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Abstract

Understanding the wave propagation with respect to the structure of the Earth lies at the heart of many analysis both in
the oil and gas industry and for quantitative seismic hazard assessment. One of the most widely used techniques to solve
the elastodynamics equation is the finite difference method because of its simplicity and numerical efficiency. In the last two
decades, the parallel efficiency of this numerical method has been demonstrated through many applications on various parallel
platforms. The complexity induced by multicore platforms both in terms of fine-grained parallelism and considering the
memory hierarchy justifies revisiting these conclusions. In this paper, we underline the impact of such platforms on standard
implementations.
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1. Introduction

Owing to its simplicity and numerical efficiency, the finite difference method [1, 2] is one of the most popular
techniques to solve the elastodynamics equations and to simulate the propagation of seismic waves (a review can
be found for instance in [3]). Most of the parallel implementations for x86 cores is based on a distributed memory
assumption and rely on the MPI library for coarse-grained parallelism with a possible use of OpenMP directives to
distribute the triple nested loops [4, 5, 6, 7]. The overall parallel methodology is then based on a classical Cartesian
grid partitioning with exchange of interface information on common edges. In spite of the good speedups usually
reported, the performance levels obtained with standard implementations on multicore nodes remain poor and far
from the peak performance. This is mainly due to the trend at the shared-memory level that is characterized by an
increase in the number of cores and a slow improvement of the memory bandwidth.

To overcome this limitation, chip designers have introduced a hierarchy of memories for multiprocessor com-
puting nodes, based for instance on Intel QuickPath Interconnect (QPI) or AMD HyperTransport technology to
connect multicore processors. Most of the computing nodes available could therefore be considered as Non-
Uniform Memory Access (NUMA) platforms. In this paper, we evaluate the impact of multicore architectures
on standard implementation of the elastodynamics. We mainly focus on the issues coming from the increasing
number of cores leading to a degradation of the load-balancing. We also underline the impact of the programming
model on the communications ratio. In the last part, we underline the impact on the non-uniform memory access
on the finite difference algorithm that is known to be memory-bound.
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2. Seismic wave modeling

2.1. Governing equations and numerical scheme
The seismic wave equation in the case of an elastic linear material is given in three dimensions by
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v and o represent the velocity and stress field respectively and f denotes a known external source force. p is the
material density, A and u are the elastic coefficients known as Lamé parameters. We consider an isotropic medium
leading to a symetric stress tensor.

The dominant numerical scheme to solve the above equations is certainly the explicit finite-difference method.

It has been introduced in [2] for a second-order spatial approximation and has been extended in [8] to consider a

fourth-order accurate stencil in space and a second-order stencil in time. One of the key features of this scheme is
the introduction of a staggered-grid [1] for the discretization of the seismic wave equation.

For classical collocated methods over a regular Cartesian grid, all the unknowns are evaluated at the same
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Fig. 1. Elementary 3D cell of the staggered grid and distribution of the stress (0-) and the velocity (v) components.

location, whereas the staggered grid leads to a shift of the derivatives by half a grid cell. The use of a staggered
grid improves the overall quality of the scheme (in terms of numerical dissipation and stability), especially in the
case of strong material heterogeneity. Figure 1 shows the elementary 3D cell and the distribution of the stress and
velocity components. Exponents i, j, k indicate the spatial direction with (7% = o (iAs, JjAs, kAs), As corresponds
to the space step and At to the time step. The off-diagonal stress tensor components are shifted in space by half
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an interval in two directions and the velocity components are shifted both in time and in space by a time step and
by half a space time. At the lateral and bottom sides of the model, we add a PML (Perfectly Matched Layer) [9]
layer to absorb the outgoing energy. A fixed size of ten grid points is chosen for the thickness of this layer (in blue
color in Figure 2)

2.2. Standard parallel implementation

Most of standard parallel implementations of the elastodynamics equations are based on MPI cartesian grid
decomposition. The computational domain is decomposed into sub-domains D; in such that each sub-domain is
mapped to one process for computing. Figure 2 demonstrates this decomposition with 3x 3 subdomains. This

