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Abstract 

A methodology of locating fluid-flow zones in a rock formation is applied to the 

Buntsandstein sandstone reservoir of borehole EPS1, Soultz-sous-Forêts, France. The method 

is based on analysing thermal gradients determined by two different methods for a same cored 

borehole, (1) from temperature log and (2) from thermal conductivity measures. Comparing 

the two thermal-gradient datasets reveals the fluid-circulation zones in the borehole. Using 

this approach, we identified three main hot-fluid circulation zones within the Buntsandstein 

sandstone, two controlled by sedimentary facies and one controlled by tectonic structures.  
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1. Introduction 

The decrease in fossil energy resources has led to an increase in demand for efficient 

utilization of unconventional and sustainable energy resources, such as geothermal reservoirs. 

Additionally, the increased obligation to reduce the environmental impact of exploiting 

conventional hydrocarbon resources has led to research into the geological storage of carbon 

dioxide. In this context of geothermal development and carbon dioxide storage within a 

sedimentary formation, one important aspect for the siting of future wells is to locate zones in 

which fluid circulation occurs. What is often overlooked, however, is the interpretation of 

temperature profiles (Chatelier et al., 2011), i.e. comparing the borehole temperature profile 

against the normal temperature increase induced by the local geothermal gradient. For a 

borehole in which no fluid circulation disrupts the thermal condition, the local geothermal 

gradient in the host rock is reflected by a steady temperature increase. Where the borehole 

intersects a local fluid flow zone, however, the vertical temperature distribution is disturbed 

(Keys, 1990). A well-known application of temperature measurements is for locating fluid 

‘feeder’ and ‘drainage’ zones along a borehole by detecting rapid variations in the 

temperature profile with depth during the re-equilibrium phase (Barton et al., 1995; Bense et 

al., 2008; Khristoforova and Khristoforov, 2005; Trainer, 1968). Here we propose a new 

approach for locating fluid-flow zones based on analysing the thermal gradients in a borehole 

once thermal equilibrium is reached. The method compares two thermal gradients. The first is 

the thermal gradient in a rock formation which can be calculated with Fourier's law using the 

estimated heat-flow density at the bottom of the formation and the thermal conductivity 

measured on rock samples; this gives an estimated thermal gradient of the rock formation 

when heat-flow is controlled only by conduction and which take into account lithological 

heterogeneities. The second is the thermal gradient determined from temperature logs 

measured in the borehole; this corresponds to the real thermal gradient of the rock formation 



derived by conduction from a deep heat source and also includes temperature disturbances 

due to the circulation of relative hot or cold fluids. Comparing the two thermal gradient 

datasets from a same well (Fig. 1a, b) enables one to determine the major possible fluid-flow 

zones.  

 We applied this method using the data from borehole EPS1 (Fig. 2) at the deep 

geothermal experimental site of Soultz-sous-Forêts (France) in the Upper Rhine Graben 

(Genter and Traineau, 1992). The borehole was cored continuously through the 

Buntsandstein, which here comprises variably argillaceous sandstone fractured by large faults, 

and a temperature log was recorded from the surface to 2200 m depth. Permeability 

measurements were also made on the borehole cores in order to compare the matrix 

permeability against the fluid-flow zones corresponding to the rock formation permeability. 

Comparing all these data makes it possible to determine what kind of permeability, matrix or 

fracture permeability, controls the fluid flow in the sandstone series. 

 

2. Location and dataset 

2.1. Location  

The Soultz-sous-Forêts borehole EPS1 is located in the French part of the Upper 

Rhine Graben (Fig. 2a, b), near its western boundary marked by the major Rhine Fault. The 

graben, which is 30-40 km wide and extends NNE-SSW over a distance of 300 km, forms 

part of the western European Cenozoic Rift System. It is marked by a regional thermal 

anomaly strongly influenced by mantle uplift (Brun and Wenzel, 1991; Edel et al., 1975; 

Mueller et al., 1980; Wenzel et al., 1991) and its western border shows local thermal 

anomalies (Clauser et al., 2002) (Fig 2b). Consequently, the Buntsandstein in the Upper Rhine 

Graben has become a target for geothermal development (Dezayes et al., 2010).  



