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Summary 20 

We present a case study of the ranking and weighting of ground-motion prediction equations (GMPE) 21 

for seismic hazard assessment of Enhanced Geothermal Systems (EGSs). The study region is Cooper 22 

Basin (Australia), where a hot-fractured-rock project was established in 2002. We test the applicability 23 

of 36 GMPEs based on stochastic simulations previously proposed for use at EGSs. Each GMPE has a 24 

set of corresponding model parameters describing stress drop, regional and local (near-surface) 25 

attenuation. To select suitable GMPEs for Cooper Basin from the full set we applied two methods. In 26 

the first, seismograms recorded on the local monitoring network were spectrally analysed to determine 27 

characteristic stress and attenuation parameters. In a second approach, residual analysis using the log-28 

likelihood (LLH) method was used to directly compare recorded and predicted short-period response 29 

spectral accelerations. The resulting ranking was consistent with the models selected based on spectral 30 

analysis, with the advantage that a transparent weighting approach was available using the LLH 31 

method. Region-specific estimates of variability were computed, with significantly lower values 32 

observed compared to previous studies of small earthquakes. This was consistent with the limited 33 

range of stress-drops and attenuation observed from the spectral analysis. 34 

Keywords: geothermal power, induced seismicity, ground-motion prediction, seismic hazard, spectral 35 

analysis 36 

Introduction 37 

Ground shaking from seismicity associated with stimulation and exploitation of a geothermal reservoir 38 

for heat and power production can be a significant nuisance to the local population and can, in some 39 

cases, lead to building damage. The Deep Heat Mining project (Basel, Switzerland) in 2006 triggered 40 

an ML 3.4 (Mw3.2) mainshock and thousands of smaller shocks and led to insurance claims of more 41 

than $9 million (Giardini, 2009). Two earthquakes (ML 2.4 and 2.7) occurred in the vicinity of the 42 

Landau (Germany) geothermal power plant in 2009, which caused macroseismic intensities up to V+, 43 

while at another German geothermal project (Insheim) two felt tremors (ML 2.2 and 2.4) occurred 44 

during reservoir stimulation in 2010 (Groos et al., 2013). Most recently, in July 2013, a geothermal 45 

project in St. Gallen, Switzerland triggered a widely felt ML3.5 (Mw3.4) event, which was followed by 46 

numerous smaller aftershocks. In Majer et al. (2012) seven steps are proposed to help assess and 47 

mitigate the seismic risk posed by geothermal systems. Step 5 of the proposal is to “quantify the 48 

hazard from natural and induced seismic events” through either probabilistic or deterministic 49 

approaches. They suggest a two-stage approach to quantify the hazard:  a baseline estimate initially 50 

established through regional seismicity, with further refinement to a site-specific hazard assessment 51 

through the analysis of induced seismicity recorded on the local monitoring network. This article 52 

addresses the second stage. 53 
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A necessary component of any study that seeks to assess the seismic hazard (and/or risk) associated 54 

with geothermal projects is a ground-motion model that estimates measures of shaking [e.g. peak 55 

ground acceleration, (PGA)] given an earthquake scenario (e.g. in terms of magnitude and source-to-56 

site distance). Motivated by a lack of suitable models in the public literature, Douglas et al. (2013) 57 

derived a set of stochastic and empirical ground-motion models for application in geothermal areas. 58 

These models were based on analyses of thousands of near-source seismograms of small earthquakes, 59 

most of which were induced by geothermal activity or gas extraction, while some were natural shallow 60 

events.  61 

Because of the considerable epistemic uncertainty in the estimation of ground motions in geothermal 62 

areas, Douglas et al. (2013) presented ground-motion prediction equations (GMPEs) for 36 stochastic 63 

simulation models (Boore, 2003) that sought to capture this uncertainty. The ranges of the key 64 

parameters of these stochastic models (stress parameter, Δσ; path attenuation, Q; near-surface 65 

attenuation, κ) were defined based on the analysis of seismograms collected from numerous regions. 66 

The analysis highlighted considerable variation in these parameters among regions and sites. When 67 

conducting a seismic hazard assessment for a given geothermal project it is not known a priori which 68 

of the 36 models are most applicable. Consequently Douglas et al. (2013) recommended, in the 69 

absence of other information by which to constrain the stochastic parameters for a given site, that a 70 

logic tree is used for seismic hazard analysis with all 36 models as branches. Subsequently, as 71 

seismograms are recorded at the geothermal project site, the applicability of some models should 72 

become evident and hence their associated branches could be assigned higher weights, while others 73 

may be down-weighted or even dropped completely. There are two complementary ways in which the 74 

branch weights can be updated: direct assessment of the stochastic parameters, and comparison of 75 

ground-motion predictions and observations.   76 

As a demonstration of the use of the stochastic simulation GMPEs and the proposed procedure for the 77 

assessment of the logic-tree weights, Douglas et al. (2013) present a simple analysis for Campi Flegrei 78 

(Italy), for which some seismograms from small, shallow (but natural) earthquakes were available. 79 

However, the small number of seismograms available (only 55), their limited bandwidths and low 80 

quality of the metadata meant that the logic-tree weights could not be significantly updated. The aim 81 

of this article is to use a much larger and higher-quality dataset from an Enhanced Geothermal System 82 

(EGS), to better demonstrate the proposed selection procedure and to investigate how many records 83 

are required to significantly reduce the epistemic uncertainty in ground-motion prediction for EGSs. 84 

