE so as to display the level of 

improvements in the current pan-European accelerometric data archive. 

 

Strategy Followed in the Compilation and Strong-Motion Data Processing 

The accelerometric data and corresponding metadata information gathered in RESORCE 

is a collection of recordings from local accelerometric data providers, previously established 

regional and global databanks, seismological agencies and recent studies in the literature. 

Table A1 lists the 6 major sources (designated under the “Accelerogram” column) used for 

collecting the raw accelerograms in RESORCE. These reference sources also contain 

earthquake and strong-motion station metadata information as presented in Table A1. The 

existing earthquake and strong-motion station metadata from these sources as well as other 

reliable references were studied individually while assembling RESORCE. The waveforms of 

raw accelerometric data were visually inspected one by one in terms of waveform quality and 

frequency content to implement a well-established data processing technique into the entire 

strong-motion databank. The steps followed in this entire process are summarized below.  
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Compilation of Earthquake and Strong-Motion Station Metadata 

The major structure of RESORCE consists of two principal blocks: (1) earthquake and 

station metadata information, and (2) accelerometric data. Inherently, these two blocks are 

related to each other and are assembled from almost the same reference sources (see Table 

A1). Figure 1 summarizes the overall structure of RESORCE in this perspective. ISESD and 

its subset ESMD are considered as the primary sources of earthquake (Mw, epicentral 

coordinate, depth, style-of-faulting, fault geometry etc.) and strong-motion station (soil 

conditions, station coordinate, different source-to-site distance measures, recoding type – 

analog vs. digital – etc.) metadata for pre-2004 events. This preference is waived for the 

earthquakes, which occurred in Italy as well as the Italian strong-motion stations as ITACA 

contains the most up-to-date station and event information for Italy. Notwithstanding, for 

Italian events that are reported in magnitudes other than Mw, the Castello et al. (2007) 

empirical magnitude conversion relationships for Mw were used. This is the only modification 

made to ITACA within the context of these studies
1
. The preeminence of ISESD and ESMD 

for pre-2004 earthquake metadata of Turkish events is not overruled because T-NSMP 

provides earthquake information from a set of seismological references for each entry in its 

archive and both ISESD and ESMD are among these seismological sources. Thus, the 

decision on preferring ISESD and ESMD for pre-2004 Turkish earthquake metadata is in line 

with the database compilation policy of T-NSMP. The earthquake and station information of 

additional references, other than ISESD and ESMD, (see Figure 1 as well as Tables A1 and 

A2) is primarily taken into account for post-2004 earthquake and station metadata in 

RESORCE. These references are also used for the pre-2004 RESORCE inventory to 

complete some of the missing earthquake metadata components of individual events or for 

                                                           
1

 A similar magnitude conversion process was also implemented in HEAD and T-NSMP during their 

compilation (Theodulidis et al., 2004; Akkar et al., 2010). The resulting moment magnitude estimations are 

taken into account in RESORCE for Greek events, post-2004 Turkish earthquakes as well as for those that 

occurred before 2004 whenever they are not included in ISESD or ESMD. 
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including additional earthquakes that are not covered by the ISESD or ESMD archives. The 

event- and station-based information collected from earthquake-specific literature studies are 

always ranked as the primary reference for earthquake and station metadata in RESORCE 

regardless of the corresponding information in the other studied sources. Table A2 presents 

the peer-reviewed literature studies used from this standpoint. This table also lists the 

earthquake-specific literature survey compiled and used by ISESD that is inherently 

considered during the compilation of RESORCE. The reported Mw values of seismic agencies 

are based on global or regional moment tensor solutions. These Mw values are accepted as 

they are and no quality assurance is made by tracing back the number of stations used in their 

computation. In a similar fashion while converting the body-wave magnitude (mb) scale into 

Mw, the possibility of positive biases in mb for small-to-moderate size events was not 

considered. Such additional quality assurance checks should be made in the upcoming 

versions of RESORCE to improve the reliability of information released by this strong-

motion databank. 
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Figure 1. Basic structure of RESORCE and reference sources that build the metadata 

information as well as the accelerometric data in RESORCE. 

 

An important detail about the RESORCE station metadata is the site characterization of 

the Turkish and Greek strong-motion stations. The T-NSMP strong-motion inventory is 

preferred for the site information of the national-network stations of Turkey because it 

contains the most updated site characterization of these stations. Similarly, the recent site 

information of 19 Greek stations from the HEAD archive is used to update the site 

classification of corresponding Greek recordings in RESORCE. The site information of 7 

Turkish strong-motion stations other than those pertaining to the national-network is 

compiled from the literature survey (Rosenblad et al., 2002; see Table A2). Site information 

of 3 Greek strong-motion stations not covered by HEAD is obtained via personal 

communication with Prof. Kyriazis Pitilakis and Ms. Evi Riga (AUTH, Greece). The primary 

parameter used for strong-motion site characterization in RESORCE is VS30 as ITACA, T-
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NSMP, HEAD as well as recent literature studies that are accounted for while compiling the 

RESORCE station metadata use in-situ shear-wave velocity profiles measured by invasive 

and noninvasive site exploration techniques. Table 1 presents the geophysical site exploration 

techniques whose shear-wave velocity measurements are evaluated by the above reference 

sources for site characterization of strong-motion stations in their archive. 

Table 1 In-situ site measurements of the RESORCE strong-motion recording stations 

Measurement description Reference source 

Seismic cross-hole HEAD and ITACA 

Seismic down-hole HEAD and ITACA 

Extended spatial autocorrelation method from 

microtremor array measurements (ESAC) 
ITACA 

Frequency wavenumber spectrum method from 

microtremor array measurements (ESAC-FK) 
ITACA 

Multi-channel analysis of the surface waves (MASW) ITACA and T-NSMP 

Spectral analysis of surface waves (SASW) Rosenblad et al., 2002 

 

The unification of earthquake and station metadata for RESORCE as described in the 

previous paragraphs is finalized by homogenizing the classification of style-of-faulting (SoF). 

