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Purpose: When performing uncertainty propagation, most LCA practitioners choose to represent uncertainties by single probability distributions and to propagate them using stochastic methods. However the selection of single probability distributions appears often arbitrary when faced with scarce information or expert judgement (epistemic uncertainty). Possibility theory has been developed over the last decades to address this problem. The objective of this study is to present a methodology that combines probability and possibility theories to represent stochastic and epistemic uncertainties in a consistent manner and apply it to LCA. A case study is used to show the uncertainty propagation performed with the proposed method and compare it to propagation performed using probability and possibility theories alone.

Methods: Basic knowledge on the probability theory is first recalled, followed by a detailed description of epistemic uncertainty representation using fuzzy intervals. The propagation methods used are the Monte Carlo analysis for probability distribution and an optimisation on alpha-cuts for fuzzy intervals. The proposed method (noted IRS) generalizes the process of random sampling to probability distributions as well as fuzzy intervals, thus making the simultaneous use of both representations possible.

Results and discussion: The results highlight the fundamental difference between the probabilistic and possibilistic representations: while the Monte Carlo analysis generates a single probability distribution, the IRS method yields a family of probability distributions bounded by an upper and a lower distribution.

The distance between these two bounds is the consequence of the incomplete character of information pertaining to certain parameters. In a real situation, an excessive distance between these two bounds might motivate the decision-maker to increase the information base regarding certain critical parameters, in order to reduce the uncertainty. Such a decision could not ensue from a purely probabilistic calculation based on subjective (postulated) distributions (despite lack of information), because there is no way of distinguishing, in the variability of the calculated result, what comes from true randomness and what comes from incomplete information.

Conclusions: The method presented offers the advantage of putting the focus on the information rather than deciding a priori of how to represent it. If the information is rich, then a purely statistical representation mode is adequate, but if the information is scarce, then it may be better conveyed by possibility distributions.

Introduction

Life cycle assessment (LCA) aims at modelling complex systems that usually encompass a number of compartments of the biosphere and the technosphere. Results rely on several choices and large amounts of data are affected by uncertainty. These uncertainties have been described extensively, e.g. by [START_REF] Reap | A survey of unresolved problems in life cycle assessment, Part 1: goal and scope and inventory analysis[END_REF] and [START_REF] Williams | Hybrid Approach to Managing Uncertainty in Life Cycle Inventories[END_REF]. Characterising and assessing uncertainties is important to make decision support models more transparent, robust and reliable. Uncertainty analysis gathers numerous methods with different means and goals from qualitative assessment to sensitivity analysis and uncertainty propagation; see [START_REF] Morgan | Uncertainty: a guide to dealing with uncertainty in quantitative risk and policy analysis[END_REF] for an overview on uncertainty analysis and [START_REF] Clavreul | Quantifying uncertainty in LCA-modelling of waste management systems[END_REF] for a tiered approach to uncertainty analysis in LCA applied to waste management.

The focus of the present study is on uncertainty propagation which aims at quantifying the uncertainty of the results of an LCA study. Uncertainty propagation can be performed using different uncertainty representations and propagation methods. With respect to parameter uncertainty, the common practice in LCA consists in representing uncertain parameters by single probability distributions, e.g. a normal distribution characterized by an average and a standard deviation. Databases such as the ecoinvent database [START_REF] Frischknecht | The ecoinvent Database: Overview and Methodological Framework[END_REF] rely increasingly on probability distributions to represent parameter uncertainty. The most commonly-used method to propagate probability distributions is the Monte Carlo analysis, as shown by [START_REF] Lloyd | Characterising, propagating and analyzing uncertainty in life-cycle assessment, a survey of quantitative approaches[END_REF] who reviewed 24 LCA studies that included uncertainty analysis. This method is implemented in many calculation tools and consists in randomly sampling values in the probability distributions of input parameters, to obtain the frequency distribution of the calculated results.