The dataset comes from Cooper Basin (Australia), which was not considered by Douglas et al. (2013) 85 

when developing their ground-motion models. 86 

The next section summarizes the 36 stochastic models developed by Douglas et al. (2013). Douglas et 87 

al. (2013) did not recommend their empirical models for application because they were derived using 88 
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data from a narrow magnitude-distance range (roughly Mw 1 to 3 and Rhyp<10km) and a simple 89 

functional form was adopted. Because the stochastic models were based on simulated ground motions 90 

from a wider range of magnitudes and distances and a more complex functional form was fit to these 91 

simulations, they are considered more robust than the empirical equations for Mw 1 to 5 and Rhyp 1 to 92 

50km. As with empirical models, however, extrapolation of stochastic models outside their range of 93 

applicability is not recommended. Following the introduction of the models, the dataset from Cooper 94 

Basin EGS is presented. The subsequent section derives estimates of the stochastic parameters from 95 

these data and investigates the impact of the number of seismograms used to estimate the parameters. 96 

Based on this analysis a set of weights for the 36 models is proposed. A second set of weights is 97 

proposed in the following section based on comparisons between the observed response spectral 98 

accelerations and those predicted by the 36 GMPEs.  99 

Ground-motion models for induced seismicity 100 

Ground motions from small earthquakes, particularly those recorded in the near-source region, often 101 

exhibit large variability for a given magnitude and distance, the principal independent parameters for 102 

GMPEs. There are two explanations for this common observation: the first is related to the fact that 103 

meta-data for small earthquakes are often poorer quality (e.g., routine automatic locations as opposed 104 

to manually-reviewed locations). The second reason (exacerbated by the first) is that ground motions 105 

from small events are more sensitive to changes in hypocentral depth, while site-attenuation (κ) tends 106 

to filter out, to varying degrees, the dominant high-frequencies associated with smaller earthquakes 107 

(Douglas and Jousset, 2011). Furthermore, it is often observed that the variability of the stress-drop (or 108 

conversely, slip velocity) is significantly higher for small events than for larger events (e.g., Cotton et 109 

al., 2013). Whether an artefact of inversion procedures (e.g., not properly accounting for attenuation), 110 

or reality, this nevertheless reflects the greatly differing proportion of high-frequency energy observed 111 

in small earthquakes of similar size.  112 

Analysing data from six independent regions (Basel, Soultz, Geysers, Hengill, Roswinkel and 113 

Vorendaal), Douglas et al. (2013) found that a significant reduction in the overall prediction 114 

uncertainty was obtained by accounting for region-specific biases. As discussed, this can be 115 

interpreted as either systematic bias in the meta-data, or alternatively, region-specific „characteristic 116 

seismicity‟ and recording conditions. Since magnitudes were recomputed homogeneously and 117 

hypocentral depths are generally well-constrained for sources directly below the recording network 118 

(typical in geothermal installations), Douglas et al. (2013) suggested that differences in source, path 119 

and site conditions were the likely cause of region-specific differences. They proposed a suite of 36 120 

stochastic models with different source, path and site properties to cover the range observed in their 121 

datasets.  122 
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In terms of seismic hazard assessment, these 36 models can be considered to cover the epistemic 123 

uncertainty: in the case of a completely unknown site, we cannot distinguish between any of the 124 

models, and must weight them equally. In reality, of course, some information about the site of interest 125 

will always be available: for instance, if the EGS is not located on outcropping hard-rock, then we can 126 

already rule out the models with the lowest levels of site attenuation (κ). Each of the 36 models has its 127 

own associated aleatory variability, which corresponds to a region-specific model. An initial „naïve‟ 128 

application of these GMPEs would be similar in terms of the resulting mean hazard to using the single 129 

empirical GMPE developed by Douglas et al. (2013) using data from all regions (along with the 130 

associated high aleatory variability). In terms of the hazard distribution, the obvious difference is that 131 

the empirical model leads to only one curve, whilst the stochastic models generate 36 individual 132 

hazard curves, representing the epistemic uncertainty. However, in the case of improved knowledge of 133 

the site‟s seismicity, or recording conditions, we can begin to reassess the weighting of the 36 models, 134 

reducing the epistemic uncertainty. The advantage in this case is clear, since region-specific GMPEs 135 

cannot typically be assessed due to limited recorded distance and magnitude ranges, the stochastic-136 

model approach allows us to refine the logic tree in the case of improved knowledge, which will be 137 

quickly available after the installation of a monitoring network, or even beforehand when local data 138 

already exist. 139 

Ground-motion data used for model selection 140 

The data used in this article comes from a sensitive seismic network set up to monitor the geothermal 141 

exploitation of the reservoir at Cooper Basin (South Australia). A hot-fractured-rock project was 142 

launched at Cooper Basin in 2002 to exploit the Habanero granite reservoir at depths between 4 and 143 

4.5km. Various boreholes and stimulation experiments have been conducted since and triggered 144 

earthquakes have been located and characterized (Baisch et al., 2006). The data used here come from 145 

2005 (data from 2003 are available but there is uncertainty over the calibration factors of the 146 

seismometers). Data from eight stations (Stang, 2011) installed by Q-Con [McLeod #1 (MCL), WA1-147 

4 and MW1-3] are used (Figure 1), all of which are located below the surface (all at depths of less than 148 

357m, except for McLeod #1 at 1.8km). High-quality earthquake catalogues were provided by Q-Con 149 

for these data. The available records come from earthquakes with moment magnitudes between 1.7 150 

and 3.1 (roughly following a standard Gutenberg-Richter distribution), hypocentral distances between 151 