 Borehole EPS1, drilled through the sedimentary cover and into the basement (Fig. 2c), 

was cored continuously from a depth of 930 m, in the Muschelkalk limestone, to a depth of 

2220 m in the Palaeozoic granite (Genter and Traineau, 1992; Vernoux et al., 1995). The 

cores therefore provide a continuous vertical section through the geothermal Buntsandstein 

sandstone reservoir between 1008.90 and 1416.77 m depth. 

2.2. Depositional features and fracturing 

According to Ménillet et al. (1989), the Buntsandstein consists of four stratigraphic 

units: the Annweiler Sandstone (grès d'Annweiler), Vosgian Sandstone (grès vosgiens), 

Intermediate Beds (couches intermediaires) and Voltzia Sandstone (grès à Voltzia). Other 

authors (Sizun, 1995a; Vernoux et al., 1995) have provided sedimentary descriptions of the 

cores from borehole EPS1 (Fig. 3a). Thus the basal Permian Sandstone (Grès permiens) 

(1416.77-1407.70 m) and Annweiler Sandstone (1407.70-1349.15 m) are composed of 

decimetre- to several metre thick facies sequences, medium- to fine-grained sandstones,  

interpreted as relatively distal braided fluvial networks in which sandy channels alternate with 

finer flood-plain and lacustrine deposits. The overlying Vosgian Sandstone (1349.15-1084.80 

m) comprises two generally upward-fining units: the Lower Vosgian Sandstone (Grès 

vosgiens inférieurs) from the bottom of the unit to 1176.00 m, and the Upper Vosgian 

Sandstone (Grès vosgiens supérieurs) from 1176.00 m to the top of the unit. The Lower 

Vosgian Sandstone is made up of the Rehberg and Trifels beds consisting mainly of medium-

grained sandstone sequences between one and several metres thick, and the Upper Vosgian 

Sandstone is composed of the Karlstal beds forming metre-thick medium- to coarse-grained 

sandstones sequences. Bourquin et al. (2009), propose a detailed stratigraphic column with 

genetic units based on a sedimentary and gamma-ray analysis (Fig. 3a, b) of the Vosgian 

Sandstone. They suggest that the Lower and Upper Vosgian Sandstone are made up of three 

sedimentary facies distinguished according to their mode of deposition (Fig. 3a): braided river 



deposits within an arid alluvial plain (1349-1243 m; 1215-1183 m; 1112-1084 m), playa-lake 

deposits and fluvial and aeolian sand sheets (1183-1112 m), and fluvial-aeolian marginal erg 

deposits (1243-1215 m). The Intermediate Beds, located between 1084.80 and 1020.50 m, can 

be subdivided into four units from the base up: 1) the Obere Felsone (1084.80-1064.50 m) 

composed of metre-thick fluvial sandstone sequences, 2) the Bitche Conglomerate 

(conglomérat de Bitche; 1064.50-1060.00 m) consisting of micro conglomerate, 3) the Middle 

Intermediate Beds (couches intermédiaires moyennes; 1060.00-1044.00 m) made up of two 

upward-fining sequences, and 4) the Upper Intermediate Beds (couches intermédiaires 

supérieures; 1044.00-1020.50 m) beginning with a thin layer of conglomerate followed by a 

succession of thin upward-fining sandstone sequences. Globally, the Intermediate Beds reflect 

a braided fluvial system characterised by thinner and more differentiated sequences than the 

thick generally homogenous Vosgian Sandstone sequences. The Voltzia Sandstone, the 

uppermost formation of the Buntsandstein succession (1020.50-1008.90 m), is composed of 

beds several decimetres thick and reflects a transition to the lagoonal argillaceous deposits of 

the Muschelkalk. Buntsandstein sandstone are dominantly composed of lithic and feldspathic 

sandstones, the amount of clay allow the distinction between lower units (Annweiler 

sandstone and Permien Sandstone) and upper units (Intermediate Beds and Voltzia Sandstone) 

(Fig. 3b) (Vernoux, 1995). Buntsandstein Sandstone, from outcrops analysis, indicate a global 

composition of quartz (~80%), K-Feldspar (~20%) and micas (~1%) (Perriaux, 1961).       