However, a fundamental problem of the probabilistic representation lies in the selection of probability distributions when faced with scarce information or expert judgement. The review by [START_REF] Lloyd | Characterising, propagating and analyzing uncertainty in life-cycle assessment, a survey of quantitative approaches[END_REF] showed that the choice of probability distributions is often poorly justified and relying on estimations. Yet the result of the uncertainty propagation is totally depending on the 'a priori' defined probability distributions. Bayesian methods [START_REF] Lindley | Making Decisions[END_REF] could address this shortcoming by updating these prior distributions based on new data and Bayes' theorem of conditional probabilities. However this is almost never implemented in LCA due to the impossibility of measuring and validating results. This introduces confusion between the two distinct natures of uncertainty: truly stochastic uncertainty which refers to variability of data e.g. in time, space and technology, and epistemic uncertainty related to our lack of knowledge e.g. due to measurement errors or to an insufficient number of measurements. While classical probability theory was developed to address stochastic uncertainty (i.e. related to variability and fluctuations), more recent information theories are required to address incomplete/imprecise information [START_REF] Dubois | Formal representations of uncertainty[END_REF].

To address this problem and handle modelling in presence of imprecise information, possibility theory has been developed over the last decades [START_REF] Dubois | Possibility theory[END_REF]. The simplest example is the representation of parameters as min-max intervals instead of crisp (precise) numbers, as used by [START_REF] Chevalier | Life cycle analysis with ill-defined data and its application to building products[END_REF]. The concept can be extended to fuzzy intervals (possibility distributions) which express preferences within intervals. More detailed presentation of fuzzy intervals is provided in the methods section. Fuzzy intervals have been first applied to the field of LCA to save time and costs by avoiding the need for precise quantification of flows e.g. by [START_REF] Weckenmann | Environmental Life Cycle Assessment with Support of Fuzzy-Sets[END_REF] and [START_REF] Gonzàlez | A fuzzy logic approach for the impact assessment in LCA[END_REF]. Fuzzy linguistic descriptors have also been used to calculate life cycle inventories (LCI) and evaluate data quality [START_REF] Ardente | a fuzzy software for the energy and environmental balances of products[END_REF], to normalise and weigh characterised impacts [START_REF] Guereca | Fuzzy Approach to Life Cycle Impact Assessment -An Application for Biowaste Management Systems[END_REF]) and to support interpretation of results and ranking alternatives using multi-criteria analysis [START_REF] Benetto | Integrating fuzzy multicriteria analysis and uncertainty evaluation in life cycle assessment[END_REF]. Besides, in an LCA model dedicated to fuel evaluation (namely POLCAGE), [START_REF] Tan | POLCAGE 1.0-a possibilistic life-cycle assessment model for evaluating alternative transportation fuels[END_REF] represented parameter uncertainties using possibility distributions and propagated them using fuzzy arithmetics. [START_REF] Tan | Using fuzzy numbers to propagate uncertainty in matrix-based LCI[END_REF] formalised the integration of fuzzy intervals into a matrix-based LCI model, supported later by a mathematical proof by [START_REF] Heijungs | Rigorous proof of fuzzy error propagation with matrix-based LCI[END_REF] reexamined by [START_REF] Cruze | On the "rigorous proof of fuzzy error propagation with matrixbased LCI[END_REF]. Finally [START_REF] André | On the use of possibility theory in uncertainty analysis of life cycle inventory[END_REF] proposed to enhance the mathematical and physical understanding of the application of possibility theory to LCA, by providing clear definitions of terms and comparing the possibility and probability representations and propagation results.

The objective of this study is to present a methodology that combines probability and possibility theories to represent stochastic and epistemic uncertainty in a consistent manner, and apply it to LCA.

The method is compared to uncertainty propagation performed with probability and possibility theories alone, using a case study where global warming benefits associated with bioenergy from energy crops cultivation are assessed.

Methods

This section describes how probability and possibility theories can be used to represent uncertainties and propagate them through a model. A joint-propagation method, proposed by [START_REF] Baudrit | Joint propagation and exploitation of probabilistic and possibilistic information in risk assessment models[END_REF], is presented and applied to a case study. In addition two other propagation methods are also applied for the purpose of comparison.

Probability theory

A probability is a measure of the likelihood that an event will occur. A probability distribution describes the probabilities of different outcomes of a statistical experience: for a random variable X, a probability distribution gives for each value x the probability P(x) that X takes the value x. Probabilities follow certain rules: they take only values between 0 and 1 and the sum of the probabilities of all possible outcomes is 1. In the case of continuous variables, probability distributions are often represented by their cumulative distribution function (cdf), the probability that X be less than x: F(X) = P [X≤x]. Another representation, the probability density function (noted here pdf), can be obtained by deriving the cdf. It represents the density of probabilities: for some small increment ∆x, f(x).∆x is the probability that X falls in the interval of length ∆x around x [START_REF] Morgan | Uncertainty: a guide to dealing with uncertainty in quantitative risk and policy analysis[END_REF]. In theory, selection of a probability distribution should be based on a sufficient amount of data to allow a statistically representative assessment of the parameter's variability. However, in the context of LCA, this is often not technically feasible and the selection of a distribution often relies on partial information (scarce measurements) or on expert judgment.