2.4 and 7.8km (roughly uniformly-distributed) and depths between 3.9km and 4.5km (roughly 152 

normally-distributed with a peak around 4.2km). All records have been converted from velocity to 153 

acceleration through time-domain differentiation and application of calibration factors. Following the 154 

approach detailed in Douglas et al. (2013) and Edwards and Douglas (2013), all earthquakes used here 155 

have had their moment magnitudes consistently recalculated. 156 

Estimation of stochastic parameters 157 



6 
 

As noted, the estimation of suitable stochastic model parameters allows the reduction of epistemic 158 

uncertainty related to ground-motion prediction in the study region for the magnitude and distance 159 

range of the data. For earthquakes outside the range of observations (particularly larger magnitudes), 160 

however, there still remains considerable epistemic uncertainty because it is not certain that the most 161 

appropriate stochastic parameters (or the best-fitting models) for the available data necessarily apply 162 

for such scenarios. In a first step we look for existing parameters published in the literature. At Cooper 163 

Basin, Baisch et al. (2009) found an average whole-path Qp=112±21 and Δσ=4.7bars (0.47MPa) from 164 

the analysis of over 6000 events. Assuming Qp≈Qs and taking the measured VP=3.7kms
-1

 and 165 

VP:VS=1.9 from Baisch et al. (2009) we obtain path attenuation (t*) of approximately 0.02s between 166 

the event cloud and the surface. Due to the almost vertical propagation through the basin, this t* can 167 

be completely assigned to the site-specific term, κ0. Regional values of Q have been computed for 168 

Australian earthquakes by Allen et al. (2006, 2007). For southeastern Australia Allen et al. (2007) 169 

found: 170 

                                                               1 

for frequencies (f) 0.78 to 19.9 Hz, leading to consistently high Q (1063 to 6671), whilst for 171 

southwestern Australia Allen et al. (2006) found: 172 

               2 

for frequencies 1.07 to  25.0 Hz. The study of Allen et al. (2007) computed a corresponding 173 

geometrical attenuation of rhyp
-1.3

 in the first 90km (where rhyp is hypocentral distance) based on the 174 

decay of long-period displacement spectra. The central-east location (Figure 1) of Cooper Basin may 175 

be slightly better described by 'southeastern Australia'. However, in light of the known trade-off 176 

between Q and geometrical decay, we may prefer to use the latter Q estimate for southwestern 177 

Australia, which corresponds to the rhyp
-1

 geometrical spreading model adopted by Douglas et al. 178 

(2013). This frequency dependent Q model (Equation 2) corresponds to 457 at 1Hz and 1503 at 25Hz, 179 

which could foreseeably be accommodated through frequency-dependent weighting of the Douglas et 180 

al. (2013) models developed with frequency independent Q. Stress drop terms derived by Allen et al. 181 

(2006) lie between 1 and 100 bars (0.1 and 10MPa) but show a trend that increases with magnitude, 182 

albeit weakly. 183 

To provide further estimates of the parameters, without the numerous assumptions that may be 184 

required by using values from the literature, we here also present the average Q, Δσ and κ0 values as 185 

determined from subsets of the data used for this study. We test the impact of using 10, 25 and 50% of 186 

all data in order to simulate the effect of a developing database for a new network installation. 187 

Kappa estimation 188 
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We estimated site κ0 consistent with the models of Douglas et al. (2013) through least-squares 189 

minimization of spectra computed over the duration of shaking. The window duration was based on 5-190 

95% of the velocity-squared integral, with spectral models fit between 10 and 100Hz in the lin-log 191 

domain. The models were based on the Brune (1970) source with single event-common corner-192 

frequency and attenuation modelled using an exponential function (Anderson and Hough, 1984); refer 193 

to Douglas et al. (2013) and Edwards et al. (2011) for an exhaustive description of the fitting 194 

procedure. At least two instruments were required to have recorded each event to include it in the 195 

processing. To estimate the impact of limited data on the choice of model weights, we simulated 196 

different stages of data collection through random sampling of the events for which we had good 197 

recordings at two or more instruments.  198 

Since the hypocentral distance was very limited, choice of Q has a minimal impact on kappa: we chose 199 

Q=1200 to be broadly consistent with the results of Allen et al. (2006), who found values of between 200 

457 at 1Hz and 1503 at 25Hz. However, choosing the Q=600 model from Douglas et al. (2013) would 201 

only have an impact of approximately Δκ0=0.001s (2-4%). We observe that the kappa values 202 

determined for the Cooper Basin stations were dependent on the location of the borehole. Instrument 203 

McLeod #1, located at the centre of the network (1.8km depth) has the lowest value (0.028s), 204 

consistent with the significant depth at which it is located. Stations MW01, MW02 and MW03 (the 205 

inner ring) lie within approximately 2.5km of the central station (depths 109 to 357m) and show the 206 

highest kappa values (0.041 to 0.047s). Stations WA01, WA02 and WA03 (outer ring) lie within 5km 207 

of the central station and show moderate values of kappa (0.03 to 0.037s), despite being located 208 

shallower than stations MW01, MW02 and MW03 (at depths of 96 to 110m). The similarity of the 209 

kappa values for each ring of the network is remarkable, and may be due to similar geology for these 210 

stations or, since the earthquakes are all located near to the well-head, due to the similarity of the 211 

propagation paths to each of the stations of a given ring.   212 

We estimated the impact of reduced datasets by bootstrapping 100 times over random subsamples of 213 

the complete dataset; measuring the changes in absolute value and scatter. The impact of a reduced 214 

dataset (even down to 10% of the original events: corresponding to an average of 14 events) was 215 

minimal in terms of the average kappa, with changes of only a few per cent (Table 1). In the case of 216 

the standard deviation, the reduced datasets led to significant underestimation of the true uncertainty. 217 