 Natural fracturing was analysed on the continuous cores oriented using borehole 

imagery (Genter et al., 1997) (Fig. 4). The fracture trends were determined by the tectonic 

history of the Upper Rhine Graben area with a probable reactivation of some Hercynian 

structures (Illies, 1972; Illies, 1975; Rotstein et al., 2006; Schumacher, 2002; Villemin and 

Bergerat, 1987). A total of 325 fractures has been identified along the 408 m of core, with 

seven different fracture-density zones (Figs. 3d and 4): 1) 2.47 fract/m from 1008.90 to 



1020.44 m, 2) 0.86 fract/m from 1020.44 to 1114.40 m, 3) 0.42 fract/m from 1114.40 to 

1171.87 m, 4) 2.08 fract/m from 1171.87 to 1216.4 m, 5) 0.47 fract/m from 1216.40 to 

1366.69 m, 6) 2.14 fract/m from 1366.69 to 1381.46 m, and 7) 0.26 fract/m from 1381.46 to 

1416.77 m. The mean fracture density of the sedimentary sequence is 0.81 fract/m. The highly 

fractured zones (1), near the transition between the Muschelkalk and the Upper 

Buntsandstein, and (4) are both associated with the presence of major faulting (Vernoux et al., 

1995), known as the Soultz Fault (Schnaebele, 1948) in the upper part of the borehole. The 

distribution of free fracture apertures (Figs. 3e and 4) and that of the fractures with depth 

(Vernoux et al., 1995) show a close relationship, with the largest free apertures being located 

within the high-density fracture zones. The vertical distribution of fracture azimuths (Fig. 4b) 

shows that the azimuths are fairly scattered in fracture zones 1, 2 and 5, and less scattered in 

zone 4 where a set of general N-S trends emerges. This set is also seen in fracture zone 6 and 

to a less extent in zones 3 and 7. The distribution of fracture dips with depth (Fig. 4a) is 

relatively stable. The fracture zones show steeply dipping values ranging from 42° to 88°, 

except in zone 1 and at the base of zone 5, where the fractures appear to be less inclined. The 

dips are equally balanced between east and west.       

2.3. Drilling and borehole data 

A temperature log (Fig. 3c), undisturbed by technical drilling operations such as mud 

circulation was run in borehole EPS1 in November 1991 nine months after the drilling, was 

completed and when the well was at thermal equilibrium. The logging technique was a 

continuous analogue measurement using a 4-wire cable with a PT1000 sensor (Schellschmidt 

(2011), personal communication). The log gives temperature data for each metre through the 

sandstone, with temperatures ranging from 120.24 °C at the top of the Buntsandstein (1009.19 

m) to 136.45 °C at the bottom (1415.95 m). The mean geothermal gradient in this part of the 



borehole is 39.85 °C/km. Fluid loss during the drilling operation had been noted at around 

1200, 1215, 1230 and 1370 m.   

 

2.4. Thermal conductivity and permeability measurements on core samples 

At least three techniques exist for measuring the thermal conductivity of rocks: i.e. the 

divided-bar steady-state technique, the needle-probe transient technique and the optical 

scanning technique (Popov et al., 1999; Sass et al., 1971; Sass et al., 1984). In this study we 

used the optical scanning technique because its ease of use enabled us to rapidly obtain a large 

number of measurements. The method is based on scanning a black-primed sample surface 

with a mobile constant and continuously operated heat source in combination with two 

infrared temperature sensors (Popov, 1999). The heat source and the trailing temperature 

sensors move at the same relative speed along the core sample, maintaining a constant 

distance from one another and from the analysed surface. The trailing temperature sensors 

continuously register the value of the maximum temperature increase along the heating line 

for each measurement and so provide a continuous thermal conductivity profile. The size of 

the heating spot is 1 mm and the relative measurement error is about 3% of the measured 

value. Knowing the temperature rise, the strength of the heat source, the distance between the 

heat source and the temperature sensors, and the thermal conductivity of two standards, one is 

able to determine the thermal conductivity of each sample along the scanning line.  