Uncertainty propagation of probability distributions can be performed by different methods, the most common one being the Monte Carlo analysis, as used by e.g. [START_REF] Huijbregts | Evaluating uncertainty in environmental life-cycle assessment. A case study comparing two insulation options for a Dutch one-family dwelling[END_REF] or [START_REF] Sonnemann | Uncertainty assessment by a Monte Carlo simulation in a life cycle inventory of electricity produced by a waste incinerator[END_REF]. In this analysis, a value is randomly sampled for each parameter in its distribution and by using the obtained set of values, the model result is calculated. By repeating this operation a sufficient number of times, a cdf is obtained for the result. Other sampling methods are more adapted to large data sets, such as Latin hypercube, as used by [START_REF] Thabrew | Life Cycle Assessment of Water-based Acrylic Floor Finish Maintenance Programs[END_REF]. Finally, calculations can also be performed analytically using Taylor series expansions to approximate the result's uncertainty, as implemented by [START_REF] Hong | Analytical uncertainty propagation in life cycle inventory and impact assessment : application to an automobile front panel[END_REF] and [START_REF] Imbeault-Tétreault | Analytical propagation of uncertainty in life cycle assessment using matrix formulation[END_REF].

Epistemic uncertainty representation

As shown by several authors (e.g. [START_REF] Ferson | Different methods are needed to propagate ignorance and variability[END_REF], there is a fundamental difference between true random variability, as depicted by a single probability distribution, and epistemic uncertainty, due to incomplete or imprecise information. Possibility theory (e.g. [START_REF] Dubois | Possibility theory: an approach to computerized processing of uncertainty[END_REF] provides a framework to address this type of information. Possibility theory assigns degrees of likelihood (possibility) to intervals of values rather than precise values, yielding a fuzzy interval (or fuzzy number or fuzzy set). The simplest fuzzy interval is the well known min-max interval. If the parameters involved in a model are represented by intervals, interval propagation can be performed using either interval calculus in the case of simple models or else an optimisation algorithm in the case of more complex models. In a Bayesian framework, application of the principle of maximum entropy to interval-type information leads to selecting a uniform probability distribution between the limits of a min-max interval (e.g. [START_REF] Shulman | The uniform distribution as a universal prior[END_REF]. But this results in selecting only one distribution amongst all the possible probability distributions bounded by the following two cumulative distributions: P u (X) = 0 if X < min and P u (X) = 1 otherwise, P l (X) = 0 if X ≤ max and P l (X) = 1 otherwise.

Where P u and P l are the upper and lower limits of the family of probability distributions defined by the min-max interval. Selecting just one representative of the family of probability distributions introduces a bias in the analysis and a confusion between true variability (as depicted by a single distribution) and imprecision (as depicted by an interval).

When richer information is available, the concept of intervals can be extended to fuzzy intervals (also called possibility distributions) where preference is given to certain values (see [START_REF] Dubois | Possibility theory[END_REF].

In a possibility distribution, degrees of likelihood (possibility) between 0 and 1 are assigned to specific parameter intervals. In the example depicted in Figure 1, the most likely interval (the "core" of the possibility distribution), i.e. values between 18 and 20, is assigned a likelihood of unity, while values located outside the "support" of the distribution (i.e. values between 14 and 23) are assigned a possibility of zero. Intervals selected at different levels of possibility, called alpha-cuts, correspond to confidence intervals with confidence 1-alpha. Thus a possibility distribution yields a lower bound (P α ≥ 1-α) on the probability that the parameter value should lie within a given alpha-cut. As in the case of the simple minmax interval, a fuzzy interval can be depicted as a family of probability distributions, limited by an upper and a lower cdf, as shown in Figure 1. While the function presented in Figure 1 is a trapezoidal distribution, more complex distributions can be adopted to suit available information (See [START_REF] Dubois | Possibility theory[END_REF]. Fuzzy intervals are particularly well suited for representing subjective judgements, commonly used in most LCA studies, because they adopt the language of experts, when describing the possible values a parameter can take in presence of incomplete information [START_REF] Dubois | Possibility theory and statistical reasoning[END_REF]. If an expert is able to answer the following two questions: (i) can you provide a range within which you are confident that the parameter value should lie? and (ii) can you express a preferred value or interval of values within this range? Then the provided information can be formalized as a possibility distribution.