This should not be an issue in our application, however, since we are interested in the median values; 218 

aleatory variability is independently assigned based on the work of Douglas et al. (2013). 219 

Stress parameter estimation 220 

Source corner frequencies of the spectra were re-estimated, fixing Q=1200 and κ0 as in Table 1. An 221 

inversion was performed in the log-log domain, again minimizing the least-squares misfit of the 222 
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spectral model. Given the moment magnitude determined by Edwards and Douglas (2013), we can 223 

then estimate the stress-parameter as: 224 

     (
  

       
)
 

 
3 

where  =3500m/s and    is estimated following the original formulation of the moment magnitude 225 

by Hanks and Kanomori (1979).  226 

After selecting events with available Mw and fc estimates a total of 95 earthquakes from Cooper Basin 227 

were assigned stress parameters. The log-average was 19 bars with a standard deviation of 0.5 (ln 228 

units; a factor of 1.65). Repeating the analysis with sub-selections of the events from Cooper Basin we 229 

obtain standard deviations on both the mean and standard-deviation of the target value (Table 2). We 230 

see that even with only 25% of the events, the mean stress-parameter <ln[Δσ]> (and the variability of 231 

individual event stress-parameters σln[Δσ]) is robust, with a variability (represented by the standard 232 

deviation) of a factor of 1.12. Reducing the dataset to 10% (around 9-10 events) we begin to observe 233 

larger (albeit not significant) deviations from the mean. 234 

Based on the spectral analysis we can choose to assign weights to the models based on expert 235 

judgement. We select models from Douglas et al (2013) with Q=600 and Q=1800 (covering the range 236 

observed in the literature for this region), and based on the limited range of measured surface 237 

attenuation values, κ=0.04s (Table 1). In order to cover the 19 bar average seen in the spectral 238 

analyses, we then make a further selection of models with 10 and 100 bar stress-parameter. This leaves 239 

four candidate models (Table 3). No preference in terms of weighting is given to GMPEs based on the 240 

two different Q models due to the uncertainty of this parameter (Table 3). The final weighting of the 241 

four selected models is then given by 0.365 for the two 10 bar and 0.135 for the two 100 bar models. 242 

These weights were chosen such that the log-average equivalent stress-parameter of the weighted 243 

model was 19 bars: i.e., 2×0.365×log(10bar)+2×0.135×log(100bar)≈log(19bar). The resulting 244 

weighted stochastic GMPE is shown in Figure 2 for PGA along with predictions from the purely 245 

empirical model of Douglas et al. (2013) and recorded data. The weighted stochastic model shows 246 

better fit to the recorded data from small events, while for the few events with M≈3, both models 247 

predict similar motions.  248 

Residual analyses 249 

In this section we analyse residuals computed from the 36 ground-motion models and data from 250 

Cooper Basin. 2089 pairs of horizontal time-histories were available for this analysis from the eight 251 

local stations and 427 earthquakes. From these time-histories the geometric-means of the pseudo-252 

spectral accelerations (PSAs) for 5% damping from each pair are computed for 0.01s (100Hz, assumed 253 

equal to PGA) and 0.05s (20Hz) natural periods. The limited bandwidth of the seismometers installed 254 
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at Cooper Basin does not allow accurate PSAs to be computed for frequencies lower than about 15Hz. 255 

Consequently the engineering use of these data is limited to examining the response to shaking of stiff 256 

structures (e.g., low-rise masonry buildings) and non-structural elements. The observed and predicted 257 

response spectra shown by Douglas et al. (2013) show that PSA(0.05s) is likely to be close to the peak 258 

PSA for the magnitude range covered by the Cooper Basin data. In this section, these two sets of PSAs 259 

are statistically compared to the 36 ground-motion models proposed by Douglas et al. (2013). These 260 

models consist of: the equations for the median PSAs derived using the stochastic method and the 261 

aleatory-variability models for the single-station within-event standard deviation (υSS) (e.g., Al Atik et 262 

al., 2010) and the zone-specific between-event standard deviation (τZS) equal to the average of the 263 

models for this variability for the Soultz and Basel EGSs. The impact of changing the model for the 264 

aleatory variability is investigated below.  265 

Scherbaum et al. (2009) and Kale and Akkar (2013) propose methods to judge the applicability of 266 

GMPEs to a given set of ground-motion data. These methods consist of the calculation of variables: 267 

log-likelihood (LLH, Scherbaum et al., 2009) and Euclidian Distance Ranking (EDR, Kale and Akkar, 268 

2013), which are both based on the differences between the natural logarithms of the observed and 269 

predicted PSAs, although the influence of the aleatory variability is different in the two cases. Because 270 

we are assuming the same aleatory variability for all tested models we could simply use the 271 

differences in mean residuals to rank the models but the use of the LLH values allows us to weight the 272 

different models in a mathematically rigorous way (see below). The lower the value of LLH and EDR, 273 

the closer the match between the observations and predictions. The large number of records available 274 

from Cooper Basin enables us to investigate the impact of the number of records available on the 275 

results of the GMPE testing. Generally geothermal projects will have fewer records available with 276 

which to judge the applicability of the available GMPEs (especially before stimulation or early on in 277 

the stimulation phase) and hence it is useful to study whether the GMPE testing is sensitive to the 278 

number of records used.  279 

Based on comparisons between the LLHs and EDRs (and the implied ranking of models) computed 280 

for PSA(0.01s) and PSA(0.05s) it was found that LLH and EDR are strongly linearly correlated for 281 

both periods, as are these values for the two structural periods. Therefore, for brevity, in the rest of this 282 

section only LLHs (and GMPE ranking and logic-tree weights derived from these values) for 283 