 The thermal conductivity of the core samples was measured under saturated 

conditions. For this, the samples were initially dried to a constant weight at 60 °C, and then 

saturated by submerging them in distilled water inside a sealed vacuum chamber for 48 hours. 

The thermal conductivity of the water-saturated samples was then measured perpendicular 



(!!) to the bedding in a direction parallel to the vertical heat-flow. A total of 77 cores were 

measured (Table 1). 

The thermal conductivities measured on the cores perpendicular to the stratification 

(Table 1) range between 2.21 and 5.95 W/(mK) (respectively in the Annweiler Sandstone and 

the Upper Vosgian Sandstone) with a mean value of 3.84±0.16 W/(mK). The Annweiler 

Sandstone and Voltzia Sandstone exhibit the lowest mean thermal conductivities of 3.30±0.24 

W/(mK) and 3.23±1.08 W/(mK), respectively. With the Vosgian Sandstone, the upper part 

has a specific mean thermal conductivity that is higher than in the lower part (4.53±0.58 

W/(mK) for the Upper Vosgian Sandstone, and 4.01±0.19 W/(mK) for the Lower Vosgian 

Sandstone). In the Intermediate Beds, the Obere Felsone and Upper Intermediate Beds 

returned similar mean thermal conductivity values of 3.82±1.03 W/(mK) and 3.81±0.43 

W/(mK), respectively; the lowest values (3.66±0.42 W/(mK)) were in the Middle 

Intermediate Beds. The two Bitche Conglomerate samples returned 4.72 W/(mK) and 3.43 

W/(mK). 

 

 In situ permeability measurements along all the cores of borehole EPS1 were 

performed using a portable Tiny-perm II air minipermeameter (Fig. 3g), which provides 

reliable permeability values in the 1 mD to 10 D range. The measurement is performed by 

squeezing a rubber nozzle (inner diameter: 10 mm; outer diameter: 24 mm) against the sample 

surface and withdrawing the air from the permeameter with a single stroke of a syringe. As air 

is pulled into the sample, a micro-controller unit simultaneously monitors the syringe volume 

and the transient vacuum pulse created at the sample surface (Tiny Perm User’s Manual). In 

all, 1112 measurements were made parallel to the stratification along the cores, giving 

approximately one measurement every 35 cm, with each site being carefully and gently 



brushed to remove dust prior to the permeability measurement. In order to validate the 

measurements obtained with the portable air minipermeameter, the results were compared 

with permeability data obtained by Sizun (1995b) using a classic laboratory constant-head gas 

permeameter with nitrogen as fluid; Sizun’s measurements were performed on cylindrical 

samples (length: 6 cm; diameter: 2 cm) drilled from the borehole cores, both parallel and 

perpendicular to the stratification. Our air permeability values proved to be close to the gas 

permeability values (Fig 3g). Moreover, both measurement methods enable one to determine 

the matrix permeability taking into account structures smaller than a few centimetres.  

Permeability measurements performed on the cores of borehole EPS1 (Table 2) range 

over three orders of magnitude, from 0.1 mD to 0.5 D. Several kinds of section are 

distinguished along the cores (Fig. 3g and Table 2); those with relatively stable intermediate 

permeability values ranging from 0.66 mD to 8.77 mD, and four zones with large 

permeability value variations: 1) values from 181.53 to 0.34 mD from the base of the Vosgian 

Sandstone to 1300 m, reflecting a global upward trend with depth; 2) values between 0.63 and 

512.68 mD, with a mean of 40.48 mD, in the Fluvio-aeolian marginal erg facies; 3) values 

between 0.35 and 387.24mD, with a mean of 38.25 mD indicating high heterogeneity and a 

downward trend between the Upper and Lower Vosgian Sandstone contact and 1120 m in the 

Playa lake facies; and 4) values globally increasing from 0.81 to 87.52mD, with mean value 

of 11.81 mD, in the Obere Felsone . 