The homogenization of the SoF classification was a necessary step as the existing double-

couple fault-plane solutions are evaluated differently by each reference source to identify the 

SoF of each event in their inventory. The methodology proposed in Boore and Atkinson 

(2007) is used to remove the differences in SoF classification of the considered reference 

sources. This procedure that is modified from Frolich and Apperson (1992) and Zoback 

(1992) uses the plunge angles of the T- and P-axis of the double-couple fault-plane solutions. 

The procedure does not require the actual fault plane solution, which makes it appealing in 

the determination of SoF for earthquakes that occur on faults without a rupture trace on the 

surface. It determines a unique SoF, which is not the case for SoF classifications based on the 

rake angle. The rake angles of actual and auxiliary planes from double-couple fault-plane 

solutions can sometimes result in two different SoF classifications for the same earthquake. 
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The missing plunges of the T- and P-axis for certain events in RESORCE does not constitute 

a drawback in the implementation of the Boore and Atkinson (2007) procedure as they can be 

computed from the strike, dip and rake angles of the fault-plane solutions (Snoke, 2003). 

Table 2 lists the intervals of the plunges of the T- and P-axis for SoF classification in 

RESORCE. 

Table 2 Criteria of style-of-faulting classification using plunge angles 

Style of Faulting P-axis plunge angle T-axis plunge angle 

Normal P-pl>40 T-pl<40 

Reverse P-pl<40 T-pl>40 

Strike-slip P-pl<40 T-pl<40 

 

The completed earthquake and station metadata of RESORCE enabled the computation of 

missing source-to-site distance measures (Repi, Rhyp, RJB and Rrup)
2
 as well as the evaluation 

(and, if necessary, re-calculation) of existing ones that are collected from the considered 

reference sources. The strategy outlined in gathering the RESORCE earthquake and station 

metadata guided this phase of the work: the existing source-to-site distance information in 

ISESD and ESMD for the pre-2004 accelerograms is kept as it is except for (a) the source-to-

site distances originated from ITACA, (b) the distance modifications based on the revised 

earthquake metadata resulting from literature survey, and (c) the new distance calculations 

upon the completion of missing parameters from other reference sources. The distance 

measures of the post-2004 accelerograms as well as the additional pre-2004 recordings that 

are not considered by ISESD are also obtained from the other reference sources. In the 

absence of extended-source distance measures (RJB and Rrup) by the reference source 

databases their computation is based on the double-couple fault-plane solutions extracted 

from international or local seismic agencies. For such cases, upon the existence of double-

couple fault-plane solutions, the nucleation point is assumed to be at the center of the fault 

                                                           
2
 Repi: epicentral distance; Rhyp: hypocentral distance; RJB: closest distance to the surface projection of ruptured 

fault; Rrup: closest distance to ruptured fault 
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surface and the rupture dimensions of the fault (length and width) are estimated from Wells 

and Coppersmith
3

 (1994). The extended source metrics are calculated as pairs (i.e., 

    



RJB1
 RJB2

and     



Rrup1
 Rrup2

) for each plane using the procedure described in Kaklamanos et 

al. (2011). RESORCE source-to-site distance inventory contains these distance pairs as well 

as their arithmetic averages (  



RJB and 
  



Rrup) as alternatives for the end user. The averaging 

approach that is mostly implemented for events falling into 3.0 ≤ Mw ≤ 6.8 certainly involves 

uncertainties in the computed extended-source distances. The observations on the computed 

    



RJB1
 RJB2

 and     



Rrup1
 Rrup2

 pairs indicate that the differences between the components of 

each pair are small for far-source accelerograms and small-to-moderate size earthquakes (i.e. 

3.0 ≤ Mw ≤ 5.5). The difference between the components of extended-source distance pairs 

becomes significant for some large-magnitude (5.5 < Mw ≤ 6.8) recordings that are close to 

the source. Figure 2 documents these cases for     



RJB1
 RJB2

 pairs. The far-source recording 

trends in Figure 2 indicate that unless there is a compelling reason for preferring one of the 

components of extended-source distance pairs, the choice of their average for distant 

accelerograms would not result in significant errors. The near-source scatters on this figure 

suggest that the averaging approach, rather than the random choice of one of the distance 

components, is a rational compromise for extended-source distance metrics that show 

significant component-wise differences within this distance range. If a double-couple fault-

plane solution does not exist for a given event, no attempt is made to calculate the extended-

                                                           
3
 Leonard (2010) recently proposed a set of scaling relationships that relate Mw with rupture length, rupture 

width and rupture area. These relationships are self-consistent as they enable to estimate any one of these 

parameters from the others. Thus, the empirical relationships proposed by Leonard (2010) supersede Wells and 

Coppersmith (1994). The impact of these alternative approaches on the estimated extended-source distance 

measures is examined by running a set of analyses that consists of 1582 strong-motion records. The computed 

RJB values from Leonard (2010) and Wells and Coppersmith (1994) did not show significant deviations from 

each other. Thus, the extended-source distance computations are completed by using the rupture length and 

width formulations provided by Wells and Coppersmith (1994).    
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source distance metrics by using one of the suggested methods in the literature (e.g., 

Scherbaum et al., 2004; EPRI, 2004). 

 

 

Figure 2. Differences between     



RJB1
 RJB2

 pairs computed from the two planes given by the 

double-couple fault-plane solutions in the absence of extended-source distance measures (RJB 

and Rrup) in the reference source databases. Different color codes and symbols indicate 

different magnitude intervals. 

 

Strong-Motion Data Processing 

As in the case of metadata compilation, the ISESD strong-motion databank is taken as the 

primary source of raw pre-2004 accelerograms except for those that are archived by ITACA 

and T-NSMP. The raw accelerometric data compiled by these projects constitute the first-

hand information as they are directly obtained from the national strong-motion networks of 

Italy (ITACA) and Turkey (T-NSMP), respectively. The HEAD and SED accelerograms are 

used either for completing the non-existing pre-2004 raw Greek and Swiss data in ISESD or 

expanding RESORCE for Greek and Swiss accelerograms for the post-2004 period. Some 

additional pan-European accelerometric data (16 multi-component accelerograms) from the 
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NGA-West1
4

 strong-motion databank are also integrated into RESORCE. These 

accelerograms were retrieved from the NGA database as processed and are accepted in this 

format as their band-pass filtering and post-processing scheme is almost identical to the one 

implemented in RESORCE. A total of 89 already-processed multi-component accelerograms 

from ISESD are directly incorporated into RESORCE because of their missing raw 

waveforms. Although the data processing schemes of ISESD and RESORCE are different, 

these data are not disregarded in order not to overlook the good-quality recordings of the pan-

European events while establishing RESORCE.  

