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We present a case study of the ranking and weighting of ground-motion prediction equations (GMPE) for seismic hazard assessment of Enhanced Geothermal Systems (EGSs). The study region is Cooper Basin (Australia), where a hot-fractured-rock project was established in 2002. We test the applicability of 36 GMPEs based on stochastic simulations previously proposed for use at EGSs. Each GMPE has a set of corresponding model parameters describing stress drop, regional and local (near-surface) attenuation. To select suitable GMPEs for Cooper Basin from the full set we applied two methods. In the first, seismograms recorded on the local monitoring network were spectrally analysed to determine characteristic stress and attenuation parameters. In a second approach, residual analysis using the loglikelihood (LLH) method was used to directly compare recorded and predicted short-period response spectral accelerations. The resulting ranking was consistent with the models selected based on spectral analysis, with the advantage that a transparent weighting approach was available using the LLH method. Region-specific estimates of variability were computed, with significantly lower values observed compared to previous studies of small earthquakes. This was consistent with the limited range of stress-drops and attenuation observed from the spectral analysis.

Introduction

Ground shaking from seismicity associated with stimulation and exploitation of a geothermal reservoir for heat and power production can be a significant nuisance to the local population and can, in some cases, lead to building damage. The Deep Heat Mining project (Basel, Switzerland) in 2006 triggered an M L 3.4 (M w 3.2) mainshock and thousands of smaller shocks and led to insurance claims of more than $9 million [START_REF] Giardini | Geothermal quake risks must be faced[END_REF]. Two earthquakes (M L 2.4 and 2.7) occurred in the vicinity of the Landau (Germany) geothermal power plant in 2009, which caused macroseismic intensities up to V+, while at another German geothermal project (Insheim) two felt tremors (M L 2.2 and 2.4) occurred during reservoir stimulation in 2010 [START_REF] Groos | Microseismicity at two geothermal power plants in Landau and Insheim in the Upper Rhine Graben, Germany[END_REF]. Most recently, in July 2013, a geothermal project in St. Gallen, Switzerland triggered a widely felt M L 3.5 (M w 3.4) event, which was followed by numerous smaller aftershocks. In [START_REF] Majer | Protocol for addressing induced seismicity associated with Enhanced Geothermal Systems[END_REF] seven steps are proposed to help assess and mitigate the seismic risk posed by geothermal systems. Step 5 of the proposal is to "quantify the hazard from natural and induced seismic events" through either probabilistic or deterministic approaches. They suggest a two-stage approach to quantify the hazard: a baseline estimate initially established through regional seismicity, with further refinement to a site-specific hazard assessment through the analysis of induced seismicity recorded on the local monitoring network. This article addresses the second stage.

with geothermal projects is a ground-motion model that estimates measures of shaking [e.g. peak ground acceleration, (PGA)] given an earthquake scenario (e.g. in terms of magnitude and source-tosite distance). Motivated by a lack of suitable models in the public literature, [START_REF] Douglas | Predicting ground motion from induced earthquakes in geothermal areas[END_REF] derived a set of stochastic and empirical ground-motion models for application in geothermal areas.

These models were based on analyses of thousands of near-source seismograms of small earthquakes, most of which were induced by geothermal activity or gas extraction, while some were natural shallow events.

Because of the considerable epistemic uncertainty in the estimation of ground motions in geothermal areas, [START_REF] Douglas | Predicting ground motion from induced earthquakes in geothermal areas[END_REF] presented ground-motion prediction equations (GMPEs) for 36 stochastic simulation models [START_REF] Boore | Simulation of ground motion using the stochastic method[END_REF] that sought to capture this uncertainty. The ranges of the key parameters of these stochastic models (stress parameter, Δσ; path attenuation, Q; near-surface attenuation, κ) were defined based on the analysis of seismograms collected from numerous regions.

The analysis highlighted considerable variation in these parameters among regions and sites. When conducting a seismic hazard assessment for a given geothermal project it is not known a priori which of the 36 models are most applicable. Consequently [START_REF] Douglas | Predicting ground motion from induced earthquakes in geothermal areas[END_REF] recommended, in the absence of other information by which to constrain the stochastic parameters for a given site, that a logic tree is used for seismic hazard analysis with all 36 models as branches. Subsequently, as seismograms are recorded at the geothermal project site, the applicability of some models should become evident and hence their associated branches could be assigned higher weights, while others may be down-weighted or even dropped completely. There are two complementary ways in which the branch weights can be updated: direct assessment of the stochastic parameters, and comparison of ground-motion predictions and observations. As a demonstration of the use of the stochastic simulation GMPEs and the proposed procedure for the assessment of the logic-tree weights, [START_REF] Douglas | Predicting ground motion from induced earthquakes in geothermal areas[END_REF] present a simple analysis for Campi Flegrei (Italy), for which some seismograms from small, shallow (but natural) earthquakes were available.

However, the small number of seismograms available (only 55), their limited bandwidths and low quality of the metadata meant that the logic-tree weights could not be significantly updated. The aim of this article is to use a much larger and higher-quality dataset from an Enhanced Geothermal System (EGS), to better demonstrate the proposed selection procedure and to investigate how many records are required to significantly reduce the epistemic uncertainty in ground-motion prediction for EGSs.

The dataset comes from Cooper Basin (Australia), which was not considered by [START_REF] Douglas | Predicting ground motion from induced earthquakes in geothermal areas[END_REF] when developing their ground-motion models.