 

3. Method Description 

3.1. Heat-flow density 



Heat-flow density (q in mW/m!) is determined from the product of the thermal conductivity (" 

in W/(mK)) and the temperature gradient (dT/dz in °C/km) according to Fourier's law (1-D 

case), Eq. (1): 

                                                               q= -"#dT/dz                                                               (1) 

The heat-flow density in the basal unit of borehole EPS1 represents the heat-flow entering the 

sedimentary series from the granitic basement and is assumed to be constant across the 

sandstone reservoir in a system considered to be conductive. The heat production rate in the 

Buntsandstein sandstone is about 1 $W/m
3
 (Schellschmidt and Clauser, 1996) because of the 

low amount of disintegrable radioactive elements. This cumulative contribution is ignored in 

the heat-flow density calculation. 

 The heat-flow density in the basal Permian sandstone was determined according to 

Fourier's law (Eq. 1) using the interval method (Powell et al., 1988) whereby the heat-flow 

density is calculated from the thermal gradient and thermal conductivity. In the present case 

the thermal gradient was calculated as the average of the measured thermal gradients in the 

borehole intersecting the Permian unit (29.76±1.44 °C/km), and the mean thermal 

conductivity (3.17±0.47 W/(mK)) was calculated from !! measured on the cores and 

corrected from the in situ temperature according to the law proposed by Vosteen and 

Schellschmidt (2003) (Table 1). Based on the above thermal-gradient and thermal-

conductivity values, the calculated heat-flow density through the basal unit gives a value of 

about 94 mW/m!. 

3.2. Thermal gradient determined from thermal conductivity measurements on cores 

and Fourier's law 

The thermal gradient was calculated for each core depth along the Buntsandstein series 

from the measured thermal conductivity, corrected for in situ temperature, and knowledge of 



the heat-flow density determined above. The values range from 19.77 to 50.31 °C/km across 

the Buntsandstein, with a mean value of 31.38±1.28 °C/km (Fig. 3f). 

3.3. Thermal gradient determined from temperature log data 

The thermal gradient was also calculated from the temperature log data (Fig. 3f). It 

appears relatively constant and low in the lower part of the sedimentary series (thermal 

gradient through the Permian Sandstone: 29.99 °C/km) and increases upward toward the top 

of the Buntsandstein sandstone reservoir (thermal gradient through the Voltzia Sandstone: 

71.15 °C/km). The thermal gradient maxima within the Lower Vosgian Sandstone (~1220 m 

deep) and Upper Vosgian Sandstone (~1120 m deep) are around 48 and 59 °C/km 

respectively. 

 

4. Results  

A number of authors suggest that fluid circulation in the Upper Rhine Graben, from 

the granitic basement to the overlying Mesozoic formations, induces heat transfer by 

conduction and convection or advection (Aquilina et al., 1997; Clauser and Neugebauer, 

1991; Clauser and Villinger, 1990; Flores Marquez, 1992; Pribnow and Clauser, 2000; 

Pribnow and Schellschmidt, 2000; Rybach, 2007; Schellschmidt and Clauser, 1996). In order 

to identify these flow zones we compared theoretical thermal gradients induced by the 

conductive flux against measured thermal gradients induced by conductive and convective 

transfer. The theoretical thermal gradient (or calculated gradient) was obtained using the heat-

flow density calculated at the bottom of the sedimentary series and the thermal conductivity 

measured on core samples; it is indicative of the conductive part of the heat-flow. This 

calculated gradient is fairly constant, with some variations induced by different thermal 

conductivities of the different sedimentary facies. The measured thermal gradient (or 



measured gradient) was determined from the temperature profile run in the borehole, and 

presents several variation zones. Comparing the calculated and measured thermal gradient 

profiles reveals two cases (Fig. 3f). The one is where the values in the calculated and 

measured gradients are equal, which indicates that the heat transfer is governed mainly by 

conduction and that there is no significant occurrence of hot fluid flow. The other case is 

where the measured gradient gives higher values than the calculated gradient, which leads one 

to suspect the presence of hot fluid circulation.  

