

Storage of CO₂ at low temperature as liquid or solid gas hydrate **Application to the Biscay deep zone in the French EEZ** <u>André Burnol⁽¹⁾, Isabelle Thinon⁽²⁾, Pascal Audigane⁽¹⁾, Aurélien Leynet⁽²⁾</u> (1) BRGM, Water, Environment and Ecotechnologies Division (D3E) (2) BRGM, GeoResources Division(DGR)

Main objectives:

(1) Estimation of the CO₂ theoretical storage volume in the French EEZ in the area of the Bay of Biscay and the Celtic Sea Comparison to the onshore CO₂ storage capacity in deep saline aquifers (Dogger and Trias layers in the Paris Basin)

1100

CO₂ Storage Zone (in blue) defined by two criteria applied to the 1000m grid spacing bathymetry (Ifremer) using GMT (Wessel, 1998):

1) Sea Floor Depth > 4000 m => Density (CO_2 +impurities) > (Sea Water) 2) Slope < 1 % => Safety criterium to avoid slumps on the continental slope

Source: GHFD09 (re-calculated)	H402	H550	H549	CH5	CH9	CH13	CH15	BD17	BD9	BD10	BU5
Surface Thermal Conductivity Wm ⁻¹ K ⁻¹	1.26 (1.25)	1.48 (1.1)	1.52 (1.21)	1.17	1.05	1.06	1.14	0.913	0.946	0.913	1.11
Surface Heat Flow mW m ⁻²	46 (43.2)	59 (60.1)	36 (37)	33 (33)	40 (46.3)	50 (52.4)	46 (45.5)	58.2 (58.05)	31.4 (32.64)	45.6 (50.2)	50.2

CO₂ Hydrate Formation Zone (HFZ in purple) using CSMGem software (Sloan, 2007) supposing a homogeneous low Heat Flow (33 mW/m²)

Thermal Conductivity of surface sediments is almost constant: $TC = 1.1 Wm^{-1}K^{-1}$

Surface Heat Flow in the French EEZ varies between two extreme values: Low $HF = 33 \text{ mW/m}^2$, High $HF = 60 \text{ mW/m}^2$

	Surface (km ²)	Mean thickness (m)	Total Volume (km ³)	Mean Porosity (%)	Theoretical Storage Volume (km ³)	Density (g/cm ³)	
Low Heat Flow (CO2-97)	33 834 ^a	120 ^a	4415 ^a	46	2030		
High Heat Flow (CO2-97)	42 120 ^a	77 ^a	3846 ^a	55	2121		
Deep Offshore (French EEZ)			~4130	~50	~2075	~0.3	
Paris Basin (Dogger layer)	15 000 ^b	~100		10	150 ^b	0.48	
Paris Basin (Trias layer)	48 584 ^b	25 - 200		10 - 15	525 ^b	0.70	
Onshore (Paris Basin)				~12	~675	0.48–0.7	
	^a calculated using GMT (Wessel, 1998) ^b from FP7 GeoCapacity project (2						

Conclusions

" from FP/ GeoCapacity project (2009)

a.burnol@brgm.fr

 $TEMP = 2.6 + HF / 1.8 \cdot ln(TC/1.1)$

References

Sloan Jr, E. D., & Koh, C., 2007, Clathrate hydrates of natural gases. CRC (CSMGem software included) Wessel P, Smith WHF, 1998, New, improved version of Generic Mapping Tools released. EOS Trans Am Geophys Union 79(47):579 Kunz, 0. and Wagner, W., 2012, The GERG-2008 Wide-Range Equation of State for Natural Gases and Other Mixtures: An Expansion of GERG-2004, J CHEM ENG DATA 57 (11), 3032-3091

- I. Physical conditions (P,T) in French EEZ are favorable for a CO₂ storage within a surface close to the potential Paris Basin surface (~40 000 km²).
- **II.** Negative Buoyancy Zone (NBZ) and CO₂ Hydrate Formation Zone (HFZ) are calculated using GERG-2008 for liquid CO₂ and CSMGem code for CO₂ Hydrate: available porous volume for CO₂ hydrate formation lies between NBZ and HFZ surface (after CO₂ injection below HFZ).
- **III.** Theoretical storage volume for CO₂ Hydrate is almost the same in the Low Heat Flow or High Heat Flow case due to porosity variation with depth
- IV. Theroretical storage volume in French EEZ is three times higher than the available volume in Paris Basin saline aquifers (Dogger + Trias)
- V. As CO₂ Hydrate density is <u>only two times lower</u> than SC CO₂, <u>deep offshore</u> storage capacity should be *a priori* higher than onshore capacity in France