The strong-motion data processing of RESORCE is based on visual screening and band-

pass filtering of raw accelerograms. The visual screening of waveforms is used to detect and 

remove non-standard errors
5

 (Douglas, 2003; Bommer and Douglas, 2004). Band-pass 

filtering is implemented right after visual inspection if the records are free of non-standard 

errors. Otherwise, band-pass filtering constitutes the second stage of the data processing 

scheme after removing the non-standard errors. Figure 3 presents a set of sample recordings 

that show different cases of non-standard errors. Extremely low-quality accelerograms 

(Figure 3.a) are not band-pass filtered as such records would not reveal reliable information 

in time- and frequency-domain for engineering seismology and earthquake engineering 

studies. A total of 1658 horizontal and 1083 vertical acceleration components are classified as 

very low quality recordings in RESORCE. The acceleration trace of the major event is 

considered for accelerograms with multiple-shock recordings (Figure 3.b). The time interval 

of the major event is approximately determined by identifying the starting and ending times 

of the smaller amplitude recordings on the entire accelerogram. Although this procedure may 

                                                           
4
 Next Generation Attenuation Project (Power et al., 2008) 

5
 Non-standard errors refer to types of problems in strong-motion records that cannot be dealt by standard 

filtering or baseline adjustment techniques. Some of the frequently observed non-standard errors are high-

frequency spikes, S-wave trigger, insufficient digitizer resolution, insufficient sampling rate, multiple shocks, 

early termination of coda and clipping of accelerograms (Douglas, 2003)   
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impose some uncertainty on the actual length of the major event, the introduced errors are 

assumed to be negligible and they do not critically distort the particular features of the major 

event in the time- and frequency-domain. The very high-frequency spikes having abnormally 

high amplitudes with respect to the overall data trend in accelerograms (Figure 3.c) are 

removed by replacing the acceleration ordinate of the spike with the average of the data on 

either side. No spikey noise that repeats itself due to instrument imperfection (or any other 

source triggering this kind of high frequency noise) is detected in the visually inspected 

accelerograms that may require more complicated de-spiking algorithms (e.g., Evans, 1982). 

The S-wave triggered records (Figure 3.d) are not subjected to time-domain manipulation as 

in the case of other non-standard errors. They are band-pass filtered without tapering to 

prevent the clipping of original peak acceleration. The details of band-pass filtering are 

described in the following paragraph. 

The band-pass filter cut-off frequencies are selected by studying the Fourier acceleration 

spectrum (FAS) of each raw accelerogram to detect the physically unjustifiable frequency 

content at high- and low-frequency components of the ground motion. The accelerograms are 

assumed to be contaminated by low- and high-frequency noises beyond the chosen filter cut-

off frequencies whose identification is described in the relevant literature (e.g., Boore and 

Bommer, 2005; Akkar and Bommer, 2006; Douglas and Boore, 2011). In brief, the 

theoretical corner frequencies of Atkinson and Silva (2000) double-corner source spectrum 

are used as guidance to the selection of low-cut filter frequencies. These magnitude-

dependent corner frequencies are designated as fa and fb that are related to the major and sub-

fault fault sizes, respectively. Although the use of Atkinson and Silva (2000) double-corner 

source spectrum is still not justified for Europe, the low-cut filter frequencies that are greater 

than fb can be interpreted as the removal of an integral part the signal while filtering the low-

frequency noise. The selection of high-cut filter values is based on the high-frequency noise 
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behavior discussed in Douglas and Boore (2011). The flat portion at the high-frequency end 

of FAS that is contrary to the expected high-frequency attenuation of ground acceleration is 

removed by choosing an appropriate high-cut filter frequency. If such an unexpected 

behavior is not observed at the high-frequency end of FAS, the record is not high-cut filtered 

and the Nyquist frequency of the accelerogram is considered to represent its high-cut filter 

frequency value. The selected high- and low-cut filter frequencies are documented in 

RESORCE. The Butterworth acausal filter is preferred as acausal filters do not distort the 

phase content of processed records that results in lesser sensitivity of response spectrum 

ordinates as well as peak ground motions to the chosen filter cut-off frequencies. 4-pole 

Butterworth acausal filtering is applied in the frequency domain and the post processing 

procedure described in Boore et al. (2012) is used to remove the additionally introduced zero 

pads during band-pass filtering. The entire RESORCE data processing scheme is given in 

Figure 4 for completeness. The RESORCE provides the raw accelerometric data as well as 

those processed by the methodology outlined in Figure 4. 
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Figure 3. Example waveforms featuring different types of non-standard errors in time 

domain. 
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Figure 4. Band-pass filtering and post-processing scheme (after the removal of existing non-

standard errors) used in RESORCE (modified from Boore et al., 2012). The original version 

of the implemented procedure is given in Chiou et al. (2008). 

 

Modifications Made on ISESD during the Compilation of RESORCE 

The major emphasis of the previous section is the use of ISESD as the primary reference 

source while structuring RESORCE. The content of ISESD is either updated (if necessary) or 

expanded from the other reference sources by following a hierarchical methodology. The first 

Read uncorrected acceleration time series 

Remove pre-event portion of digital records 

(So that tapering does not affect the data) 

Remove mean from the data 

Taper the beginning and end of data  

(Do not taper the beginning of S-wave triggered recordings) 

Apply 4-pole acausal Butterworth filter in frequency domain after identifying 

low- and high-cut filter frequencies from FAS of mean removed data 
 

Double integrate the filtered acceleration to obtain displacement 

Fit a polynomial of order 6 to the displacement trace 

(With the coefficients for the zeroth and first order terms constrained to be 0.0) 

Subtract the second derivative of polynomial from acceleration  

Apply some zero pads to the end of record 
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part of this section describes the modifications to ISESD in metadata information. This 

subsection is followed by summarizing the improvements brought over ISESD in terms of 

data processing. 