 From the sandstone/granite interface to 1235 m depth, both the measured and 

calculated thermal gradients indicated similar values (Fig. 3f); the average measured gradient 

obtained from the temperature logs is 33.11±0.26 °C/km (ranging between 26.26 and 45.45 

°C/km), and the average calculated gradient is 32.98±1.66 °C/km (ranging between 26.54 and 

50.31 °C/km). These variations result from the thermal conductivity variations of the different 

sedimentary facies described in this part of the sedimentary sequence (Fig. 3a and Table 1), 

and so the heat transfer in this interval is apparently governed only by conduction without any 

hot fluid circulation. Between 1235 and 1190 m in the borehole, the measured gradients are 

higher than the calculated ones; the average measured gradient obtained from the temperature 

logs is 40.37±1.37 °C/km, whereas the average calculated gradient is 27.06±2.37 °C/km. This 

large difference between the two values could be the result of hot fluid circulation in this part 

of the borehole. Then from 1190 to 1150 m, the two gradients are again similar, indicating 

that the heat transfer is again controlled mainly by conduction. The observation of zones in 

which both thermal gradients indicate same values and encircling a hot flowing zone, involve 

that this hot fluid don’t disturb the heat-flow of the surrounding formations. Thus, in this case, 

hot fluid circulation zones can’t be assimilating to massive heat production zones. The lack of 

measurements between 1150 and 1130 m prevents us from determining precisely the nature of 

the heat exchanges for this depth interval; nevertheless, the measured gradients deduced from 



the temperature logs increase to values in excess of 40.00 °C/km as against around 

30.00 °C/km associated with the conductive flux, and so we can assume that hot fluid 

circulation occurs in this depth interval. From 1080 m to the top of the formation, the 

measured gradient increases gradually to a maximum of 85.15 °C/km in the upper 

Buntsandstein. At the same time, the calculated gradient associated with the conductive flux 

remains below 40.00 °C/km (apart from the last two values near the top at 42.89  and 

48.08 °C/km) indicating low thermal conductivity values (Table 1). These observations 

suggest a decreasing influence of conduction in the heat transfer from a depth of 1180 m 

toward the top of the Buntsandstein and thus an increasing contribution of hot fluid 

circulation toward the top of the sandstone formation. 

 

5. Discussion  

 Comparing the macroscopic flow/non-flow zones, deduced from the thermal gradient 

analysis, against the matrix permeability measurements on the one hand and the sedimentary 

facies and fracture dispersion along the core on the other, allows us to determine what 

components control the hot fluid circulation. Four main situations are depicted: 1) zones with 

no indication of heat or fluid transfer (i.e. the thermal gradient curves are quite similar) and 

with low measured permeability values; 2) zones with no indication of heat or fluid transfer 

and with high permeability values; 3) zones with an indication of heat or fluid transfer and 

with high permeability values; and 4) zones with an indication of heat or fluid transfer and 

with low permeability values. Each of these is discussed below.  

 Different fluid pathways may occur. For example, open fractures can provide good 

drainage for fluid circulation (Caine et al., 1996); they define a large-scale permeability but 

without effect on the matrix structure, which is a transfer property not described by our 



permeability measurements. Another pathway can be formed by the porosity network at 

matrix scale and be controlled by sedimentary or diagenetic processes or by microfissures; the 

permeability of these small-scale networks is measurable with a portable air 

minipermeameter. In the cases described below we have combined these two kinds of 

structures to explain our results in term of the porous network or fluid pathway. 

Non-flow zones (NFZ) 

The non-flow zones are characterized by similar values for a) thermal gradients calculated 

from thermal conductivity measurements and reflecting conductive heat flux, and b) thermal 

gradients measured from the borehole temperature profile and reflecting conductive and 

convective heat flux. Three such zones were localized in borehole EPS1 (Fig. 3f): 1) at the top 

of the Playa lake level (NFZa), 2) at the bottom of the Playa lake level (NFZb), and 3) in the 

bottom part of the formation (NFZc), from 1235 m depth to the granite/sandstone contact. The 

first two zones are relatively thick and also associated with low permeability levels. The third 

zone (NFZc) incorporates the Permian Sandstone, the Annweiler Sandstone and the first unit 

of Braided river facies in the Lower Vosgian Sandstone (Fig. 3a). The lower part of this third 

zone is characterized by high permeability values (Fig. 3g), whereas the Annweiler 