Proc g || Proc, || Proc,

Proc s |« Procy4 |«| Procs

Proc¢ [« Procy [«| Procsg

Fig. 2. Decomposition for global domain into 3 X 3 sub-domains

decomposition could be optimized using non-blocking communications and overlapping communication time
by computation. One only needs to compute firstly the velocity and the stress components for the points p.y.
located at border B;. Then, these values at border B; are exchanged for Proc ; corresponding. Finally, each
Proc ; determine the stress and velocity components for the other points p,,. € {D;®B;}. Another popular way to
extract the parallelism of such applications is to exploit the triple nested loops coming from the three dimensions
of the problem under study. This allows a very straightforward use of OpenMP directives. This second level
of decomposition could therefore be easily combined with a coarse-grained parallelism coming from MPI. This
situation is detailed in algorithm 1.

3. Fine-grained parallelism

The simulations described in this section have been runned on Jade symmetric platform from the Genci-
Cines French national computing center with 30 GB of memory and eight computing cores (Xeon-E5472) per
node.

3.1. Load balancing

As shown in Figure 1 the standard Cartesian decomposition is based on a physical domain that involves several
computing zones coming from the different numerical formulation. For instance, the border of the computational
domain corresponds to the boundary conditions required to absorb the outgoing energy. The CPU-cost ratio
observed between a boundary grid point and a physical domain point varies from two to four.

In our example, we consider a fixed problem size of 170 millions of grid points per node. This example allows us
to saturate an average of 70% of the available memory on each node of the Jade platform. We consider a two-
dimensional decomposition along the horizontal direction and we multiply the number of points in each direction
(horizontal and vertical) by a factor of V2 when we double the number of computing multicore nodes. This allows
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Algorithm 1: Standard hybrid implementation of the elastodynamics equations based on MPI+OpenMP

1 for (VY step of times At for simulating) do

2 Compute stress o for all points p,,. € D; begin
3 #pragma omp parallel for

4 for (x) do

5 for (y) do

6 for (z) do

7 | Compute Stress oy, Oy, Oz, Oxyy Oxz, Oy AL Pryzs
8 end

9 end

10 end

11 ‘ Exchange stress o ‘

12 end

13 Compute velocity for all points p,,. € D; begin
14 #pragma omp parallel for

15 for (x) do

16 for (y) do

17 for (z) do

18 | Compute velocity vy, vy, v, at pyy:;
19 end

20 end

21 end

-

23 end

24 end

us to mimic the shape of the seismic basins encountered in standard studies. We define as the weak scaling the
ratio between the elapsed time on one node and the elapsed time on a an increasing number of computing nodes.
Table 1 shows the degradation of the balance between the computing subdomains. On 256 cores, we reach
a maximum imbalance of 45% between the MPI processes located inside the physical domain and those corre-
sponding to the boundaries. This is coming from the fixed ratio between the PML grid points and the physical
domain grid points for the subdomains located in the middle of computing domain. For the subdomains located
at the border, the number of PML grid points is growing with respect to the number of physical grid points. The
weak scaling results are quite good as they only rely on the slowest subdomains.
Figure 3 shows the idle time in the case of a standard Cartesian decomposition. For each MPI process, we can
notice the communications with four neighbors as described in Figure 2. The green color rectangles correspond
to the waiting time between the computing cores. The sizes of the rectangles vary because of the non-uniform
computing costs for the velocity and the stress components depending on the location of the subdomain. The
same situation could also be reported with standard OpenMP implementations as the decomposition is based on
the outer loop corresponding to one-dimensional strip.

nodes (cores) | Weak scaling | Load imbalance (%)
1(8) 1.00 9.8
2 (16) 1.23 14.1
4(32) 1.14 154
8 (64) 1.17 16.7
16 (128) 1.32 21.4
32 (256) 1.01 45.0

Table 1. Load imbalance and weak scaling for the elastodynamics equations.
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Fig. 3. Impact of the imbalance on the communication scheme between sixteen subdomains.

3.2. Programming model and communication strategies

The efficiency of the programming model selected to implement the elastodynamics equation can rather differ-
ent depending on the granularity of the problem. For instance pure MPI or hybrid MPI+OpenMP implementation
could lead to unexpected levels of performance (threads mapping, communication overlapping, efficient coopera-
tion between MPI and OpenMP libraries.). In order to evaluate the impact of the size of the problem, we consider
a standard situation with a problem that leads to a memory consumption of 2.6 GB per core.
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Fig. 4. Impact of the communications strategy with pure a MPI or a hybrid MPI+OpenMP implementation.