The next section summarizes the 36 stochastic models developed by [START_REF] Douglas | Predicting ground motion from induced earthquakes in geothermal areas[END_REF]. Douglas et al. (2013) did not recommend their empirical models for application because they were derived using data from a narrow magnitude-distance range (roughly M w 1 to 3 and R hyp <10km) and a simple functional form was adopted. Because the stochastic models were based on simulated ground motions from a wider range of magnitudes and distances and a more complex functional form was fit to these simulations, they are considered more robust than the empirical equations for M w 1 to 5 and R hyp 1 to 50km. As with empirical models, however, extrapolation of stochastic models outside their range of applicability is not recommended. Following the introduction of the models, the dataset from Cooper Basin EGS is presented. The subsequent section derives estimates of the stochastic parameters from these data and investigates the impact of the number of seismograms used to estimate the parameters.

Based on this analysis a set of weights for the 36 models is proposed. A second set of weights is proposed in the following section based on comparisons between the observed response spectral accelerations and those predicted by the 36 GMPEs.

Ground-motion models for induced seismicity

Ground motions from small earthquakes, particularly those recorded in the near-source region, often exhibit large variability for a given magnitude and distance, the principal independent parameters for GMPEs. There are two explanations for this common observation: the first is related to the fact that meta-data for small earthquakes are often poorer quality (e.g., routine automatic locations as opposed to manually-reviewed locations). The second reason (exacerbated by the first) is that ground motions from small events are more sensitive to changes in hypocentral depth, while site-attenuation (κ) tends to filter out, to varying degrees, the dominant high-frequencies associated with smaller earthquakes [START_REF] Douglas | Modeling the difference in ground-motion magnitude-scaling in small and large earthquakes[END_REF]. Furthermore, it is often observed that the variability of the stress-drop (or conversely, slip velocity) is significantly higher for small events than for larger events (e.g., [START_REF] Cotton | What is sigma of the stress drop?[END_REF]. Whether an artefact of inversion procedures (e.g., not properly accounting for attenuation), or reality, this nevertheless reflects the greatly differing proportion of high-frequency energy observed in small earthquakes of similar size.

Analysing data from six independent regions (Basel, Soultz, Geysers, Hengill, Roswinkel and Vorendaal), [START_REF] Douglas | Predicting ground motion from induced earthquakes in geothermal areas[END_REF] found that a significant reduction in the overall prediction uncertainty was obtained by accounting for region-specific biases. As discussed, this can be interpreted as either systematic bias in the meta-data, or alternatively, region-specific "characteristic seismicity" and recording conditions. Since magnitudes were recomputed homogeneously and hypocentral depths are generally well-constrained for sources directly below the recording network (typical in geothermal installations), [START_REF] Douglas | Predicting ground motion from induced earthquakes in geothermal areas[END_REF] suggested that differences in source, path and site conditions were the likely cause of region-specific differences. They proposed a suite of 36 stochastic models with different source, path and site properties to cover the range observed in their datasets.

In terms of seismic hazard assessment, these 36 models can be considered to cover the epistemic uncertainty: in the case of a completely unknown site, we cannot distinguish between any of the models, and must weight them equally. In reality, of course, some information about the site of interest will always be available: for instance, if the EGS is not located on outcropping hard-rock, then we can already rule out the models with the lowest levels of site attenuation (κ). Each of the 36 models has its own associated aleatory variability, which corresponds to a region-specific model. An initial "naïve" application of these GMPEs would be similar in terms of the resulting mean hazard to using the single empirical GMPE developed by [START_REF] Douglas | Predicting ground motion from induced earthquakes in geothermal areas[END_REF] using data from all regions (along with the associated high aleatory variability). In terms of the hazard distribution, the obvious difference is that the empirical model leads to only one curve, whilst the stochastic models generate 36 individual hazard curves, representing the epistemic uncertainty. However, in the case of improved knowledge of the site"s seismicity, or recording conditions, we can begin to reassess the weighting of the 36 models, reducing the epistemic uncertainty. The advantage in this case is clear, since region-specific GMPEs cannot typically be assessed due to limited recorded distance and magnitude ranges, the stochasticmodel approach allows us to refine the logic tree in the case of improved knowledge, which will be quickly available after the installation of a monitoring network, or even beforehand when local data already exist.

Ground-motion data used for model selection

The data used in this article comes from a sensitive seismic network set up to monitor the geothermal exploitation of the reservoir at Cooper Basin (South Australia). A hot-fractured-rock project was launched at Cooper Basin in 2002 to exploit the Habanero granite reservoir at depths between 4 and 4.5km. Various boreholes and stimulation experiments have been conducted since and triggered earthquakes have been located and characterized [START_REF] Baisch | Induced seismicity during the stimulation of a geothermal HFR reservoir in the Cooper Basin, Australia[END_REF]. The data used here come from 2005 (data from 2003 are available but there is uncertainty over the calibration factors of the seismometers). Data from eight stations (Stang, 2011) installed by Q-Con [McLeod #1 (MCL), WA1-4 and MW1-3] are used (Figure 1), all of which are located below the surface (all at depths of less than 357m, except for McLeod #1 at 1.8km). High-quality earthquake catalogues were provided by Q-Con for these data. The available records come from earthquakes with moment magnitudes between 1.7 and 3.1 (roughly following a standard Gutenberg-Richter distribution), hypocentral distances between 2.4 and 7.8km (roughly uniformly-distributed) and depths between 3.9km and 4.5km (roughly normally-distributed with a peak around 4.2km). All records have been converted from velocity to acceleration through time-domain differentiation and application of calibration factors. Following the approach detailed in [START_REF] Douglas | Predicting ground motion from induced earthquakes in geothermal areas[END_REF] and [START_REF] Edwards | Magnitude scaling of induced earthquakes[END_REF], all earthquakes used here have had their moment magnitudes consistently recalculated.