PSA(0.01s) are presented. LLH is preferred to EDR as a measure of the applicability of GMPEs 284 

because of the direct link between a set of LLHs and logic-tree weights in the case of well-distributed 285 

data and similar model extrapolation behaviour (as is the case for physically-based stochastic models). 286 

About a third of the seismograms from Cooper Basin required high-cut filters that removed ground 287 

motions with periods below 0.05s (frequencies above 20Hz), which could be affecting PSA(0.01s). 288 

However, repeating the analyses described below with and without these seismograms showed that the 289 

influence of these band-limited records on the results is minimal. Therefore, all 2089 geometric-mean 290 
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observations of PSA(0.01s) were used, from which normalized residuals were computed. For the total 291 

variability, we use a value of 0.96 (ln units), the value computed from the estimates of υ and τ given 292 

by Douglas et al. (2013). 293 

To test the stability of the LLH values with respect to the number of records being used a bootstrap 294 

procedure was followed whereby 100 random sets of 1044 (half the total), 522 (quarter of the total) 295 

and 261 (eighth of the total) samples are selected from the 2089 available and the analysis repeated. 296 

From these results the mean and standard deviation (from the 100 results) of the LLH of each ground-297 

motion model were computed (Table 4). As expected, the standard deviation increases as the number 298 

of available records decreases. Surprisingly, however, the standard deviations remain low and 299 

consequently the LLHs are stable, even when only an eighth of the records are used. This suggests that 300 

even a few hundred seismograms would enable robust logic-tree weights to be computed for hazard 301 

assessments of EGS projects if it were assumed that the highest-weighted models apply for 302 

magnitudes and distances outside the range covered by observations.   303 

It is interesting to note that the best-performing models are for values of Δσ, Q and κ0 similar to those 304 

previously reported for the Cooper Basin area or calculated above. This suggests that logic-tree 305 

weights can be preliminarily assessed based on values of these key parameters taken from the 306 

literature (if they are mutually consistent) or from seismological analyses of data, without statistically 307 

comparing the observations and predictions.  308 

The definition of LLH allows a direct computation of logic-tree weights (Scherbaum et al., 2009). 309 

Such an approach is not necessarily appropriate in terms of a probabilistic seismic hazard assessment, 310 

however, because the weights do not represent the probability of a given model being correct 311 

(Delavaud et al., (2012). Instead, LLH-based weights represent a given model‟s ability to fit the 312 

observed data, favouring „better models‟. Typically, the goal of a complete logic-tree based hazard 313 

analysis is to capture not only the centre and body, but also the range of possibilities. In this sense the 314 

LLH weights, by design, will not cover the entire range (i.e., extreme scenarios not yet recorded). To 315 

bypass this limitation, Delavaud et al. (2012), suggest weighting based on expert judgement, with help 316 

from LLH information. However, a fully transparent approach for logic-tree weighting still does not 317 

exist. Considering this limitation, we adopt the LLH-based logic-treeweights for this analysis. 318 

Nevertheless, for the purpose of hazard assessment in geothermal zones, we would recommend further 319 

expert elicitation to ensure that the complete range of possible models are appropriately considered in 320 

the logic tree.  321 

Applying the equation of Scherbaum et al. (2009) to the values of LLH listed in Table 4 for the 322 

complete dataset gives the weights summarized in Figure 3, from which it can be seen that roughly 323 

half of the models contribute about 75% of the total weight. Modifying the standard deviation 324 

associated with each model from 0.96 [the sigma proposed by Douglas et al. (2013), for use with the 325 
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stochastic models] to 0.64 (the sigma obtained by regression analyses on the Cooper Basin data, see 326 

below) does not alter the model ranking but it slightly increases the distinction between models. 327 

Therefore, the model weights are concentrated in the best ranked models (75% of the weight is 328 

contributed by roughly a third of the models). In terms of computational efficiency the use of 36 329 

models in a logic tree may be problematic. In this case it may be useful to trim the number of models 330 

from the total 36 before weighting. As discussed previously, LLH weighting tends to favour models 331 

which better predict the data. By using the LLH weighting of the full set of models it should, 332 

therefore, be possible to find and remove models that do not add any information about possible 333 

epistemic uncertainty. For instance, if the highest and second-highest weighted models predict very 334 

similar ground-motions, then the second model can be removed without affecting the hazard results. 335 

Such analysis is, however, beyond the scope of this article. 336 

Aleatory Variability 337 

To assess the aleatory variability of the Cooper Basin ground-motion data, random-effects regression 338 

was performed using the functional form of Model 1 of Douglas et al. (2013): 339 

                       √    
              4 340 

where PSA(0.01s) is in m/s
2
,    is moment magnitude and a, b, c, d and h are regression coefficients. 341 

The limited distance range of the Cooper Basin data does not allow robust estimates of h (describing 342 

near-source saturation) and d (describing anelastic attenuation) to be found and, therefore, these 343 

coefficients are constrained to zero. The coefficients obtained from using the entire 2089 records are: 344 

a=-6.899, b=2.569 and c=-2.589 with a between-event standard deviation (τ) of 0.099 and a within-345 

even standard deviation (υ) of 0.627, leading to an overall standard deviation (σ) of 0.635. Comparing 346 

these coefficients to those obtained by Douglas et al. (2013) from regression on data from six areas 347 

indicates slightly higher magnitude dependence (coefficient b) and faster attenuation (coefficient c) for 348 