Metadata Modifications to ISESD 

Figure 5 presents the magnitude, depth and source-to-site distance differences between the 

original ISESD strong-motion databank and the version integrated in RESORCE. The upper 

left panel of Figure 5 indicates that the modifications in moment magnitude are noticeable in 

the small magnitude range (Mw < 5). Almost all events that show a difference of 0.1 

magnitude units come from the updates using the recent ITACA information. The upper right 

panel of the same figure shows the changes in the ISESD depth information after the 

modifications. The differences are noticeable as depth computation involves significant 

uncertainties. The modifications in depth stem from the information retrieved from the 

literature survey and the ITACA project. The lower panel of Figure 5 addresses the source-to-

site distance differences. The discrepancies in distance are emphasized by using the RJB 

distance measure as its computation would also reflect the overall modifications made in 

ISESD in terms of depth, epicentral location as well as the geometry of ruptured fault plane. 

The major differences in RJB between the original and modified versions of ISESD appear at 

short distances because extended-source metrics are sensitive to the above source parameters 

within this distance range. As in the case of changes in magnitude and depth, the major 

sources of distance modifications are recent literature studies and updated Italian event and 

station information by ITACA.  
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Figure 5. Differences in moment magnitude (Mw), focal depth and source-to-site distance 

information before and after updating the ISESD strong-motion databank by following the 

strategy outlined in the previous section. (Grey circles show the modifications based on 

recent literature survey. White circles denote the modifications due to ITACA). 
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A: VS30 ≥ 800 m/s; site class B: 360 m/s ≤ VS30 < 800 m/s; site class C: 180 m/s ≤ VS30 < 360 

m/s and site class D: VS30 < 180 m/s). The information given in Table 3 indicates that the 

strong-motion site class updates are significant. A considerable amount of strong-motion sites 
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RESORCE after the recent information released by the above reference sources. Although 

not listed in Table 3, a total of 362 strong-motion stations that lack site information in ISESD 

are classified into one of the site categories of Eurocode 8 (via measured VS30 values) after 

the compilation of RESORCE. Of these strong-motion stations 195 sites are identified as site 

class C whereas 148 stations are defined as site class B. The rest of the strong-motion stations 

are site class A (7) and D (12). The reliability of new site classification in RESORCE is high 

with respect to the previous information given by ISESD as it is mainly based on VS30 values 

that are determined from the geophysical site exploration techniques (Table 1). 

 

Table 3. Changes in site classes between RESORCE and ISESD 

 RESORCE 

A B C D 

IS
E

S
D

 

A  36 2 - 

B 1  58 1 

C - 3  19 

D - - -  

 

Comparisons between ISESD and RESORCE data processing  

Figure 6 summarizes the modifications in ISESD due to the adopted data processing 

scheme in RESORCE. The histograms describe the processed PGA (left panel) and spectral 

acceleration (PSA(T=4.0s); right panel) ratio statistics of ISESD vs. RESORCE data 

processing. The differences in spectral acceleration ratios are quite noticeable with respect to 

those of PGA statistics. This observation indicates the importance of low-cut filter frequency 

choice in strong-motion data processing that is emphasized in various articles (e.g., Boore 

and Bommer, 2005; Akkar and Bommer, 2006; Douglas and Boore, 2011; Akkar et al., 2011) 

by studying the influence of high- and low-cut filter values on short- and long-period spectral 

ordinates, respectively. The common finding of these papers is the lesser influence of the 
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selected high-cut filter frequency on short-period spectral values, which is exactly the 

opposite trend in terms of the low-cut filter effect on the long-period spectral band. The 

PSA(T=4.0s) statistics suggest that the spectral ordinates at long periods after RESORCE 

data processing are significantly larger than those originally reported by ISESD. This 

observation points out that the RESORCE processing scheme that tailors the decision on 

filter cut-offs from the frequency content of each ground motion results in lesser low-cut 

filter frequencies than the constant filter cut-off (0.25 Hz) used by ISESD for most of the 

accelerometric data. The insignificant differences in the PGA ratio statistics certify the lesser 

influence of high-cut filter frequencies on the short and very short spectral periods. However, 

the consideration of ground-motion frequency content by the RESORCE processing is 

believed to result in minimum interference to the high-frequency content of the processed 

accelerometric data rather than the use of a constant high-cut filter frequency of 25 Hz, which 

is the case in ISESD.  

 

Figure 6. PGA and PSA (T=4 s) ratio statistics of ISESD vs. RESORCE data processing 

schemes 
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Overall Seismological Features 

The compilation strategy of RESORCE and the summary of updates with respect to 

ISESD are given in the previous sections. This section presents a general picture about the 

characteristics of RESORCE in order to understand the extents as well as the limitations of 

the most recent pan-European strong-motion databank. 

The databank consists of 5882 accelerograms from 1540 strong-motion stations and 1814 

earthquakes. A total of 5810 accelerograms are tri-axial recordings whereas the rest miss 

either one of the horizontal components or the vertical component. The total number of 

singly-recorded events is 1021 in RESORCE. Events with 2 and 3 recordings constitute 14% 

and 9% of RESORCE, respectively. This percentage decreases to 3.3% for earthquakes 

having 5 recordings. There are only 245 events in the RESORCE inventory that have 6 or 

above strong-motion accelerograms. Figure 7 demonstrates the yearly distribution of the 

earthquakes and accelerograms in the databank. The strong motions archived by the databank 

date back to the 1970s; the 1967 Debar Earthquake record occurred in Debar, Macedonia. 