Estimation of stochastic parameters

As noted, the estimation of suitable stochastic model parameters allows the reduction of epistemic uncertainty related to ground-motion prediction in the study region for the magnitude and distance range of the data. For earthquakes outside the range of observations (particularly larger magnitudes), however, there still remains considerable epistemic uncertainty because it is not certain that the most appropriate stochastic parameters (or the best-fitting models) for the available data necessarily apply for such scenarios. In a first step we look for existing parameters published in the literature. At Cooper Basin, [START_REF] Baisch | Investigation of fault mechanisms during geothermal reservoir stimulation experiments in the Cooper Basin, Australia[END_REF] found an average whole-path Q p =112±21 and Δσ=4.7bars (0.47MPa) from the analysis of over 6000 events. Assuming Q p ≈Q s and taking the measured V P =3.7kms -1 and V P :V S =1.9 from [START_REF] Baisch | Investigation of fault mechanisms during geothermal reservoir stimulation experiments in the Cooper Basin, Australia[END_REF] we obtain path attenuation (t*) of approximately 0.02s between the event cloud and the surface. Due to the almost vertical propagation through the basin, this t* can be completely assigned to the site-specific term, κ 0 . Regional values of Q have been computed for Australian earthquakes by [START_REF] Allen | Empirical attenuation of ground-motion spectral amplitudes in southwestern Western Australia[END_REF][START_REF] Allen | Attenuation of ground-motion spectral amplitudes in southeastern Australia[END_REF]. For southeastern Australia [START_REF] Allen | Attenuation of ground-motion spectral amplitudes in southeastern Australia[END_REF] found:

1 for frequencies (f) 0.78 to 19.9 Hz, leading to consistently high Q (1063 to 6671), whilst for southwestern Australia [START_REF] Allen | Empirical attenuation of ground-motion spectral amplitudes in southwestern Western Australia[END_REF] found: -1.3 in the first 90km (where r hyp is hypocentral distance) based on the decay of long-period displacement spectra. The central-east location (Figure 1) of Cooper Basin may be slightly better described by 'southeastern Australia'. However, in light of the known trade-off between Q and geometrical decay, we may prefer to use the latter Q estimate for southwestern Australia, which corresponds to the r hyp -1 geometrical spreading model adopted by [START_REF] Douglas | Predicting ground motion from induced earthquakes in geothermal areas[END_REF]. This frequency dependent Q model (Equation 2) corresponds to 457 at 1Hz and 1503 at 25Hz, which could foreseeably be accommodated through frequency-dependent weighting of the Douglas et al. ( 2013) models developed with frequency independent Q. Stress drop terms derived by [START_REF] Allen | Empirical attenuation of ground-motion spectral amplitudes in southwestern Western Australia[END_REF] lie between 1 and 100 bars (0.1 and 10MPa) but show a trend that increases with magnitude, albeit weakly.

To provide further estimates of the parameters, without the numerous assumptions that may be required by using values from the literature, we here also present the average Q, Δσ and κ 0 values as determined from subsets of the data used for this study. We test the impact of using 10, 25 and 50% of all data in order to simulate the effect of a developing database for a new network installation.

Kappa estimation

We estimated site κ 0 consistent with the models of [START_REF] Douglas | Predicting ground motion from induced earthquakes in geothermal areas[END_REF] through least-squares minimization of spectra computed over the duration of shaking. The window duration was based on 5-95% of the velocity-squared integral, with spectral models fit between 10 and 100Hz in the lin-log domain. The models were based on the [START_REF] Brune | Tectonic stress and the spectra of seismic shear waves from earthquakes[END_REF] source with single event-common cornerfrequency and attenuation modelled using an exponential function [START_REF] Anderson | A model for the shape of the Fourier amplitude spectrum of acceleration at high frequencies[END_REF]; refer to [START_REF] Douglas | Predicting ground motion from induced earthquakes in geothermal areas[END_REF] and [START_REF] Edwards | Attenuation of seismic shear wave energy in Switzerland[END_REF] for an exhaustive description of the fitting procedure. At least two instruments were required to have recorded each event to include it in the processing. To estimate the impact of limited data on the choice of model weights, we simulated different stages of data collection through random sampling of the events for which we had good recordings at two or more instruments.

Since the hypocentral distance was very limited, choice of Q has a minimal impact on kappa: we chose Q=1200 to be broadly consistent with the results of [START_REF] Allen | Empirical attenuation of ground-motion spectral amplitudes in southwestern Western Australia[END_REF] ). The similarity of the kappa values for each ring of the network is remarkable, and may be due to similar geology for these stations or, since the earthquakes are all located near to the well-head, due to the similarity of the propagation paths to each of the stations of a given ring.

We estimated the impact of reduced datasets by bootstrapping 100 times over random subsamples of the complete dataset; measuring the changes in absolute value and scatter. The impact of a reduced dataset (even down to 10% of the original events: corresponding to an average of 14 events) was minimal in terms of the average kappa, with changes of only a few per cent (Table 1). In the case of the standard deviation, the reduced datasets led to significant underestimation of the true uncertainty.

This should not be an issue in our application, however, since we are interested in the median values; aleatory variability is independently assigned based on the work of [START_REF] Douglas | Predicting ground motion from induced earthquakes in geothermal areas[END_REF].