Sandstone, Permian Sandstone and upper part of the first unit of braided river facies have 

relative low permeability values (Table 2). This particular relationship could be induced by 

the macroscopic sedimentary facies with crossbeds and thick clayey beds forming a complex 

network of impermeable layers that strongly reduces the macroscopic permeability even 

though the matrix permeability is high. The highly fractured zone 6 in the Annweiler 

Sandstone (Fig. 3d) consists mainly of sealed fractures with a few fractures showing small 

free apertures (Fig. 3e) that are insufficient for a network connection to the hot fluid feeding 

area. 



Flow zones 

The flow zones are characterized by measured thermal gradients (deduced from the 

temperature logs) that are higher than the calculated thermal gradients determined from the 

thermal conductivity. Three main flow zones are recognized from the top down (Fig. 3f): 1) at 

the top of the Buntsandstein (FZa); 2) in the Playa lake facies between 1130 and 1150 m 

(FZb); and 3) in the second Braided river facies and the underlying Fluvio-aeolian marginal 

erg facies between 1190 and 1235 m (FZc). Although FZa is composed of relative low 

permeability sandstone (Table 2), except in the Obere Felsone, the Buntsandstein in this part 

of the borehole is marked by the highly fractured zone 1 and the upper part of zone 2 (Fig. 3d) 

with many open fractures (Fig. 3e). Moreover, the fracture zones near the transition between 

the Muschelkalk and the Upper Buntsandstein are associated with the presence of a major 

fault and its damage zone (Fig. 5). Thus it is through fractures that the deep hot fluid source 

feeds this flow zone. FZb is characterized by high matrix permeability values (Table 2) and a 

very few sealed fractures (Fig. 3e); it is thus controlled mainly by sedimentary or diagenetic 

properties and is connected with the deep hot fluid sources through the westward-developed 

fault damage zone (Fig. 5). For FZc, the bottom part in the fluvio-aeolian marginal erg facies 

(Fig. 3a) has a high matrix permeability (Table 2) and a few sealed fractures (Fig. 3e), 

whereas the top, in the braided river facies, has a relative low matrix permeability (Table 2) 

and a high fracture density (fracture zone 4, Fig. 3d) with many large free apertures (Fig. 3e) 

forming the damage zone developed around a major fault zone. The open fractures in the fault 

zone would appear to form a pathway for the deep hot fluids, enabling them to flow widely 

into the underlying permeable Fluvio-aeolian facies (Fig. 5).  

Fracturing  



The open fracture azimuths controlling the flow zone at the top of the Buntsandstein 

formation are fairly scattered (Fig. 4c), corresponding to the brittle deformation associated 

with the major fault damage zone. The orientation of the open fractures in fracture zone 6, 

corresponding to a non-flow zone, is globally N-S (Fig. 4c) and could be described as a 

fracture corridor activated during the Oligocene opening of the Upper Rhine Graben. The 

orientation of the open fractures in the second fault zone, corresponding to the flow zone of 

fracture zone 4, is rather scattered, but with many of the fractures again showing a global N-S 

orientation (Fig. 4c). It would thus appear that every open fracture near the two major fault 

zones, regardless of the strike, are channels for hot fluid flow. The deeper fracture zones are 

farther from the major faults (Fig. 5) and it would appear that, with depth, the globally N-S-

striking open fractures are less well, or not at all, supplied with hot fluid from the major fault 

zone. Consequently it would be open fractures with other orientations that channel the hot 

fluid in the deeper flow zones.  

Conceptual model 

Analysis of the thermal gradients in borehole EPS1 has enabled us to locate permeable zones 

where hot fluid flows occur at formation scale in the Buntsandstein. Nevertheless different 

pathways are needed to explain the observed thermal gradient anomalies (Fig. 5). For 

example, an upward-flowing path for these fluids from the deep part of the basin is provided 

by fault zones. The damage zones associated with the faults would also enable the upward 

flowing fluids to connect with the stratigraphic reservoirs (‘horizontal layers’). Such transfer 

paths to the stratigraphic reservoirs are controlled mainly by sedimentary and diagenetic 

processes. The reservoirs have high matrix permeability and an excellent horizontal 

connectivity and are formed by the Playa Lake and Fluvio-aeolian marginal erg facies. 