More than half of the events and approximately 65% of accelerograms in the databank are 

compiled from the earthquakes that occurred in the last 15 years (1998-2012). Consequently, 

the current compilation efforts summarized in this paper resulted in an increase of ~30% in 

data size over ISESD. The higher concentration of events and records within the last 15-year 

time span can be attributed to the increased number of strong-motion stations all around the 

pan-European region. Most of the accelerograms collected in the last 15 years are recordings 

of digital sensors. As a matter of fact the analog and digital waveform percentages in 

RESORCE are 27% and 68%, respectively and almost the entire digital data (98% of the 

digital accelerograms) were collected in the last 2 decades. 
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Figure 7. Annual distribution of accelerograms and earthquakes in RESORCE 

 

The geographical distribution and the country-based breakdown of earthquakes and 

stations in RESORCE are displayed in Figure 8 and Table 4, respectively. Table 4 also shows 

the limitations of RESORCE in terms of Mw, distance and depth ranges. These two separate 

sources of information, when interpreted together, indicate that almost all recorded events are 

shallow active crustal earthquakes and most of the accelerograms are from Turkey, Italy and 

Greece on the Mediterranean coast as well as from Switzerland in central Europe. This 

information emphasizes the importance of updates and expansion of metadata as well as 

accelerometric waveform content from above stated countries in RESORCE. The upcoming 

versions of RESORCE will include French accelerometric data for a wider coverage of low-

to-moderate size events in Europe. 

 

1
9
6
7

1
9
6
8

1
9
6
9

1
9
7
0

1
9
7
1

1
9
7
2

1
9
7
3

1
9
7
4

1
9
7
5

1
9
7
6

1
9
7
7

1
9
7
8

1
9
7
9

1
9
8
0

1
9
8
1

1
9
8
2

1
9
8
3

1
9
8
4

1
9
8
5

1
9
8
6

1
9
8
7

1
9
8
8

1
9
8
9

1
9
9
0

1
9
9
1

1
9
9
2

1
9
9
3

1
9
9
4

1
9
9
5

1
9
9
6

1
9
9
7

1
9
9
8

1
9
9
9

2
0
0
0

2
0
0
1

2
0
0
2

2
0
0
3

2
0
0
4

2
0
0
5

2
0
0
6

2
0
0
7

2
0
0
8

2
0
0
9

2
0
1
0

2
0
1
1

2
0
1
2

1

10

100

1000

Number of Records 

Number of Events 

2000



26 

 

Figure 8. Geographical distributions of (a) earthquakes and (b) strong-motion stations in 

RESORCE 
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Table 4. Country based contributions to the RESORCE 

Country 

Name 

Number 

of 

Events 

Number 

of 

Records 

Number 

of 

Stations 

Focal 

Depth 

Range 

(km) 

Mw 

Range 

Repi 

Range 

(km) 

Albania 4 5 3 5-25 5.4-5.9 7-35 

Algeria 22 28 5 2-12 5.2-5.9 3-50 

Armenia 13 38 12 3-28 5.48-6.7 3-77 

Austria 5 20 7 7-8 3.3-3.6 12-247 

Bosnia and 

Herzegovina 
7 13 11 10-33 5.7 7-44 

Bulgaria 3 3 2 3-10 - 6-12 

Croatia 10 15 9 0-39 5.5 4-132 

Cyprus 1 1 - 19 6.8 435 

Egypt 3 9 - 12-24 4.5-7.1 32-93 

France 19 84 20 0-18 3.38-4.9 5-302 

Georgia 13 46 10 4-19.7 4.8-6.8 9-115 

Germany 12 74 19 4-22 3.1-5.2 4-260 

Greece 386 772 130 0-127 3-6.91 1-238 

Hungary 1 1 2 6 - 17 

Iceland 47 205 31 1.4-17 4.3-6.57 4-64 

Iran 44 396 325 0-44 4.56-7.42 1-375 

Israel 3 6 15 9-18 5.1-5.3 22-46 

Italy 315 1577 361 0-255.3 3.3-6.93 1-427 

Kyrgyzstan 2 5 3 0-18 - 28-29 

Lebanon 1 1 - 5 5.1 75 

Liechtenstein 1 4 1 11 3.7 4 

Macedonia 3 9 12 12-20 6.1 21-80 

Montenegro 22 59 13 4-40 5.4-6.9 3-91 

Netherlands 1 3 - 14.6 5.3 83 

Norway 7 10 3 0-21 3.6-5.5 26-309 

Portugal 60 125 32 0-77 4.69-7.8 5-332 

Romania 4 32 14 86-137 6.3-7.53 7-484 

Serbia 8 8 3 3-10 5.5 8-237 

Slovenia 14 32 16 4-16 4.3-5.7 1-88 

Spain 12 23 16 5-28 3.9-5.3 1-486 

Switzerland 30 208 110 1-31 3-3.92 2-119 

Syria 1 10 10 29 5.5 303 

Turkey 724 2027 330 0-98 2.8-7.6 2-399 

United 

Kingdom 
3 3 3 8-19 - 35-135 

Uzbekistan 13 30 12 0-45 6.76 1-53 

 

Figure 9 shows the earthquake (left column) and accelerometric (right column) data 

distributions in RESORCE for moment magnitude, depth and SoF. A total of 838 events have 
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the reported moment magnitude information from international and local seismological 

agencies as well as earthquake-specific literature studies (first row plots). When moment 

magnitudes that are estimated from empirical magnitude conversion relations are included, 

the number of events with Mw information raises to 1460. The moment magnitude 

estimations are concentrated between 3.5 ≤ Mw ≤ 5.5. These relatively small events come 

from T-NSMP, HEAD and ITACA. They are originally reported as duration magnitude (Md), 

local magnitude (ML) and body-wave magnitude (mb) for Turkish events; whereas ML is the 

original magnitude scale in Italian and Greek earthquakes. The total number of accelerograms 

having Mw information is 5285 (4269 reported and 1016 estimated) out of 5882. The event 

and record based distributions of moment magnitude suggest the dominancy of moderate-size 

events (4 ≤ Mw ≤ 6) in RESORCE (41% of earthquakes and 50% of accelerograms). The 

fraction of events that can be considered as large earthquakes (i.e., Mw ≥ 6.5) is only 2% in 

the entire population. The corresponding number of accelerograms constitutes 8% of the 

accelerometric data in RESORCE. The total number of events without moment magnitude 

information is 354 (20% of RESORCE). These events (labeled as “Unknown” on the 

histograms) are reported in different magnitude scales but their corresponding Mw values 

cannot be estimated due to the lack of proper empirical magnitude conversion relationships. 