Stress parameter estimation

Source corner frequencies of the spectra were re-estimated, fixing Q=1200 and κ 0 as in Table 1. An inversion was performed in the log-log domain, again minimizing the least-squares misfit of the spectral model. Given the moment magnitude determined by [START_REF] Edwards | Magnitude scaling of induced earthquakes[END_REF], we can then estimate the stress-parameter as:

( ) 3
where =3500m/s and is estimated following the original formulation of the moment magnitude by Hanks and Kanomori (1979).

After selecting events with available M w and f c estimates a total of 95 earthquakes from Cooper Basin were assigned stress parameters. The log-average was 19 bars with a standard deviation of 0.5 (ln units; a factor of 1.65). Repeating the analysis with sub-selections of the events from Cooper Basin we obtain standard deviations on both the mean and standard-deviation of the target value (Table 2). We see that even with only 25% of the events, the mean stress-parameter <ln[Δσ]> (and the variability of individual event stress-parameters σ ln [Δσ] ) is robust, with a variability (represented by the standard deviation) of a factor of 1.12. Reducing the dataset to 10% (around 9-10 events) we begin to observe larger (albeit not significant) deviations from the mean.

Based on the spectral analysis we can choose to assign weights to the models based on expert judgement. We select models from Douglas et al ( 2013) with Q=600 and Q=1800 (covering the range observed in the literature for this region), and based on the limited range of measured surface attenuation values, κ=0.04s (Table 1). In order to cover the 19 bar average seen in the spectral analyses, we then make a further selection of models with 10 and 100 bar stress-parameter. This leaves four candidate models (Table 3). No preference in terms of weighting is given to GMPEs based on the two different Q models due to the uncertainty of this parameter (Table 3). The final weighting of the four selected models is then given by 0.365 for the two 10 bar and 0.135 for the two 100 bar models.

These weights were chosen such that the log-average equivalent stress-parameter of the weighted model was 19 bars: i.e., 2×0.365×log(10bar)+2×0.135×log(100bar)≈log(19bar). The resulting weighted stochastic GMPE is shown in Figure 2 for PGA along with predictions from the purely empirical model of [START_REF] Douglas | Predicting ground motion from induced earthquakes in geothermal areas[END_REF] and recorded data. The weighted stochastic model shows better fit to the recorded data from small events, while for the few events with M≈3, both models predict similar motions.

Residual analyses

In this section we analyse residuals computed from the 36 ground-motion models and data from Cooper Basin. 2089 pairs of horizontal time-histories were available for this analysis from the eight local stations and 427 earthquakes. From these time-histories the geometric-means of the pseudospectral accelerations (PSAs) for 5% damping from each pair are computed for 0.01s (100Hz, assumed equal to PGA) and 0.05s (20Hz) natural periods. The limited bandwidth of the seismometers installed at Cooper Basin does not allow accurate PSAs to be computed for frequencies lower than about 15Hz.

Consequently the engineering use of these data is limited to examining the response to shaking of stiff structures (e.g., low-rise masonry buildings) and non-structural elements. The observed and predicted response spectra shown by [START_REF] Douglas | Predicting ground motion from induced earthquakes in geothermal areas[END_REF] show that PSA(0.05s) is likely to be close to the peak PSA for the magnitude range covered by the Cooper Basin data. In this section, these two sets of PSAs are statistically compared to the 36 ground-motion models proposed by [START_REF] Douglas | Predicting ground motion from induced earthquakes in geothermal areas[END_REF]. These models consist of: the equations for the median PSAs derived using the stochastic method and the aleatory-variability models for the single-station within-event standard deviation (υ SS ) (e. which to judge the applicability of the available GMPEs (especially before stimulation or early on in the stimulation phase) and hence it is useful to study whether the GMPE testing is sensitive to the number of records used.

Based on comparisons between the LLHs and EDRs (and the implied ranking of models) computed for PSA(0.01s) and PSA(0.05s) it was found that LLH and EDR are strongly linearly correlated for both periods, as are these values for the two structural periods. Therefore, for brevity, in the rest of this section only LLHs (and GMPE ranking and logic-tree weights derived from these values) for PSA(0.01s) are presented. LLH is preferred to EDR as a measure of the applicability of GMPEs because of the direct link between a set of LLHs and logic-tree weights in the case of well-distributed data and similar model extrapolation behaviour (as is the case for physically-based stochastic models).

About a third of the seismograms from Cooper Basin required high-cut filters that removed ground motions with periods below 0.05s (frequencies above 20Hz), which could be affecting PSA(0.01s).

However, repeating the analyses described below with and without these seismograms showed that the influence of these band-limited records on the results is minimal. Therefore, all 2089 geometric-mean observations of PSA(0.01s) were used, from which normalized residuals were computed. For the total variability, we use a value of 0.96 (ln units), the value computed from the estimates of υ and τ given by [START_REF] Douglas | Predicting ground motion from induced earthquakes in geothermal areas[END_REF].

To test the stability of the LLH values with respect to the number of records being used a bootstrap procedure was followed whereby 100 random sets of 1044 (half the total), 522 (quarter of the total)

and 261 (eighth of the total) samples are selected from the 2089 available and the analysis repeated.

From these results the mean and standard deviation (from the 100 results) of the LLH of each groundmotion model were computed (Table 4). As expected, the standard deviation increases as the number of available records decreases. Surprisingly, however, the standard deviations remain low and consequently the LLHs are stable, even when only an eighth of the records are used. This suggests that even a few hundred seismograms would enable robust logic-tree weights to be computed for hazard assessments of EGS projects if it were assumed that the highest-weighted models apply for magnitudes and distances outside the range covered by observations.