Propagation methods

The method used to propagate fuzzy intervals in the general case is very analogous to the Monte Carlo method using single probability distributions, except that in the case of parameters represented by fuzzy intervals, intervals are randomly sampled instead of single values, based on α-cuts. As shown above, for a given possibility distribution, an alpha-cut is an interval containing all values with a degree of possibility higher than alpha (0 ≤ α ≤ 1). An example of α-cut is presented in Figure 1: for alpha=0.6 the α-cut is the interval [16.4; 20.9]. If the model is relatively simple and monotonous, propagation of the fuzzy intervals through the model can be performed simply using interval calculus on alpha-cuts. For alpha = 0 to 1 with e.g. step = 0.1, the min and max values of the model are determined for all values of the alpha-cuts.

However, if the model is not monotonous, it may not be possible to determine the min and max values of the model based solely on the min and max values of the alpha-cuts. In this case it is necessary to use an optimization algorithm to find the min and max values of the model for all parameter values within the alpha-cuts.

If certain parameters are represented by fuzzy intervals while others are represented as single cdfs, the Monte Carlo method can be used to randomly sample the cdfs, while optimization on the alpha-cuts is performed in a second step (see [START_REF] Guyonnet | Hybrid approach for addressing uncertainty in risk assessments[END_REF][START_REF] Baudrit | Post-processing the hybrid approach for addressing uncertainty in risk assessments[END_REF]. [START_REF] Baudrit | Joint propagation and exploitation of probabilistic and possibilistic information in risk assessment models[END_REF] developed a slightly different method (dubbed the IRS; Independent Random Set method), whereby random sampling is performed on both the cdfs and the fuzzy intervals. [START_REF] Couso | A survey of concepts of independence for imprecise probabilities[END_REF] showed that the IRS method is a systematically conservative counterpart to the calculation with random quantities under stochastic independence (classical Monte Carlo method on cdfs). The schematic of the IRS method, used herein, is the following.

Given an LCA model with n parameters represented by probability distributions and m parameters represented by fuzzy intervals, 1. Generate n + m random numbers between 0 and 1: x 1 , x 2 , ...x n+m .

2. Sample the n probability distributions to obtain n random variables: p 1 , p 2 ... p n .

3. Sample the m fuzzy intervals to obtain m intervals: I 1 , I 2 ... I m .

4. Calculate the smallest (Inf) and largest (Sup) values of the LCA result obtained for all combinations of values contained in the m intervals I i .

5. Return to step 1 and repeat ω times.

6. Obtain the probability bounds of the LCA results from the ω Inf and Sup values as shown below.

The IRS method yields a random interval made up of ω intervals. This random interval is then summarized in the form of a pair of upper and lower cdf (see [START_REF] Baudrit | Post-processing the hybrid approach for addressing uncertainty in risk assessments[END_REF]) using the Plausibility and Belief functions of the theory of evidence [START_REF] Shafer | A Mathematical Theory of Evidence[END_REF]). This theory assigns probability weights (noted m) to intervals (called focal sets; A i ) instead of simply point values (the limiting case of a classical probability distribution). Considering the proposal (noted B) "LCA result lies below a specified target level", the probability that this proposal is true is comprised between the degree of Plausibility (an upper bound on probability) and the degree of Belief (a lower bound on probability) defined by [START_REF] Shafer | A Mathematical Theory of Evidence[END_REF] as:
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Bel(B) is thus the sum of the weights of all subsets A i (i = 1 to n where n is the number of subsets) such that A i is completely included within prescribed set B, while Pl(B) is the sum of the weights of all subsets A i such that the intersection of A i and B is non empty. In other words, Bel(B) gathers the imprecise evidence that asserts B, while Pl(B) gathers the imprecise evidence that does not contradict B. The interval [Bel(B), Pl(B)] contains all potential probability values induced by the mass function m. In practice, Pl is obtained by ordering the ω Inf values in increasing order, and assigning a frequency 1/ω to each value. while Bel is obtained likewise from the Sup values. These functions will be depicted graphically in the application section below.