Conversely the braided river facies, despite high matrix permeability, present a broad network 

of thick oblique argillaceous layers which decreases the macroscopic permeability. 



The flow paths thus appear as a composite network controlled by ‘sedimentary’ 

permeability on one hand and by ‘fracture’ permeability on the other. Fracturing associated 

with the two fault zones is used by the upward flowing fluids to connect with usable 

stratigraphic levels characterized by high matrix permeability with no impermeable 

macroscopic layers. This is why the Playa Lake and Fluvio-aeolian marginal erg facies 

provide a suitable reservoir that could be easily be connected to a deep hot fluid source.  

 

6. Conclusion 

A methodology, based on thermal gradient analysis, is presented for locating hot fluid 

flow in a rock formation. The method involves determining the thermal gradient from thermal 

conductivity measurements on core samples and also from borehole temperature logs run in 

the same borehole. With a heat-flow density calculation and thermal conductivity 

measurements, one can apply Fourier's law to calculate the thermal gradient in a rock system 

where the heat transfer is assumed to be controlled only by conduction and thus taking into 

account lithological heterogeneities. The thermal gradient calculated from a measured 

temperature log profile takes into account both the conductive and the convective or advective 

part due to fluid circulation. On the one hand, if the thermal gradient deduced from 

temperature logs indicates similar values to the thermal gradient calculated with Fourier's law, 

the heat transfer is assumed to be controlled solely by conduction in the rock formation and 

thus involves no relative hot or cold fluid circulation. If, on the other hand, the thermal 

gradient deduced from the temperature logs indicates higher or lower values than that 

calculated with Fourier's law, then respectively hot or cold fluid flow could be suspected.  

 We applied this method to borehole EPS1 (Soultz-sous-Forêts, Upper Rhine Graben) 

for which temperature logs and core samples from the Buntsandstein are available. Variations 



between the two determined thermal gradient curves revealed three main hot fluid flow levels 

alternating with non-flow zones in the sandstone formation. The pattern was then compared 

against the fracture distribution, and also against sedimentological analyses determined from 

the borehole cores, in order to determine the driving components of the fluid flows. The flow 

zones in the Buntsandstein are controlled on the one hand by a macroscopic network with two 

major fault zones providing a flow path for the deep heat source and on the other hand by a 

matrix network formed during sedimentary or diagenetic processes within the Playa-lake and 

Fluvio-aeolian marginal erg facies. At another level in the Buntsandstein sequence, the 

sedimentary braided river formations may have high matrix permeability, but would not 

support a macroscopic fluid flow; this is due to their macroscopic sedimentary structure of 

thick oblique clayey layers that drastically reduce the level’s connectivity and thus its 

permeability.  

 The proposed method can be used to identify the major fluid-flow levels or structures. 

Comparing the macroscopic and microscopic data is helpful in determining the relative 

contribution of the two networks on fluid flow at formation scale.  
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Figures 

 

Figure 1. a) Schematic representation of the thermal gradient measurable in a borehole 

intersecting a rock formation with no fluid circulation. Variations in the thermal gradient are 

caused by lithological variations, and heat transfer is induced by conductive processes. b) 

Schematic representation of the thermal gradient in the same rock formation, but where hot 

and cold fluid flows occur at different levels; heat input and output induce ‘positive’ and 

‘negative’ variations in the gradient.  



 

Figure 2. a) Location of the Upper Rhine Graben (URG) in Western Europe. b) URG map 

(modified from Schumacher (2002)); the black dot and small black dotted line locate borehole 

EPS1 and the geological cross-section (c) respectively; the grey lines indicate the temperature 

at 1500 m depth based on data from GGA Hannover (Genter et al., 2004; Pribnow and 

Schellschmidt, 2000). c) Soultz-sous-Forêts geological cross-section (redrawn after Place et 

al. (2010)) showing the approximate location of borehole EPS1 at depth. 