It is interesting to note that the best-performing models are for values of Δσ, Q and κ 0 similar to those previously reported for the Cooper Basin area or calculated above. This suggests that logic-tree weights can be preliminarily assessed based on values of these key parameters taken from the literature (if they are mutually consistent) or from seismological analyses of data, without statistically comparing the observations and predictions.

The definition of LLH allows a direct computation of logic-tree weights (Scherbaum et al., 2009).

Such an approach is not necessarily appropriate in terms of a probabilistic seismic hazard assessment, however, because the weights do not represent the probability of a given model being correct [START_REF] Delavaud | Toward a groundmotion logic tree for probabilistic seismic hazard assessment in Europe[END_REF]. Instead, LLH-based weights represent a given model"s ability to fit the observed data, favouring "better models". Typically, the goal of a complete logic-tree based hazard analysis is to capture not only the centre and body, but also the range of possibilities. In this sense the LLH weights, by design, will not cover the entire range (i.e., extreme scenarios not yet recorded). To bypass this limitation, [START_REF] Delavaud | Toward a groundmotion logic tree for probabilistic seismic hazard assessment in Europe[END_REF], suggest weighting based on expert judgement, with help from LLH information. However, a fully transparent approach for logic-tree weighting still does not exist. Considering this limitation, we adopt the LLH-based logic-treeweights for this analysis.

Nevertheless, for the purpose of hazard assessment in geothermal zones, we would recommend further expert elicitation to ensure that the complete range of possible models are appropriately considered in the logic tree.

Applying the equation of Scherbaum et al. (2009) to the values of LLH listed in Table 4 for the complete dataset gives the weights summarized in Figure 3, from which it can be seen that roughly half of the models contribute about 75% of the total weight. Modifying the standard deviation associated with each model from 0.96 [the sigma proposed by [START_REF] Douglas | Predicting ground motion from induced earthquakes in geothermal areas[END_REF], for use with the stochastic models] to 0.64 (the sigma obtained by regression analyses on the Cooper Basin data, see below) does not alter the model ranking but it slightly increases the distinction between models.

Therefore, the model weights are concentrated in the best ranked models (75% of the weight is contributed by roughly a third of the models). In terms of computational efficiency the use of 36 models in a logic tree may be problematic. In this case it may be useful to trim the number of models from the total 36 before weighting. As discussed previously, LLH weighting tends to favour models which better predict the data. By using the LLH weighting of the full set of models it should, therefore, be possible to find and remove models that do not add any information about possible epistemic uncertainty. For instance, if the highest and second-highest weighted models predict very similar ground-motions, then the second model can be removed without affecting the hazard results.

Such analysis is, however, beyond the scope of this article.

Aleatory Variability

To assess the aleatory variability of the Cooper Basin ground-motion data, random-effects regression was performed using the functional form of Model 1 of [START_REF] Douglas | Predicting ground motion from induced earthquakes in geothermal areas[END_REF]:

√ 4
where PSA(0.01s) is in m/s 2 , is moment magnitude and a, b, c, d and h are regression coefficients.

The limited distance range of the Cooper Basin data does not allow robust estimates of h (describing near-source saturation) and d (describing anelastic attenuation) to be found and, therefore, these coefficients are constrained to zero. The coefficients obtained from using the entire 2089 records are: a=-6.899, b=2.569 and c=-2.589 with a between-event standard deviation (τ) of 0.099 and a withineven standard deviation (υ) of 0.627, leading to an overall standard deviation (σ) of 0.635. Comparing these coefficients to those obtained by [START_REF] Douglas | Predicting ground motion from induced earthquakes in geothermal areas[END_REF] The value of τ for Cooper Basin is even lower than those associated with GMPEs derived from moderate and large earthquakes [see Figure 10c of [START_REF] Douglas | Predicting ground motion from induced earthquakes in geothermal areas[END_REF], where τ for none of the considered GMPEs is lower than 0.2]. This very small τ can be related to the small variability in the stress drops of Cooper Basin: found to be 0.5 ln-units, corresponding to a factor of 1.65. This is significantly lower than most other studies: for instance, Allmann and Shearer (2009) find a value of 1.46 ln-units for global intra-plate events; Edwards and Fäh (2013) find 1.83 ln-units and 1.43 ln-units for the Swiss foreland and Alpine regions respectively; [START_REF] Oth | Earthquake scaling characteristics and the scale-(in)dependence of seismic energy-to-moment ratio: insights from KiK-net data in Japan[END_REF] find 1.38 ln-units for Japanese earthquakes and Rietbrock et al. ( 2013) find 1.38 ln-units for UK events. [START_REF] Cotton | What is sigma of the stress drop?[END_REF] showed that spectral analysis methods applied to small earthquakes often led to significantly larger stress variability than seen in larger events. They presented the required variability in stress parameter corresponding to the aleatory variability of several GMPEs and concluded that the variability should lie between 0.26 and 0.59 ln-units for large events. The difference may relate to the strong regional variability in source, path and site effects for small earthquakes, either real or due to parameter tradeoff. Treated independently, the data from Cooper Basin (a limited source zone) and the consistency of wave propagation may mean that the observed variability usually inherent with such small events is not apparent. One issue to consider, in this case, is whether the observed variability truly reflects the possible future variability: e.g., do we account for a near-surface event outside of the seismic cloud as was the case for the largest event related to the Berlín (El Salvador) geothermal project [START_REF] Bommer | Control of hazard due to seismicity induced by a hot fractured rock geothermal project[END_REF], or of significantly different stress-drop?