Figure 4 compares blocking and non-blocking communications. The directions and the volume of communi-
cation remain constant for each core but the total amount of communications is increasing. In the case of blocking
communication, the contention on the network probably explains the degradation of the communication phase.
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Fig. 5. Hierarchical and multicore architectures used as experimental platforms.

Characteristics Malm platform | Borderline platform
Processor type Opteron-2356 Opteron-2218
Cache memory (MB) 2 2

Total number of cores 8 8

Number of NUMA nodes 2 4

Memory per node (GB) 8 8

Table 2. Characteristics of the shared-memory architectures used in our experiments.

The non-blocking strategy provides very regular results with a maximum of 2% for the exchange cost of the
boundaries between subdomains.

The plot on the right shows the results obtained on sixteen computing nodes. The hybrid programming model
does not significantly impact the communication strategy. Using a three-dimensional decomposition makes the
computation to communication ratio of the order of % where V is the volume of the subdomain and P the number
of computing cores. The hybrid computation approach increases the size of the MPI domain and decreases the
number of MPI processes, making the previous ratio better in terms of overlapping.

3.3. Related works and Discussions

Several approaches have been proposed to tackle the load balancing issues, particularly for the elastodynamics

equation. One classical way of ensuring load balancing in the context of grid-based computation is the use of mesh
partitioning techniques [10] for initial distribution or dynamic re-distribution during the computation. Several
redistribution toolkits have been successfully developed for MPI simulations, for example in the case of finite-
element calculations and adaptive mesh refinement [11]. One could also exploit a quasi-static load-balancing
algorithm based on zone costs [12]. The the main limitation is coming from the difficulties to evaluate a priori
the execution time of various parts of a program accurately because of cache effects, arithmetic considerations or
compiler behavior that can lead to unpredictable situations for such a fine-grained computation.
Another techniques that have been introduced rely on domain overloading based on the efficiency of threads
scheduling in order to balance the computation between the computing cores [13]. At the shared-memory level and
for such a triple nested loop problem, OpenMP directives are added at the outer loop level to honor the unit-stride
and reduce the number of costly OpenMP barriers. This induces a one-dimensional decomposition that is usually
not the most efficient strategy for a three-dimensional problem. Specialized libraries such as Intel Threading
Building Blocks (TBB) or Cilk [14] that provide work-stealing mechanisms can provide relevant solutions.

4. Memory affinity

4.1. Hardware characteristics

Our experiments have been carried out on two hierarchical multicore platforms that have different topologies
regarding memory access. They are based on AMD Opteron processors with HyperTransport links between the
different nodes. The NUMA factor induced by the memory hierarchy varies significantly. The topological links
between the different nodes are described in Figure 5 for each platform and we summarize the characteristics of
these different machines in Table 2.

1231
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4.2. Experiments

The experiments described in this section are based on problem sizes that saturate an average of 70% of the
memory available on each NUMA node. In order to evaluate the impact of the hierarchical structure of the memory
available on most of multicore platforms, we firstly consider the sequential implementation of the elastodynamics
equations. We vary the mapping of the memory used by the application and the mapping of the computing thread
by using sched_setaffinity. This allows us to occupy all the NUMA nodes of the architectures as threads are suc-
cessively bind on the different cores.
In Tables 3 and 4 the mapping of the computing threads on the cores vary by columns and the memory mapping
vary by lines. The zero values (0) are the references, i.e. the minimum time by lines. The results shows to the
percentage of increase of the computing time in comparison with the reference time (i.e NUMA penalty).