The second row histograms display depth distribution in RESORCE. The depth range is less 

than 30km for about 94% of the events in RESORCE. The corresponding percentage in terms 

of strong-motion recordings is also 94% indicating that RESORCE is dominated by shallow 

crustal events. The events of depths ranging between 50 km and 140 km are mainly from the 

Hellenic and Cyprus Arc subduction zone, Vrancea region, Portugal and southern Turkey. 

The distribution of event and accelerometric data in terms of SoF is given in the last column 

of Figure 9. The majority of events and accelerograms are from the strike-slip, SS, (31% of 

events and 35% of records) and normal, N, (25% of events and 31% of records) faults. The 
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data size of reverse, R, events and accelerograms are small when compared to the other SoF 

classes but they still constitute 11% of the events and 16% of the strong-motion records. The 

depth and SoF distributions also indicate that the corresponding information is still missing 

(designated as “Unknown” on each histogram) for some earthquakes in RESORCE that 

mainly fall into the small magnitude range (Mw ≤ 5). Earthquakes and accelerograms falling 

into this category are more prominent in the SoF statistics. The major reason behind this 

deficiency is the lack of double-couple fault-plane solutions for small magnitude earthquakes 

that provide direct information for the identification of SoF and depth parameters. Inherently, 

the literature survey (i.e., earthquake-specific publications) rarely focuses on the solutions of 

such small events unless they are associated with a major destructive earthquake. There are 

pragmatic solutions grossly determining the style-of-faulting of such small-size events. One 

alternative methodology is to overlay them on the seismotectonic maps to judge their SoF 

from their proximity to the fault zones. The complexity of source kinematics as well as 

insufficient resolution of seismotectonic maps in Europe and surrounding countries would 

increase the associated uncertainty in such classification. Thus, such an approach should be 

discouraged in SoF classification and is not implemented in the current version of 

RESORCE. 
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Figure 9. Distributions of events (first column) and accelerograms (second column) in 

RESORCE in terms of moment magnitude (first row), depth (second row) and SoF (third 

row). The vertical bars labeled as “Unknown” refer to the events or accelerograms that 

cannot be classified within any one of these parameters due to missing event or strong-motion 

station metadata information. 
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Figure 10 presents similar histograms as of Figure 9 to describe the distributions of strong-

motion stations (left panel) and accelerograms (right panel) in terms of Eurocode 8 (CEN, 

2004) site classification. The statistics are based on measured VS30 values and inferred site 

classes from local site geology. The site information of RESORCE contains a total of 423 

strong-motion stations with known VS30 values due to the site characterization studies in 

Greece, Italy and Turkey (details are given in Table 1). The corresponding number of 

accelerograms recorded at these stations is 2936. The number of strong-motion sites and 

accelerograms with site classes inferred from the local geological conditions is 627 and 1876, 

respectively. Of the entire accelerometric data 1070 records (18% of strong-motion records in 

RESORCE) do not have any site characterization. The majority of accelerometric data (38%) 

is recorded at site class B strong-motion stations. Only 3% of the accelerograms in 

RESORCE fall into site class D. The accelerograms in site class A and C constitute 17% and 

24% of the databank, respectively.  

 

Figure 10. Distributions of strong-motion stations (left panel) and accelerograms (right panel) 

in RESORCE in terms of Eurocode 8 (CEN, 2004) site classes. The explanation about the 

labels designated as”Unknown” is similar to the one given in the caption of Figure 9. 
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relatively large volumes of analog recordings in RESORCE. Inherently, the recording quality 

of digital accelerograms is better than those of analog recordings except for the first-

generation digital recorders having 12 bit resolution. In most cases the dynamic range of 

analog accelerographs varies between 45-55 dB (Trifunac and Todorovska, 2001) indicating 

high noise contamination that particularly dominates the recording quality of small-amplitude 

and distant events. The sampling intervals of accelerograms is RESORCE are mostly 0.01s 

and 0.005s regardless of the recorder type. The record quality of accelerograms in RESORCE 

is further emphasized while discussing the filter cut-off frequencies in the subsequent 

paragraphs.  

The distance metrics (Repi, Rhyp, RJB and Rrup) are plotted up to 200 km to have a better 

perception in the Mw vs. distance distributions. The calculations of Repi and Rhyp distance 

metrics are easier than RJB and Rrup as the latter two distance measures require additional 

information about the ruptured fault geometry. The entire accelerometric data in RESORCE 

(5882 records) contain the Repi information. The number of accelerograms having Rhyp 

information is 5751 as 131 recordings lack depth information. A total of 3906 records in 

RESORCE have RJB values. This number reduces to 2490 recordings for Rrup as the 

calculation of this distance measure involves the largest number of seismic parameters, which 

is difficult to acquire with the current content of the reference sources used during the 

compilation process. The information on ruptured fault geometry as well as double-couple 

fault-plane solutions becomes poor towards smaller magnitude events in RESORCE (see 

discussions in the previous paragraphs) and these adverse features primarily affect the Rrup 

computations in the small magnitude range. The scatters in Figure 11 depict that the Mw vs. 

distance distribution is fairly uniform for distances greater than 10 km and moment 

magnitudes approximately greater than 4. For shorter distances and smaller magnitudes, the 
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homogeneity in Mw vs. distance distributions diminishes and this is more visible in Rhyp and 

Rrup.  

 

Figure 11. Distribution of Mw vs. (a) Repi, (b) Rhyp, (c) RJB and (d) Rrup. Scatter points in red 

color indicate analog records whereas black scatter points designate digital records. Moment 

magnitude information given on each plot is either directly extracted from the original 

reference source (see Tables A1 and A2) or estimated from an empirical relationship as 

explained under the “Compilation of Earthquake and Strong-Motion Station Metadata” 

subsection. 
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Figures 12 and 13 show the magnitude-dependent variation of low-cut (flow-cut) and high-

cut (fhigh-cut) filter cut-off frequencies used in the RESORCE data processing, respectively. 