Single-station υ was calculated for the eight Cooper Basin stations as υ SS =0.493, which is again smaller than that obtained by [START_REF] Douglas | Predicting ground motion from induced earthquakes in geothermal areas[END_REF], υ SS =0.576. The relatively low value is consistent with the limited range of station kappa values (with three distinct groups corresponding to the middle, inner and outer stations). The total sigma (combining the between-and within-event variability) is, therefore, much lower than that for the empirical models of [START_REF] Douglas | Predicting ground motion from induced earthquakes in geothermal areas[END_REF] and it is more in line with those associated with GMPEs for moderate and large earthquakes. This demonstrates that at least some of the large variability in the empirical models of [START_REF] Douglas | Predicting ground motion from induced earthquakes in geothermal areas[END_REF] is due to mixing data from various sites when deriving these models.

Reduction of epistemic uncertainty

As highlighted by [START_REF] Douglas | Predicting ground motion from induced earthquakes in geothermal areas[END_REF] the disadvantages of applying their empirical GMPE are twofold. Firstly, the limited magnitude-distance range means that application to rarer, but potentially damaging events, is tenuous and, secondly, the aleatory variability assigned to their equation was strongly contaminated by epistemic uncertainty from combining several regional datasets (e.g., due to differences in seismicity and attenuation). Effectively the empirical model can be thought of as a mixture model: comprising several different sets of source and propagation behaviour, but without consideration of the increased sigma relative to a predictive relation. Nevertheless, it is not trivial to isolate such effects given limited recordings. [START_REF] Douglas | Predicting ground motion from induced earthquakes in geothermal areas[END_REF] suggest that to reduce the uncertainty, stochastic simulation models can be used. Of course, such models are not without uncertainty outside their "calibrated" model-space: the magnitude and distance range over which the simulation model can be tested against recorded seismograms. However, unlike empirical models, due to their physical basis, alternative models can be easily developed to cover the epistemic uncertainty outside the magnitude range available in instrumental databases. For this purpose, [START_REF] Douglas | Predicting ground motion from induced earthquakes in geothermal areas[END_REF] provided 36 GMPEs to cover a range of simulation parameters: with various κ, Q and Δσ. A further benefit of testing and weighting simulation models, as performed here for Cooper Basin, is that it can help to limit the influence of epistemic uncertainty contamination related to mixing different sites.

The analysis undertaken here showed that the stochastic models can be selected based on spectral analysis, or on LLH testing. Four stochastic models performed well in LLH testing, whist also having 

Conclusions

In this study we have taken an existing EGS site as a case study of the proposals by [START_REF] Majer | Protocol for addressing induced seismicity associated with Enhanced Geothermal Systems[END_REF] and [START_REF] Douglas | Predicting ground motion from induced earthquakes in geothermal areas[END_REF] to characterize the expected ground motions. To simulate the realistic temporal development of a seismic database and corresponding earthquake catalogue, we randomly resampled the full databases to one half, one quarter and one eighth of the full dataset. Following the approach of [START_REF] Douglas | Predicting ground motion from induced earthquakes in geothermal areas[END_REF], we then developed weighted median models to describe the subdatasets. It was found that both spectral analysis for the stochastic model parameters and residual analysis provided complementary results, with the highest weighted models from [START_REF] Douglas | Predicting ground motion from induced earthquakes in geothermal areas[END_REF] consistent with both existing literature and values determined here. Using the LLH method we were able to automatically assign weights using a consistent and transparent approach. The resulting models were shown to significantly reduce the epistemic uncertainty related to ground-motion prediction for EGS projects.
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Tables Table 1 : kappa (and the standard deviation ±σ; and standard error ±σ e ) determined for the sites of Cooper Basin, along with the impact of reduced datasets. 
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  for frequencies 1.07 to 25.0 Hz. The study of[START_REF] Allen | Attenuation of ground-motion spectral amplitudes in southeastern Australia[END_REF] computed a corresponding geometrical attenuation of r hyp

  g., Al[START_REF] Al Atik | The variability of ground-motion prediction models and its components[END_REF] and the zone-specific between-event standard deviation (τ ZS ) equal to the average of the models for this variability for the Soultz and Basel EGSs. The impact of changing the model for the aleatory variability is investigated below.Scherbaum et al. (2009) and[START_REF] Kale | A new procedure for selecting and ranking ground-motion prediction equations (GMPEs): The Euclidean-distance based ranking (EDR) method[END_REF] propose methods to judge the applicability of GMPEs to a given set of ground-motion data. These methods consist of the calculation of variables: log-likelihood(LLH, Scherbaum et al., 2009) and Euclidian Distance Ranking (EDR,[START_REF] Kale | A new procedure for selecting and ranking ground-motion prediction equations (GMPEs): The Euclidean-distance based ranking (EDR) method[END_REF], which are both based on the differences between the natural logarithms of the observed and predicted PSAs, although the influence of the aleatory variability is different in the two cases. Because we are assuming the same aleatory variability for all tested models we could simply use the differences in mean residuals to rank the models but the use of the LLH values allows us to weight the different models in a mathematically rigorous way (see below). The lower the value of LLH and EDR, the closer the match between the observations and predictions. The large number of records available from Cooper Basin enables us to investigate the impact of the number of records available on the results of the GMPE testing. Generally geothermal projects will have fewer records available with

  from regression on data from six areas indicates slightly higher magnitude dependence (coefficient b) and faster attenuation (coefficient c) for Cooper Basin data. The most noticeable difference, however, is the much smaller values of υ and, in particular, τ, from regression on the Cooper Basin data compared to those obtained by[START_REF] Douglas | Predicting ground motion from induced earthquakes in geothermal areas[END_REF]. The much lower value of τ can be partly explained by the use of data from a single zone (this type of τ is called τ ZS by[START_REF] Douglas | Predicting ground motion from induced earthquakes in geothermal areas[END_REF]) but it appears that ground motions at Cooper Basin are much less variable than those at other EGS sites;[START_REF] Douglas | Predicting ground motion from induced earthquakes in geothermal areas[END_REF] found for Basel τ ZS =0.637 and for Soultz τ ZS =0.902.