On Malm platform, the maximum value of the penalty is 11.21%. This corresponds to an architecture based
on a unique Hypertransport link. A closer look to the table reveals the global topology of the node as the penalty
values inferior to 1% (for instance core #0, #1, #2, #3) correspond to a mapping of the memory and the computing
thread on same NUMA node. These cores belong to the same multicore processor. In our case, the cross of one
Hypertransport link leads to a NUMA penalty of an average of 10%. On Borderline platform, the maximum

Lo vt [ 2 ]3] 4]5 [6 7] 7]
0.44 0 0.02 | 0.06 | 10.89 | 10.95 | 10.95 | 10.92
044 | 0.13 0 0.23 | 1096 | 10.95 | 10.92 | 11.19
0.58 | 0.05 0 0.11 | 11.02 | 10.96 | 11.02 | 11.01
0.51 | 0.06 0 0.01 | 11.02 | 11.21 | 11.02 | 11.27
11.12 | 10.66 | 10.61 | 11.19 0 0.10 | 0.07 | 0.12
11.17 | 10.50 | 10.55 | 10.70 | 0.28 0 0.11 | 0.11
11.04 | 10.78 | 10.52 | 10.55 0 0.12 | 0.01 | 0.07
11.00 | 10.66 | 10.58 | 10.51 | 0.01 | 0.03 0 0.01

N AN R RN =S

Table 3. Numa penalty for the elastodynamics equations on Malm platform.

value of the penalty is 20.88%. In this case, when data have to be exchanged through one Hypertransport link the
average penalty is of 10% and of 20% for two links. The topology of the node is also revealed by our experiments
showing that the core #0 and the core #4 belongs to the same dual-core processor. If we consider the parallel

[ o | 1 ] 2 | 3 [ 4 ] 5 ] 6 7

0 897 | 820 | 18.67 | 1.14 | 8.74 | 7.43 | 18.73
8.01 0 1887 | 824 | 926 | 0.04 | 1839 | 7.92
7.62 | 1896 | 0.62 | 843 | 9.07 | 1891 0 7.88
19.12 | 9.10 | 9.56 0 20.88 | 9.06 | 8.62 | 0.38

0 9.14 | 821 | 1885 | 1.37 | 9.04 | 7.55 | 18.53
9.09 0 20.12 | 945 | 1047 | 1.60 | 19.61 | 8.89
7.65 | 1933 | 0.17 | 8.64 | 843 | 19.35 0 8.46
19.67 | 9.78 | 934 | 0.75 | 20.70 | 9.50 | 9.13 0

N AN AR W=

Table 4. Numa penalty for the elastodynamics equations on Borderline platform.

OpenMP implementation of the elastodynamics equation, the maximum penalty observed on each platform is
significantly increased. We compare two memory mapping strategies. The first one relies on the default Linux
First-Touch memory policy. The second one exploits the parallel initialization of the data in order to maximize
the locality between the data and the computing threads.

The penalty observed when all the computing cores are used is 53 % on Borderline platform and 19% on Malm
platform. This is coming from the contention on the memory bus when all the computing threads access the data.
This situation is worsened by the properties of the algorithm that is known to be memory-bound.
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4.3. Related works and Discussions

Explicit approaches based on system calls (mbind()) or libraries and tools (libnuma) are difficult to handle at
the application-level. Automatic approaches based on the use of memory policies are the simplest way of dealing
with memory affinity. The performances measured strongly depend on the application under study [15]. User-
level Application Programming Interface (API) like [16] provide tools to enhance memory placement with respect
to the underlying architectures. One could also rely on more advanced strategies described for instance in [17].
In this case the idea is to define a recursive structure in order to group threads working on the same data.

5. Conclusion and future works

Exploiting multicore architectures efficiently is a critical topic for applications initially designed for distributed
memory architectures or clusters of SMP. In this paper, we have underlined the limitations coming from the fine-
grained parallelism leading to a degradation of the load balance. The impact of the programming model and the
communication strategies can be significant depending on the ratio between the size of computing domain and
the boundaries. We have also shown the NUMA penalty on two standard multicore platforms, the performance
limitation can reach a maximum of 53% when all the available cores are used. Several improvements have been
discussed in order to enhance the overall performance. These various levels of improvement probably need to
be combined; auto-tuning strategies seem to be a promising way [18]. Another major limitation of the finite
difference method is coming from the disadvantageous ratio between the limited pointwise computation and the
intensive memory access required, leading to a memory-bound situation. Improvements at the algorithmic-level
may be necessary to improve the peak performance level. For instance, spacetime decomposition appears like a
promising strategy to tackle the poor pointwise computational intensity of the finite differences method [19].
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