Each row shows the chosen filter cut-off frequencies for a different site class in Eurocode 8 

(CEN, 2004). The panels on the left show the filter cut-off values of the horizontal 

acceleration components. The right-hand-side panels describe the same information for 

vertical acceleration components. The straight lines on Figure 12 also show the magnitude-

dependent variation of theoretical corner frequencies, fa and fb, that are used for guidance 

while deciding on the individual low-cut frequencies of accelerograms. The scatter diagrams 

in Figure 12 indicate that only few selected low-cut frequencies are above the corresponding 

fb values suggesting that the actual low-frequency content of the processed accelerograms is 

preserved fairly well. The low-cut filter values tend to decrease with increasing magnitude 

except for site class A (VS30 ≥ 800 m/s) ground motions. The described trend in flow-cut vs. Mw 

is not very clear with respect to similar type of comparisons made by previous studies (e.g., 

Akkar et al., 2010). The major reason behind this observation might be the large percentage 

of analog accelerograms (30%) among the processed data whose resolution in time- and 

frequency-domain does not permit the selection of very low flow-cut values with increasing 

magnitude. The marginal drop in flow-cut with increasing Mw for site class A recordings 

justifies the above assertion as 73% of ground motions in this site class are analog recordings. 

The scatters given in Figure 13 indicate that, except for a few cases, the chosen high-cut filter 

frequencies are almost exclusively above the 10 Hz limit. The records subjected to severe 

high-cut filtering are mainly from low-quality analog and digital waveforms. These 

accelerograms constitute approximately 23% of the entire RESORCE archive. This 

discussion once again advocates the importance of waveform quality in order to extract the 

utmost information from the processed recordings. 
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Figure 12. Variation of low-cut filter frequencies as a function of Mw for different site classes 

in RESORCE. Moment magnitude information given on each plot is either directly extracted 

from the original reference source (see Tables A1 and A2) or estimated from an empirical 

relationship as explained under the “Compilation of Earthquake and Strong-Motion Station 

Metadata” subsection. 
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Figure 13. Same as Figure 12 but for high-cut filter frequencies. 
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Summary and Conclusions 

This paper summarizes the general features of the most recent pan-European strong-motion 

databank that updates and expands its predecessor developed by Ambraseys et al. (2004a). 

The details of the topics discussed in this paper will be posted as a separate document on the 

official web site of RESORCE when the databank is made available for public use. The 

online documentation will use flags to describe the specific features of each entry (e.g., 

reference source of magnitude and VS30 information, specific literature on fault rupture 

information or data processing parameters etc.) in the metadata. The dissemination of 

RESORCE will be realized in the near future under the collaboration of multi-national 

European projects SIGMA, NERA (Network of European Research Infrastructures for 

Earthquake Risk Assessment and Mitigation) and EPOS (European Plate Observing System) 

together with non-profit European data centers (EMSC and ORFEUS – Observatories and 

Research Facilities for European Seismology –). As a matter of fact, a working group has 

already been established under ORFEUS and EPOS to coordinate these efforts for long-term 

sustainability of RESORCE. This new structure aims to shape the future policies among 

accelerometric networks in the broader Europe region to enhance integral approaches for the 

efficient use of strong-motion data in engineering seismology and earthquake engineering 

studies.  

The current version of RESORCE increases the record and event size of its predecessor by 

approximately 2.5 times with improvements in magnitude and distance distributions through 

additional data from recent Turkish, Italian, Swiss and Greek events. The data size will be 

increased further in the upcoming versions of RESORCE by including recordings of the 

French Accelerometric Network (RAP, http://www-rap.obs.ujf-grenoble.fr). The inclusion of 

French accelerograms in RESORCE will result in a larger coverage of moderate-to-low 

seismic events in Europe. The methodology followed in the compilation of RESORCE results 
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in more reliable earthquake and station metadata. The strong-motion site characterization is 

primarily calibrated by measured VS30. The extended- and point-source distance measures are 

computed from reliable literature studies or by following a systematic methodology. The 

uniform strong-motion data processing, as part of these efforts, has increased the usable 

period range of the accelerograms in the inventory as the choice of filter cut-offs is guided by 

the frequency content of the accelerograms. This step, implemented efficiently in the 

evolution of RESORCE, supersedes the use of the constant filter cut-off approach in ISESD. 

The current size of RESORCE consists of 5882 multi-component accelerograms from 

1814 events between 1967 and 2012. The number of strong-motion stations in the inventory 

is 1540 out of which one-third of stations have direct shear-wave velocity profiles. Almost 

80% of the events have moment magnitude information. The earthquake magnitudes range 

between 2.8 and 7.8 in RESORCE. The entire databank has the Repi source-to-site distance 

information. The corresponding numbers for Rhyp, RJB and Rrup source-to-site distance metrics 

are 5751, 3906 and 2490, respectively. The total number of uniformly processed 

accelerograms is approximately 86% of the entire RESORCE population. 

The information summarized in this paper comprises of the entire accelerometric 

recordings that are evaluated in RESORCE. The public open version will not include the 

accelerograms suffering from extremely low quality waveforms in all three components. A 

set of source-to-site distance vs. event size criteria will also be established to remove small-

amplitude and far distance accelerograms from final version of RESORCE that are limited in 

use for engineering seismology and earthquake engineering.  

The overall picture given in the above paragraphs makes RESORCE an important source 

of information for hazard and risk studies in and around Europe. The quality and content of 

RESORCE is comparable with similar type of databanks such as those from the NGA-West1 

(Power et al., 2008) and NGA-West2 (Bozorgnia et al., 2012) projects. As summarized in the 
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first paragraph the efforts put forward in the compilation of RESORCE should be 

supplemented by long-term research projects within the European context to complete the 

missing or (partially) unreliable metadata information. In particular, efficiently oriented 

financial funds for site characterization of strong-motion stations in terms of measured shear-

wave velocity profiles or well-defined source characterization projects that seek double-

couple solutions of small-to-moderate size events from regional seismotectonic and stress 

field studies as well as relocation of earthquakes for improvements in the spatial distribution 

of events will certainly minimize the metadata related uncertainties in RESORCE. Projects 

encouraging the inclusion of recordings from pan-European countries other than those 

contributing significantly to the accelerometric archive of RESORCE will also lead to a 

better reflection of seismic activity in the region covered by this strong-motion databank. 