Interpretation of results in a decision-making framework

If at least one parameter in a model is represented by a fuzzy interval, the uncertainty propagation will result in a family of probability distributions (delimited by the Pl and Bel functions described previously), rather than in a unique probability distribution. As suggested by [START_REF] Dubois | Risk-informed decision-making in the presence of epistemic uncertainty[END_REF], this may prove impractical in a decision-making framework. These authors therefore propose to compute a single distribution as a weighted average of the upper and lower distributions, with the selected weight reflecting the decision-makers attitude with respect to risk. The resulting distribution, referred to as a "confidence index" by [START_REF] Dubois | Risk-informed decision-making in the presence of epistemic uncertainty[END_REF], is computed from:

f(a i , b i ) = α a i +(1 -α) b i (2)
where a i and b i are the limits of the interval defined at probability level i.

This approach, which is based on earlier work by [START_REF] Hurwicz | Optimality criteria for decision making under ignorance[END_REF], thus computes a single indicator as a weighted average of focal element bounds. It achieves a trade-off between upper and lower probability bounds which, following the context, will constitute either optimistic or pessimistic estimates.

While it is recognized that the choice of weight α is subjective, it should be underlined that this subjectivity is only introduced at the decision-making step in the form of a single cdf used as a sensible reference displayed along with the pessimistic and optimistic outputs. This approach is very different from displaying a single distribution obtained by propagating single distributions selected arbitrarily at the beginning of the risk analysis step.

Case study

Goal and scope

The objective of this LCA study is to exemplify and apply uncertainty propagation using different hypotheses with respect to input parameter uncertainty, for the purpose of comparison. To this end, a specific LCA case study was selected in order to show the differences between the probability and possibility theories and how they can be combined in order to better represent uncertainties in LCA. The selected case study investigated the environmental sustainability of willow cultivation for bioenergy production through co-firing in large-scale combined heat and power (CHP) plants, based on results from Tonini et al. (2012) (see section 3.2). Emphasis was placed on how the different uncertainties associated with the inventory data can be represented based on available knowledge (e.g. from measurements, literature or expert estimates). The uncertainty associated with the environmental impact of the system was quantified with each individual uncertainty method to identify the major differences between them and recommend a best practice. The focus of this study was on the global warming impact category. The functional unit was the cultivation of 1 hectare of Danish land for bioenergy production (CHP). The geographical scope was Denmark and the temporal scope 20 years. Figure 2 presents the processes included in the LCA system boundary.

Background -case study

Reduction of fossil fuel consumption in the energy sector through increase of fluctuating renewable energy sources (e.g. wind energy and hydropower) and bioenergy is a fundamental step towards more sustainable energy systems (Tonini and Astrup 2012). However, biomass resources available for bioenergy are limited as biomass is already used today for a number of purposes (e.g. animal feeding and bedding, improvements of agricultural soil, etc.). Thus cultivation of energy crops for bioenergy production may be needed. One of the most critical impacts associated with energy crops is related to land use changes (LUC) defined as the consequences determined by the conversion of the land from one use to another use [START_REF] Edwards | Indirect Land Use Change from increased biofuels demand. Comparison of models and results for marginal biofuels production from different feedstocks[END_REF][START_REF] Searchinger | Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change[END_REF][START_REF] Searchinger | Biofuels and the need for additional carbon[END_REF]. LUC are distinguished between direct (dLUC) and indirect (iLUC). The dLUC impacts are associated with the consequences of cultivating the selected energy crops in place of an established food crop. The iLUC impacts are related to the consequences of converting land presently not used for crop cultivation to cropland, as a result of the induced demand for the initially displaced food crop. In order to evaluate the environmental sustainability of bioenergy systems, LCA is often used. For instance, in Tonini et al.

(2012), a case study based on cultivation of three perennial crops (ryegrass, willow and Miscanthus) in Denmark was presented. The authors compared the environmental performance of anaerobic digestion, gasification, direct combustion and co-firing. With respect to global warming, co-firing of willow appeared to be the most environmentally sound option, though CO 2 savings were generally low as a result of LUC.