Cooper Basin data. The most noticeable difference, however, is the much smaller values of υ and, in 349 

particular, τ, from regression on the Cooper Basin data compared to those obtained by Douglas et al. 350 

(2013). The much lower value of τ can be partly explained by the use of data from a single zone (this 351 

type of τ is called τZS by Douglas et al., 2013) but it appears that ground motions at Cooper Basin are 352 

much less variable than those at other EGS sites; Douglas et al. (2013) found for Basel τZS=0.637 and 353 

for Soultz τZS=0.902.  354 

The value of τ for Cooper Basin is even lower than those associated with GMPEs derived from 355 

moderate and large earthquakes [see Figure 10c of Douglas et al. (2013), where τ for none of the 356 

considered GMPEs is lower than 0.2]. This very small τ can be related to the small variability in the 357 

stress drops of Cooper Basin: found to be 0.5 ln-units, corresponding to a factor of 1.65. This is 358 



12 
 

significantly lower than most other studies: for instance, Allmann and Shearer (2009) find a value of 359 

1.46 ln-units for global intra-plate events; Edwards and Fäh (2013) find 1.83 ln-units and 1.43 ln-units 360 

for the Swiss foreland and Alpine regions respectively; Oth et al. (2010) find 1.38 ln-units for 361 

Japanese earthquakes and Rietbrock et al. (2013) find 1.38 ln-units for UK events. Cotton et al. (2013) 362 

showed that spectral analysis methods applied to small earthquakes often led to significantly larger 363 

stress variability than seen in larger events. They presented the required variability in stress parameter 364 

corresponding to the aleatory variability of several GMPEs and concluded that the variability should 365 

lie between 0.26 and 0.59 ln-units for large events. The difference may relate to the strong regional 366 

variability in source, path and site effects for small earthquakes, either real or due to parameter trade-367 

off. Treated independently, the data from Cooper Basin (a limited source zone) and the consistency of 368 

wave propagation may mean that the observed variability usually inherent with such small events is 369 

not apparent. One issue to consider, in this case, is whether the observed variability truly reflects the 370 

possible future variability: e.g., do we account for a near-surface event outside of the seismic cloud as 371 

was the case for the largest event related to the Berlín (El Salvador) geothermal project (Bommer et 372 

al., 2006), or of significantly different stress-drop? 373 

Single-station υ was calculated for the eight Cooper Basin stations as υSS=0.493, which is again 374 

smaller than that obtained by Douglas et al. (2013), υSS=0.576. The relatively low value is consistent 375 

with the limited range of station kappa values (with three distinct groups corresponding to the middle, 376 

inner and outer stations). The total sigma (combining the between- and within-event variability) is, 377 

therefore, much lower than that for the empirical models of Douglas et al. (2013) and it is more in line 378 

with those associated with GMPEs for moderate and large earthquakes. This demonstrates that at least 379 

some of the large variability in the empirical models of Douglas et al. (2013) is due to mixing data 380 

from various sites when deriving these models. 381 

Reduction of epistemic uncertainty 382 

As highlighted by Douglas et al. (2013) the disadvantages of applying their empirical GMPE are 383 

twofold. Firstly, the limited magnitude-distance range means that application to rarer, but potentially 384 

damaging events, is tenuous and, secondly, the aleatory variability assigned to their equation was 385 

strongly contaminated by epistemic uncertainty from combining several regional datasets (e.g., due to 386 

differences in seismicity and attenuation). Effectively the empirical model can be thought of as a 387 

mixture model: comprising several different sets of source and propagation behaviour, but without 388 

consideration of the increased sigma relative to a predictive relation. Nevertheless, it is not trivial to 389 

isolate such effects given limited recordings. Douglas et al. (2013) suggest that to reduce the 390 

uncertainty, stochastic simulation models can be used. Of course, such models are not without 391 

uncertainty outside their „calibrated‟ model-space: the magnitude and distance range over which the 392 

simulation model can be tested against recorded seismograms. However, unlike empirical models, due 393 
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to their physical basis, alternative models can be easily developed to cover the epistemic uncertainty 394 

outside the magnitude range available in instrumental databases. For this purpose, Douglas et al. 395 

(2013) provided 36 GMPEs to cover a range of simulation parameters: with various κ, Q and Δσ. A 396 

further benefit of testing and weighting simulation models, as performed here for Cooper Basin, is that 397 

it can help to limit the influence of epistemic uncertainty contamination related to mixing different 398 

sites.  399 

The analysis undertaken here showed that the stochastic models can be selected based on spectral 400 

analysis, or on LLH testing. Four stochastic models performed well in LLH testing, whist also having 401 

stochastic model parameters consistent with the results of spectral analysis: Models 31, 23, 19 and 35. 402 

These models, along with the empirical model of Douglas et al. (2013) and the best fitting empirical 403 

model just using the Cooper Basin data are shown in Figure 4a. We see that the preferred stochastic 404 

models are similar to the empirical model based on Cooper Basin data (Equation 4), while the best-405 

fitting model for the dataset shows a slightly faster decay. By producing weights following Scherbaum 406 

et al. (2009) the resulting weighted median stochastic model (from all 36 weighted component 407 

models) is shown in Figure 4b. The weighted median model leads to lower PGA at M<3 (up to a 408 

factor of 1.5) than the empirical model of Douglas et al. (2013), while the aleatory variability is 409 

reduced by over 25%. 410 

Conclusions 411 

In this study we have taken an existing EGS site as a case study of the proposals by Majer et al. (2012) 412 

and Douglas et al. (2013) to characterize the expected ground motions. To simulate the realistic 413 

temporal development of a seismic database and corresponding earthquake catalogue, we randomly 414 

resampled the full databases to one half, one quarter and one eighth of the full dataset. Following the 415 

approach of Douglas et al. (2013), we then developed weighted median models to describe the sub-416 

datasets. It was found that both spectral analysis for the stochastic model parameters and residual 417 

analysis provided complementary results, with the highest weighted models from Douglas et al. (2013) 418 

consistent with both existing literature and values determined here. Using the LLH method we were 419 

able to automatically assign weights using a consistent and transparent approach. The resulting models 420 

were shown to significantly reduce the epistemic uncertainty related to ground-motion prediction for 421 