Such grants will also create numerous research opportunities in the fields of earthquake 

engineering and engineering seismology in Europe. As a matter of fact the growth rate of 

accelerometric data in the broader Europe in the last two decades makes such Europe-wide 

projects indispensable. 
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Table A1. Major reference sources used in the compilation of RESORCE strong-motion databank 

Source Accelerogram 
Station 

Metadata 

Earthquake 

Metadata 

Internet site for European strong-motion 

data (ISESD; Ambraseys et al., 2004a) 
   

Italian accelerometric archive (ITACA, 

Luzi et al., 2008) 
   

The Next Generation Attenuation Models 

Project (NGA, Power et al., 2008) 
   

Turkish national strong-motion project 

(T-NSMP, Akkar et al., 2010 and 

Sandıkkaya et al., 2010) 
   

The Swiss Seismological Service (SED, 

www.seismo.ethz.ch) 
   

Hellenic Accelerogram Database (HEAD, 

http://www.itsak.gr/en/db/data; 

Theodulidis et al., 2004) 
   

European strong-motion database 

(ESMD, Ambraseys et al. 2004b) 
   

European-Mediterranean Regional 

Centroid Moment Tensor catalog (RCMT; 

http://www.bo.ingv.it/RCMT/) 

   

Global Centroid Moment Tensor Catalog 

Search (GCMT, www.globalcmt.org) 
   

International Seismological Centre (ISC; 

http://www.isc.ac.uk/) 
   

U.S. Geological Survey (USGS; 

http://earthquake.usgs.gov/) 
   

Cauzzi and Faccioli (2008)    
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Table A2. Earthquake-specific literature used in earthquake and strong-motion station metadata in 

RESORCE 

Reference Main Focus 

Abercrombie et al. 

(1995)
†
 

Source information on the 1981 Alkion earthquakes (Greece) 

Amorese et al. (1995)
 †

 
Source information on the 1976 Gazli earthquake 

(Uzbekistan) 

Anderson et al. (2001)
 †

 Source information on the 1999 Athens earthquake (Greece) 

Bajc et al. (2001)
 †

 Source information on the 1998 Bovec earthquake (Slovenia) 

Benetatos et al. (2007)
 ‡ 

Source information on the 2003 Lefkada earthquake (Greece) 

Berberian et al. (1992)
 †

 Source information on the 1990 Manjil earthquake (Iran) 

Bernard et al. (1997)
 †

 Source information on the 1992 Erzincan earthquake (Turkey) 

Boore et al. (2009)
 ‡

 Source information on the 2003 Kythira earthquake (Greece) 

Decriem et al. (2010)
 ‡

 Source information on the 2008 Olfus earthquake (Iceland) 

Delouis et al. (2002)
 ‡

 Source information on the 1999 Kocaeli earthquake (Turkey) 

Erdik (1984)
 †

 Source information on the 1983 Pasinler earthquake (Turkey) 

Haessler et al. (1988)
 †

 Source information on the 1984 Umbria earthquake (Italy) 

Hatzfeld et al. (1997)
 †

 Source information on the 1978 Tabas earthquake (Iran) 

Jackson et al. (2006)
 ‡

 Source information on the 2003 Bam earthquake (Iran) 

Louvari et al. (2004)
 †

 
Source information on the 1983 Kefallinia Island earthquake 

(Greece) 

Lyon-Caen et al. (1988)
 †

 
Source information on the 1986 Kalamata earthquake 

(Greece) 

Makaris et al. (2000)
 †

 
Source information on the 1997 Strofades earthquake 

(Greece) 

Oncescu et al. (1997)
 †

 
Source information on the 1977 Bucharest earthquake 

(Romania) 

Pace et al. (2002)
 †

 Source information on the 1984 Abruzzo earthquake (Italy) 

Perniola et al. (2004)
 ‡

 
Source information on the 1976 Friuli earthquake and its 

major aftershocks (Italy) 

Roumelioti and Kiratzi 

(2002)
 †

 

Source information on the 1979 Montenegro earthquake 

(Montenegro) 

Salvi et al. (2000)
 †

 
Source information on the 1997 Umbria-Marche earthquake 

(Italy) 

Soufleris et al. (1982)
 †

 Source information on the 1978 Volvi earthquake (Greece) 

Talebian et al. (2006)
 ‡

 
Source information on the 2005 Dahooeiyeh-Zarand 

(Kerman) earthquake (Iran) 

Tan et al. (2011)
 ‡

 
Source information on the 2008 Kovancılar earthquake 

(Turkey) 

Tatar et al. (2007)
 ‡

 
Source information on the 2004 Kojur-Firoozabad earthquake 

(Iran) 

Triep et al. (1995)
 †

 Source information on the 1991 Racha earthquake (Georgia) 

Tselentis and Zahradnik 

(2000)
 †

 
Source information on the 1995 Kazani earthquake (Greece) 

Tselentis et al. (1996)
 †

 Source information on the 1995 Aigion earthquake (Greece) 

Umutlu et al. (2004)
 ‡

 Source information on the 1999 Düzce earthquake (Turkey) 

Walker et al. (2003)
 †

 Source information on the 1995 Dinar earthquake (Turkey) 
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Kyriazis Pitilakis and Evi 

Riga (AUTH)
 ₡ 

Updated VS30 information of some of the Greek sites that are 

not considered in HEAD 

Rosenblad et al. (2002)
 ‡

 
Updated VS30 information of some of the Turkish sites 

operated by KOERI* 

*
KOERI: Kandilli Observatory and Earthquake Research Institute 

†
 Literature survey from ISESD (Ambraseys et al., 2004a). 

‡
 Additional literature survey  

₡: 
Personal communication 

 

 