Modelling and data

The modelling of the bioenergy system (primarily CO 2 and N 2 O flows) was based on the inventory data provided by recent studies: It was assumed that all carbon degradation during drying, storage and combustion was in the form of carbon dioxide (methane emissions were negligible) and machinery-related processes such as fertilizer spreading and tillage were not included because they contribute to the results only to a minor extend (Tonini et al. 2012). Selected modelling data (referred to below as 'parameters') related to CO 2 and N 2 O flows throughout the bioenergy system were associated with uncertainty (after [START_REF] Hamelin | Modelling the carbon and nitrogen balances of direct land use changes from energy crops in Denmark: a consequential life cycle inventory[END_REF]Tonini et al. 2012). The uncertainty representation modes are shown in Table 1. For the purpose of comparison, trapezoidal distributions were selected for both probability density function and fuzzy interval modes of representations. Their supports and cores are respectively delimited by the values [a, d] and [b, c] presented in Table 1, estimated based on the different sources presented. The choice between probability and fuzzy interval representations was made based on the quantity and quality of data available for each individual parameter. For example, Figure 3 shows the 19 values collected in literature and databases for the lower heating value (LHV) of willow. This significant amount of data enabled to define a trapezoidal distribution and to select a representation with probability distributions in the jointpropagation method. Conversely, very scarce information could be found on iLUC; therefore its uncertainty distribution was defined based on expert judgment and the representation using a possibility distribution was preferred in the joint-propagation method.

Further, it is necessary to fix correlations when they are known, in order to avoid non-physical combinations of parameter values during random sampling process. Correlations between the following parameters were identified and implemented:

-Cultivation yield and net carbon uptake for willow, -Cultivation yield and net carbon uptake for barley, -Cultivation yields for willow and barley (as they depend highly on soil and climate properties),

-LHV and carbon content of willow.

These correlations were implemented by direct linear correlation: the carbon content was implemented as a function of LHV while net carbon uptakes for willow and barley and the yield of barley cultivation were all implemented as functions of the yield of willow cultivation. Note that a fuzzy correlation could also be implemented, whereby the selection of one parameter generates an interval for the correlated parameter rather than a precise value (see [START_REF] Guyonnet | Hybrid approach for addressing uncertainty in risk assessments[END_REF].

Heat and electricity recovery are assumed to be independent because the power plants are considered as extraction condensing power plants. N 2 O emissions (both direct and indirect) were considered as independent for willow and spring barley because they are linked to fertilizer use.

Results

Uncertainty propagation was performed using the following three methods: Monte Carlo with cdfs, fuzzy calculation and the IRS method. The algorithm and its implementation in MATLAB 7 are provided as supplemental information. In the 2 nd and 3 rd uncertainty method, minimum and maximum values were calculated using the global search function of MATLAB 7. The cumulative distribution functions of the calculated results are presented in Figure 4. The x-axis shows the impact of the system on global warming: a positive result means that the cultivation and co-combustion of willow contributed to more greenhouse gases emissions than current practice.

The distribution obtained with Monte-Carlo simulation (in full line) suggests a 65% probability that willow cultivation and combustion was beneficial compared to current practice. According to this simulation, the average benefit was -48 Mg CO 2 -eq ha -1 for 20 years, with a standard deviation of 124 Mg CO 2 -eq ha -1 , and a 95% confidence interval between -305 and 194 Mg CO 2 -eq ha -1 .

When implementing the same distributions as fuzzy intervals instead of probability distributions, two curves were obtained: a plausibility and a belief distribution (Figure 4). They are the respective upper and lower limits of the family of probability distributions obtained with fuzzy intervals. In this case study the proposal evaluated was "The impact of willow cultivation for bioenergy production on global warming is below a specific target". Thus the plausibility distribution represents here the most "optimistic" probability distribution: it is obtained from the most favourable values of input possibility distributions.

On the other hand, the belief distribution represents the most "pessimistic" outcome achievable: the impact on global warming cannot be larger than this distribution, considering the input information. The global warming potentials resulting from the fuzzy calculus were between -603 and 400 Mg CO 2 -eq ha -1

(95% confidence interval) and most likely between -240 and 100 Mg CO 2 -eq ha -1 . These very wide ranges result from the fact that the rich information available for some parameters was only modelled as fuzzy information in this calculation.

In the third method, either mode of uncertainty representation was selected, based on available information. Two distributions were again obtained, thus defining a family of distributions which again encompasses the purely probabilistic result. Note that the distance between the upper and lower probability bounds, which directly reflects the incomplete nature of information regarding certain parameters, is less than in the case of the purely possibilistic calculation, because in this case certain parameters are represented by single cdfs.