EGS projects. 422 
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Tables 495 

 496 

Table 1 : kappa (and the standard deviation ±σ; and standard error ±σe) determined for the sites of Cooper Basin, along with the impact of reduced datasets. 497 

 

 100% 50% 25% 10% 

Station 
Depth 

[m] κ [s] ±σ [s] # ±σe [s] 
Δ{κ0} 
[%] 

Δ{±σ} 
[%] 

Δ{#}  
[%] 

Δ{κ0} 
[%] 

Δ{±σ} 
[%] 

Δ{#}  
[%] 

Δ{κ0} 
[%] 

Δ{±σ} 
[%] 

Δ{#} 
[%] 

MCL 1783 0.0277 0.0133 113 0.0013 0.31 -2.23 -49 1.16 0.22 -76 -1.09 -13.89 -91 

WA01 97.5 0.0335 0.0159 48 0.0023 -0.27 -1.47 -51 2.51 -3.36 -76 -4.20 -22.33 -90 

WA02 96 0.0371 0.0136 49 0.0019 0.81 -3.17 -51 0.28 -10.13 -77 0.30 -30.00 -91 

WA03 110 0.0307 0.0158 81 0.0018 0.28 -0.58 -49 1.28 -2.46 -75 1.04 -9.48 -90 

WA04 97.5 0.0380 0.0149 109 0.0014 -0.05 -0.10 -50 0.26 -1.10 -76 3.34 -7.47 -90 

MW01 357 0.0470 0.0128 161 0.0010 0.16 -1.80 -50 0.47 -2.81 -76 0.14 -7.29 -90 

MW02 109 0.0405 0.0217 223 0.0015 0.05 -0.80 -50 -0.65 -1.09 -76 -1.55 -3.41 -90 

MW03 239 0.0469 0.0134 194 0.0010 0.03 -1.09 -49 0.60 -0.90 -76 0.45 -4.16 -90 
 498 
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Table 2 : Statistical analysis of stress parameter. All values in natural log-scale. <ln[Δσ]> is the ln-average stress-parameter 499 
and σln[Δσ] is the standard deviation of the individual event stress-parameters;  σ<ln[Δσ]> is the standard deviation of the mean 500 
and  σσln[Δσ] is the standard deviation of the standard deviation over 1000 randomizations. 501 

Percent of Data <ln[Δσ]> [bars] <Δσ> [bars] σ<ln[Δσ]> σln[Δσ] σσln[Δσ] 

100 2.93 18.67 0.000 0.502 0.000 

75 2.91 18.40 0.024 0.497 0.015 

50 2.92 18.56 0.041 0.528 0.055 

25 2.93 18.78 0.111 0.502 0.110 

10 2.78 16.20 0.163 0.390 0.076 
 502 

 503 

Table 3: Weighting scheme for the selected models based on Q and Δσ. 504 
Model Model Description Q Weight Δσ Weight Total Weight 

19 Δσ=10bar; Q=600; κ =0.04s 0.25 0.365 0.365 
23 Δσ=10bar; Q=1800; κ =0.04s 0.25 0.365 0.365 
31 Δσ=100bar; Q=600; κ =0.04s 0.25 0.135 0.135 
35 Δσ=100bar; Q=1800; κ =0.04s 0.25 0.135 0.135 

  505 
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Table 4: Mean LLHs and their standard deviations (computed using a bootstrapping procedure) for the 36 ground-motion 506 
models and various proportions of the Cooper Basin dataset. Models indicated in bold are the twelve best performing 507 
models whilst those in italics are the twelve worst performing. 508 
Δσ Q κ0 All data Half Quarter Eighth No. 

1 200 0.005  2.1007 2.0969±0.0228 2.0978±0.0407 2.0992±0.0622    1 
1 200 0.02     1.7971 1.7965±0.0129 1.7982±0.0233 1.7988±0.0335 2 