  stochastic model parameters consistent with the results of spectral analysis: Models 31, 23, 19 and 35. These models, along with the empirical model of Douglas et al. (2013) and the best fitting empirical model just using the Cooper Basin data are shown in Figure 4a. We see that the preferred stochastic models are similar to the empirical model based on Cooper Basin data (Equation 4), while the bestfitting model for the dataset shows a slightly faster decay. By producing weights following Scherbaum et al. (2009) the resulting weighted median stochastic model (from all 36 weighted component models) is shown in Figure 4b. The weighted median model leads to lower PGA at M<3 (up to a factor of 1.5) than the empirical model of Douglas et al. (2013), while the aleatory variability is reduced by over 25%.

Figure 1 :

 1 Figure 1: Map of microseismic monitoring network (McLeod #1: MCL, MW01-3 and WA01-3). Catalogued events from 2005 are indicated by grey symbols, those used in the spectral analysis for determination of κ and Δσ are shown by black symbols.

Figure 2 :

 2 Figure 2: Comparison of median PGA predictions from the weighted stochastic GMPE (with weights based on spectral analysis) and the empirical model of Douglas et al. (2013).

Figure 3 :

 3 Figure3: Ranking of models against cumulative weights for two different sigmas. See Table4Table 2for the correspondence between model number and parameters of the stochastic model. Grey numbers indicate models consistent with the spectral analysis and literature (Q equal to 600 to 1800; Δσ equal to 10 to 100 bars; and κ0 = 0.04 s).

Figure 4 :

 4 Figure 4: (a) PGA data for Cooper basin for events with 2.5<M<3.1 and the selected predictions (stochastic and empirical) from Douglas et al. (2013) for M2.8 along with the best fit of the data to equation 3. (b) The empirical model of Douglas et al. (2013) along with the weighted median stochastic model (from LLH testing) including their variabilities.
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 1 Figure 1: Map of microseismic monitoring network (McLeod #1: MCL, MW01-3 and WA01-3). Catalogued events from 2005 are indicated by grey symbols, those used in the spectral analysis for determination of κ and Δσ are shown by black symbols.
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 2 Figure 2: Comparison of median PGA predictions from the weighted stochastic GMPE (with weights based on spectral analysis) and the empirical model of Douglas et al. (2013).
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 3 Figure 3: Ranking of models against cumulative weights for two different sigmas. See Table 4Table 2 for the correspondence between model number and parameters of the stochastic model. Grey numbers indicate models consistent with the spectral analysis and literature (Q equal to 600 to 1800; Δσ equal to 10 to 100 bars; and κ 0 = 0.04 s). Note that although the ranks are discrete they are plotted as continuous (dashed) lines for clarity.

  Figure 4: (a) PGA data for Cooper basin for events with 2.5<M<3.1 and the selected predictions (stochastic and empirical) from Douglas et al. (2013) for M2.8 along with the best fit of the data to equation 3. (b) The empirical model of Douglas et al. (2013) along with the weighted median stochastic model (from LLH testing) including their variabilities.

Table 2 :

 2 Statistical analysis of stress parameter. All values in natural log-scale. <ln[Δσ]> is the ln-average stress-parameter and σ ln[Δσ] is the standard deviation of the individual event stress-parameters; σ <ln[Δσ]> is the standard deviation of the mean and σ σln[Δσ] is the standard deviation of the standard deviation over 1000 randomizations.

				100%				50%			25%			10%	
		Depth					Δ{κ 0 }	Δ{±σ}	Δ{#}	Δ{κ 0 }	Δ{±σ}	Δ{#}	Δ{κ 0 }	Δ{±σ}	Δ{#}
	Station	[m]	κ [s]	±σ [s]	#	±σ e [s]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]
	MCL	1783 0.0277 0.0133 113 0.0013	0.31	-2.23	-49	1.16	0.22	-76	-1.09	-13.89	-91
	WA01	97.5 0.0335 0.0159 48 0.0023 -0.27	-1.47	-51	2.51	-3.36	-76	-4.20	-22.33	-90
	WA02	96	0.0371 0.0136 49 0.0019	0.81	-3.17	-51	0.28	-10.13	-77	0.30	-30.00	-91
	WA03	110	0.0307 0.0158 81 0.0018	0.28	-0.58	-49	1.28	-2.46	-75	1.04	-9.48	-90
	WA04	97.5 0.0380 0.0149 109 0.0014 -0.05	-0.10	-50	0.26	-1.10	-76	3.34	-7.47	-90
	MW01	357	0.0470 0.0128 161 0.0010	0.16	-1.80	-50	0.47	-2.81	-76	0.14	-7.29	-90
	MW02	109	0.0405 0.0217 223 0.0015	0.05	-0.80	-50	-0.65	-1.09	-76	-1.55	-3.41	-90
	MW03	239	0.0469 0.0134 194 0.0010	0.03	-1.09	-49	0.60	-0.90	-76	0.45	-4.16	-90

of Data <ln[Δσ]> [bars] <Δσ> [bars] σ <ln[Δσ]> σ ln[Δσ] σ σln[Δσ]