Also depicted in Figure 4 is the confidence index calculated by assigning a weight of 1/3 to the "optimistic" IRS result and 2/3 to the "pessimistic" result. Putting all the weight on the pessimistic bound would seem exaggerated, as it would be neglecting all information suggesting a more favourable outcome, while putting all the weight on the optimistic bound would appear as unrealistically biased. The selected weights of 1/3 and 2/3 are proposed as a "reasonably conservative" compromise.

Discussion

In this study, it was recognized that the level of information was low for 10 out of the 17 parameters (cf.

Table 1). The results highlighted the fundamental difference between the probabilistic and possibilistic representations: while the Monte Carlo analysis produces a crisp (precise) result on the probability of exceeding the baseline emissions (represented by a global warming potential of zero in Figure 4), the IRS method yields a family of distributions. When selecting the most favourable assumption for each of the 10 parameters, the probability of exceeding the baseline emissions fell to less than 5%. But when combining all least favourable assumptions, this probability rose to 82%. Note that both cases are fully realistic as the modeller had no a priori knowledge on the variability of these parameters. The choice of deciding between the optimistic and pessimistic assumptions is left to the decision maker at the interpretation stage.

We see that the Monte Carlo method and the Confidence Index yield very similar results at high levels of probability. This is primarily related to the fact that the same distributions were selected for the pdfs and the fuzzy intervals. However, what we see with the IRS result is the consequence of the incomplete character of information pertaining to certain parameters. This is seen in the distance between the upper and lower probability bounds. In a real situation, an excessive distance between these two bounds might motivate the decision-maker to increase the information base regarding certain critical parameters, in order to reduce the uncertainty. Such a decision could not ensue from a purely probabilistic calculation based on subjective distributions (despite lack of information), because there is no way of distinguishing, in the variability of the calculated result, what comes from true randomness and what comes from incomplete information. Considering the considerable sources of uncertainty in LCA, it is felt that it would be more faithful to convey, in addition to an indicator for decision-making, an appreciation of the extent of the knowledge gaps and their consequences.

This study used a rather simple case study with only one impact category as the focus was put on the methodology. It should be noted that the exact same methodology can be at the characterisation, normalisation and weighting steps, e.g. to propagate uncertainties in characterisation factors. It is however acknowledged that the implementation of such a method in complex systems and in LCA software would require substantial computation power. Indeed the calculations involve an optimisation step over several parameters at each run.

Conclusions

This paper underlines the difference between different types of uncertainty in the context of LCA modelling and illustrates a methodology that allows such uncertainties to be propagated through the LCA model. Rather than to arbitrarily select a given mode of uncertainty representation, it is proposed that the investigator first considers the information that is available and then selects the formalism that seems best suited to convey this information. This sets the focus on available information and the importance of gathering information that is both reliable and technically feasible, rather than disguising imprecise information as precise variability. If available information is rich, then a purely statistical representation mode is in order, but if it is scarce, then it may be better conveyed by possibility distributions. The two bounding distributions obtained as a result reflect the incomplete character of the information pertaining to certain parameters: one is the "optimistic" distribution obtained when using all favourable values of input possibility distributions, the other one is the "pessimistic" distribution. Finally, at the interpretation step, a single distribution can be computed by assigning weighs to these two bound distributions, reflecting the decision maker's aversion to risk. 
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Table 1 :