1 200 0.04     2.6115 2.6129±0.0255 2.6157±0.0464 2.6159±0.0705 3 

1 200 0.06     3.7752 3.7780±0.0384 3.7816±0.0694 3.7818±0.1068 4 

1 600 0.005     3.7820 3.7755±0.0438 3.7750±0.0787 3.7788±0.1238 5 

1 600 0.02     1.7664 1.7648±0.0147 1.7663±0.0257 1.7672±0.0381 6 

1 600 0.04     2.2444 2.2453±0.0205 2.2482±0.0372 2.2479±0.0574 7 

1 600 0.06     3.2774 3.2798±0.0337 3.2836±0.0609 3.2831±0.0955 8 

1 1800 0.005     5.2068 5.1987±0.0584 5.1963±0.1035  5.2031±0.1685 9 

1 1800 0.02     1.8220 1.8200±0.0172 1.8213±0.0299 1.8224±0.0453 10 

1 1800 0.04     2.1426 2.1432±0.0190 2.1461±0.0344 2.1457±0.0533 11 

1 1800 0.06     3.1200 3.1222±0.0321 3.1261±0.0580 3.1253±0.0916 12 

10 200 0.005     4.5300 4.5227±0.0477 4.5232±0.0891 4.5248±0.1319 13 

10 200 0.02     2.0125 2.0091±0.0223 2.0091±0.0417 2.0113±0.0631 14 

10 200 0.04     1.7867 1.7857±0.0125 1.7865±0.0226 1.7889±0.0289 15 

10 200 0.06     2.4931 2.4938±0.0242 2.4953±0.0427 2.4981±0.0603 16 

10 600 0.005     8.9585 8.9475±0.0758 8.9457±0.1397 8.9512±0.2162 17 

10 600 0.02     2.7308 2.7261±0.0348 2.7252±0.0636 2.7281±0.0997 18 

10 600 0.04     1.7389 1.7372±0.0136 1.7378±0.0254 1.7398±0.0357 19 

10 600 0.06     2.1503 2.1504±0.0189 2.1520±0.0331 2.1541±0.0462 20 

10 1800 0.005 11.9403 11.9273±0.0952 11.9222±0.1716        11.9328±0.2782 21 

10 1800 0.02     3.1481 3.1427±0.0406 3.1414±0.0734 3.1450±0.1168 22 

10 1800 0.04     1.7710 1.7690±0.0156 1.7695±0.0290 1.7715±0.0424 23 

10 1800 0.06     2.0488 2.0487±0.0171 2.0503±0.0300 2.0522±0.0416 24 

100 200 0.005     8.3257 8.3160±0.0695 8.3176±0.1313 8.3168±0.1878 25 

100 200 0.02     3.0079 3.0031±0.0367 3.0021±0.0695 3.0041±0.1045 26 

100 200 0.04     1.7318 1.7298±0.0143 1.7292±0.0283 1.7324±0.0398 27 

100 200 0.06     2.0443 2.0440±0.0175 2.0442±0.0306 2.0482±0.0384 28 

100 600 0.005 16.2242 16.2098±0.1033  16.2079±0.1929        16.2123±0.2911 29 

100 600 0.02     4.5644 4.5579±0.0529 4.5557±0.0985 4.5585±0.1523 30 

100 600 0.04     1.9695 1.9666±0.0222 1.9656±0.0430 1.9685±0.0650 31 

100 600 0.06     1.8382 1.8374±0.0136 1.8374±0.0246 1.8408±0.0298 32 

100 1800 0.005 21.2923 21.2752±0.1278 21.2684±0.2330        21.2802±0.3724 33 

100 1800 0.02     5.4541 5.4468±0.0607 5.4438±0.1120 5.4475±0.1760 34 

100 1800 0.04     2.1350 2.1317±0.0260 2.1305±0.0499 2.1333±0.0766 35 

100 1800 0.06     1.7930 1.7920±0.0130 1.7919±0.0242 1.7952±0.0299 36 

 509 
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List of Figure Captions 510 

Figure 1: Map of microseismic monitoring network (McLeod #1: MCL, MW01-3 and WA01-3). 511 

Catalogued events from 2005 are indicated by grey symbols, those used in the spectral analysis for 512 

determination of κ and Δσ are shown by black symbols. 513 

Figure 2: Comparison of median PGA predictions from the weighted stochastic GMPE (with weights 514 

based on spectral analysis) and the empirical model of Douglas et al. (2013). 515 

Figure 3: Ranking of models against cumulative weights for two different sigmas. See Table 4Table 2 516 

for the correspondence between model number and parameters of the stochastic model. Grey numbers 517 

indicate models consistent with the spectral analysis and literature (Q equal to 600 to 1800; Δσ equal 518 

to 10 to 100 bars; and κ0 = 0.04 s). 519 

Figure 4: (a) PGA data for Cooper basin for events with 2.5<M<3.1 and the selected predictions 520 

(stochastic and empirical) from Douglas et al. (2013) for M2.8 along with the best fit of the data to 521 

equation 3. (b) The empirical model of Douglas et al. (2013) along with the weighted median 522 

stochastic model (from LLH testing) including their variabilities. 523 

 524 

Figures 525 

 526 

 527 

Figure 1: Map of microseismic monitoring network (McLeod #1: MCL, MW01-3 and WA01-3). Catalogued events from 528 
2005 are indicated by grey symbols, those used in the spectral analysis for determination of κ and Δσ are shown by black 529 
symbols. 530 
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 532 

Figure 2: Comparison of median PGA predictions from the weighted stochastic GMPE (with weights based on spectral 533 
analysis) and the empirical model of Douglas et al. (2013). 534 
 535 

 536 

Figure 3: Ranking of models against cumulative weights for two different sigmas. See Table 4Table 2 for the correspondence 537 
between model number and parameters of the stochastic model. Grey numbers indicate models consistent with the 538 
spectral analysis and literature (Q equal to 600 to 1800; Δσ equal to 10 to 100 bars; and κ0 = 0.04 s). Note that although the 539 
ranks are discrete they are plotted as continuous (dashed) lines for clarity. 540 
 541 
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(a)                                                                                   (b) 543 

 544 

Figure 4: (a) PGA data for Cooper basin for events with 2.5<M<3.1 and the selected predictions (stochastic and empirical) 545 
from Douglas et al. (2013) for M2.8 along with the best fit of the data to equation 3. (b) The empirical model of Douglas et 546 
al. (2013) along with the weighted median stochastic model (from LLH testing) including their variabilities. 547 
 548 