  

	100	2.93	18.67	0.000 0.502 0.000
	75	2.91	18.40	0.024 0.497 0.015
	50	2.92	18.56	0.041 0.528 0.055
	25	2.93	18.78	0.111 0.502 0.110
	10	2.78	16.20	0.163 0.390 0.076

Table 3 :

 3 Weighting scheme for the selected models based on Q and Δσ.

	Model	Model Description	Q Weight	Δσ Weight	Total Weight
	19	Δσ=10bar; Q=600; κ =0.04s	0.25	0.365	0.365
	23	Δσ=10bar; Q=1800; κ =0.04s	0.25	0.365	0.365
	31	Δσ=100bar; Q=600; κ =0.04s	0.25	0.135	0.135
	35	Δσ=100bar; Q=1800; κ =0.04s	0.25	0.135	0.135

Table 4 :

 4 Mean LLHs and their standard deviations (computed using a bootstrapping procedure) for the 36 ground-motion 506 models and various proportions of the Cooper Basin dataset. Models indicated in bold are the twelve best performing 507 models whilst those in italics are the twelve worst performing.

	508							
	Δσ	Q	κ 0	All data	Half	Quarter	Eighth	No.
	1	200	0.005	2.1007 2.0969±0.0228 2.0978±0.0407 2.0992±0.0622	
	1	200	0.02	1.7971 1.7965±0.0129 1.7982±0.0233 1.7988±0.0335	
	1	200	0.04	2.6115 2.6129±0.0255 2.6157±0.0464 2.6159±0.0705	
	1	200	0.06	3.7752 3.7780±0.0384 3.7816±0.0694 3.7818±0.1068	
	1	600	0.005	3.7820 3.7755±0.0438 3.7750±0.0787 3.7788±0.1238	
	1	600	0.02	1.7664 1.7648±0.0147 1.7663±0.0257 1.7672±0.0381	
	1	600	0.04	2.2444 2.2453±0.0205 2.2482±0.0372 2.2479±0.0574	
	1	600	0.06	3.2774 3.2798±0.0337 3.2836±0.0609 3.2831±0.0955	
	1	1800 0.005	5.2068 5.1987±0.0584 5.1963±0.1035 5.2031±0.1685	
	1	1800 0.02	1.8220 1.8200±0.0172 1.8213±0.0299 1.8224±0.0453	
	1	1800 0.04	2.1426 2.1432±0.0190 2.1461±0.0344 2.1457±0.0533	
	1	1800 0.06	3.1200 3.1222±0.0321 3.1261±0.0580 3.1253±0.0916	
	10	200	0.005	4.5300 4.5227±0.0477 4.5232±0.0891 4.5248±0.1319	
	10	200	0.02	2.0125 2.0091±0.0223 2.0091±0.0417 2.0113±0.0631	
	10	200	0.04	1.7867 1.7857±0.0125 1.7865±0.0226 1.7889±0.0289	
	10	200	0.06	2.4931 2.4938±0.0242 2.4953±0.0427 2.4981±0.0603	
	10	600	0.005	8.9585 8.9475±0.0758 8.9457±0.1397 8.9512±0.2162	
	10	600	0.02	2.7308 2.7261±0.0348 2.7252±0.0636 2.7281±0.0997	
	10	600	0.04	1.7389 1.7372±0.0136 1.7378±0.0254 1.7398±0.0357	
	10	600	0.06	2.1503 2.1504±0.0189 2.1520±0.0331 2.1541±0.0462	
	10	1800 0.005	11.9403 11.9273±0.0952 11.9222±0.1716 11.9328±0.2782	
	10	1800 0.02	3.1481 3.1427±0.0406 3.1414±0.0734 3.1450±0.1168	
	10	1800 0.04	1.7710 1.7690±0.0156 1.7695±0.0290 1.7715±0.0424	
	10	1800 0.06	2.0488 2.0487±0.0171 2.0503±0.0300 2.0522±0.0416	
	100 200	0.005	8.3257 8.3160±0.0695 8.3176±0.1313 8.3168±0.1878	
	100 200	0.02	3.0079 3.0031±0.0367 3.0021±0.0695 3.0041±0.1045	
	100 200	0.04	1.7318 1.7298±0.0143 1.7292±0.0283 1.7324±0.0398	
	100 200	0.06	2.				

0443 2.0440±0.0175 2.0442±0.0306 2.0482±0.0384 100

  

	600	0.005	16.2242 16.2098±0.1033 16.2079±0.1929 16.2123±0.2911
	100 600	0.02	4.5644 4.5579±0.0529 4.5557±0.0985 4.5585±0.1523
	100 600	0.04	1.

9695 1.9666±0.0222 1.9656±0.0430 1.9685±0.0650 100 600 0.06 1.8382 1.8374±0.0136 1.8374±0.0246 1.8408±0.0298

  

	List of Figure Captions	
	100 1800 0.005	21.2923 21.2752±0.1278 21.2684±0.2330 21.2802±0.3724
	100 1800 0.02	5.4541 5.4468±0.0607 5.4438±0.1120 5.4475±0.1760
	100 1800 0.04	2.1350 2.1317±0.0260 2.1305±0.0499 2.1333±0.0766
	100 1800 0.06	1.7930 1.7920±0.0130 1.7919±0.0242 1.7952±0.0299
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