 1 Assumed parameter distributions, values rounded to 2 significant digits

	Description	Unit	Limits of the trapezoidal	Source of information Preferred
				distributions			represen-
								tation
			a	b	c	d		
	Net carbon uptake	Mg C	3	6	6	9	Tonini et al. 2012	Fuzzy
	from atmosphere,	ha -1 yr -1						
	willow cultivation							
	Net carbon uptake	Mg C	1	2	2	3	Tonini et al. 2012	Fuzzy
	from atmosphere,	ha -1 yr -1						
	barley cultivation							
	willow cultivation N 2 O direct emissions,	ha -1 yr -1 kg N	0.8	1.69	1.69	2.5	Tonini et al. 2012	Fuzzy
	barley cultivation N 2 O direct emissions,	ha -1 yr -1 kg N	0.9	1.9	1.9	2.9	Tonini et al. 2012	Fuzzy
	emissions, willow N 2 O indirect	ha -1 yr -1 kg N	0.1	0.22	0.22	0.33	Tonini et al. 2012	Fuzzy
	cultivation							
	emissions, barley N 2 O indirect	ha -1 yr -1 kg N	0.3	0.56	0.56	0.8	Tonini et al. 2012	Fuzzy
	cultivation							
	Indirect land use change	eq ha -1 Mg CO 2 -	189	398	398	610 After Tonini et al. 2012 *	Fuzzy
	Yield of cultivation of	Mg DM	8.7	12.7	12.7	16.7	Tonini et al. 2012	Proba-
	willow	ha -1						bility
	Yield of cultivation of	Mg DM	3.35	4.85	4.85	6.35	Tonini et al. 2012	Proba-
	barley	ha -1						bility
	Carbon content of	% DM	0.47	0.48	0.49	0.50	Tonini et al. 2012 **	Proba-
	willow							bility
	Loss of carbon during	%	0.035 0.048 0.048 0.061	Tonini et al. 2012	Fuzzy
	storage							
	Lower heating value of	GJ Mg -1	16.7	17.6	19	19.8	Tonini et al. 2012 **	Proba-
	dry matter (willow)	DM						bility
	Water content of	%	0.15	0.2	0.3	0.35	Tonini et al. 2012	Fuzzy
	willow after field							
	drying							
	Electricity recovery	%	0.35	0.38	0.38	0.41	Danish Energy Agency	Proba-
	from LHV						and energinet.dk (2010)	bility
	Heat recovery from	%	0.44	0.52	0.52	0.6	Danish Energy Agency	Proba-
	LHV						and energinet.dk (2010)	bility
	GHG emissions from	Mg CO 2 -	0.66	0.92	0.92	1.05 Personal communication,	Proba-
	electricity production	eq					DONG Energy A/S et al.	bility
	in DK	MWh -1					(2010)	
	GHG emissions from heat production in DK	eq GJ -1 Mg CO 2 -	0.04	0.05	0.06	ecoinvent database 0.07 Estimations based on the	Fuzzy
	* This includes the conversion of land and the effects of cultivating the reacting crop on newly converted
	land.							
	**: 19 values extracted from articles and the Phyllis and Biodat databases referenced in Tonini et al.	
	2012.							
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Where: EP: yearly avoided GHG emission from energy production Mg CO 2 -eq ha -1 yr -1

Yield: yield of cultivation of willow (at the field gate) Mg DM ha -1 yr -1

LHV: lower heating value of willow as dry matter GJ Mg -1 DM Loss: loss of carbon during drying and storage of willow % watercontent: water content of willow after field drying % H 2 Oheating: energy needed for water content evaporation GJ Mg -1 elec_rec: electricity recovery from LHV % heat_rec: heat recovery from LHV % GHG elec : GHG emissions from electricity production in DK Mg CO 2 -eq MWh -1

GHG heat : GHG emissions from heat production in DK Mg CO 2 -eq GJ -1

Total net impact

Where: TNI: total net impact on GW over 20 years Mg CO 2 -eq ha -1 yr -1 iLUC: indirect land use change Mg CO 2 -eq ha -1 yr -1 CO 2_in : yearly CO 2 savings from cultivation and harvest of willow (average) Mg CO 2 ha -1 yr -1 N 2 O em : yearly emissions of N 2 O for willow cultivation Mg CO 2 -eq ha -1 yr -1

Supplementary information

Stochastic and epistemic uncertainty propagation in LCA Julie Clavreul, Dominique Guyonnet, Davide Tonini and Thomas H Christensen This document presents the algorithm used to propagate the uncertainties with the IRS method and obtain the cumulative frequency distributions (CFD).

The general algorithm is presented in Figure S1. To run it, three inputs are required:

- The number of iterations w.

An optimisation algorithm is needed to find the minimum of a function f when the vector of parameters x is varying between two vectors of values (x1 and x2). In this study, the algorithm was implemented in MATLAB (v 7.11.0) with the optimisation algorithm called global search provided by MATLAB. The implementation of the algorithm in MATLAB is presented after Figure S1.

Implementation in MATLAB

Similarly to the previous explanations, the function implemented in MATLAB code has:

-3 inputs: o fhandle is the function that need to be optimised o dataArray is the matrix of parameter values: each line is a parameter, columns 1, 2, 3 and 4 contain the limits of the trapezoidal distributions (in ascendant order) and column 5 tells which representation ("probability" or "possibility") should be preferred when