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Abstract

A methodology of locating fluid-flow zones in a rock formation is applied to the
Buntsandstein sandstone reservoir of borehole EPS1, Soultz-sous-Foréts, France. The method
is based on analysing thermal gradients determined by two different methods for a same cored
borehole, (1) from temperature log and (2) from thermal conductivity measures. Comparing
the two thermal-gradient datasets reveals the fluid-circulation zones in the borehole. Using
this approach, we identified three main hot-fluid circulation zones within the Buntsandstein

sandstone, two controlled by sedimentary facies and one controlled by tectonic structures.



Keywords

Thermal gradient, thermal conductivity, permeability, sandstone reservoir, fluid circulation



1. Introduction

The decrease in fossil energy resources has led to an increase in demand for efficient
utilization of unconventional and sustainable energy resources, such as geothermal reservoirs.
Additionally, the increased obligation to reduce the environmental impact of exploiting
conventional hydrocarbon resources has led to research into the geological storage of carbon
dioxide. In this context of geothermal development and carbon dioxide storage within a
sedimentary formation, one important aspect for the siting of future wells is to locate zones in
which fluid circulation occurs. What is often overlooked, however, is the interpretation of
temperature profiles (Chatelier et al., 2011), i.e. comparing the borehole temperature profile
against the normal temperature increase induced by the local geothermal gradient. For a
borehole in which no fluid circulation disrupts the thermal condition, the local geothermal
gradient in the host rock is reflected by a steady temperature increase. Where the borehole
intersects a local fluid flow zone, however, the vertical temperature distribution is disturbed
(Keys, 1990). A well-known application of temperature measurements is for locating fluid
‘feeder’ and ‘drainage’ zones along a borehole by detecting rapid variations in the
temperature profile with depth during the re-equilibrium phase (Barton et al., 1995; Bense et
al., 2008; Khristoforova and Khristoforov, 2005; Trainer, 1968). Here we propose a new
approach for locating fluid-flow zones based on analysing the thermal gradients in a borehole
once thermal equilibrium is reached. The method compares two thermal gradients. The first is
the thermal gradient in a rock formation which can be calculated with Fourier's law using the
estimated heat-flow density at the bottom of the formation and the thermal conductivity
measured on rock samples; this gives an estimated thermal gradient of the rock formation
when heat-flow is controlled only by conduction and which take into account lithological
heterogeneities. The second is the thermal gradient determined from temperature logs

measured in the borehole; this corresponds to the real thermal gradient of the rock formation



derived by conduction from a deep heat source and also includes temperature disturbances
due to the circulation of relative hot or cold fluids. Comparing the two thermal gradient
datasets from a same well (Fig. 1a, b) enables one to determine the major possible fluid-flow

Zzones.

We applied this method using the data from borehole EPS1 (Fig. 2) at the deep
geothermal experimental site of Soultz-sous-Foréts (France) in the Upper Rhine Graben
(Genter and Traineau, 1992). The borehole was cored continuously through the
Buntsandstein, which here comprises variably argillaceous sandstone fractured by large faults,
and a temperature log was recorded from the surface to 2200 m depth. Permeability
measurements were also made on the borehole cores in order to compare the matrix
permeability against the fluid-flow zones corresponding to the rock formation permeability.
Comparing all these data makes it possible to determine what kind of permeability, matrix or

fracture permeability, controls the fluid flow in the sandstone series.

2. Location and dataset

2.1. Location

The Soultz-sous-Foréts borehole EPSI is located in the French part of the Upper
Rhine Graben (Fig. 2a, b), near its western boundary marked by the major Rhine Fault. The
graben, which is 30-40 km wide and extends NNE-SSW over a distance of 300 km, forms
part of the western European Cenozoic Rift System. It is marked by a regional thermal
anomaly strongly influenced by mantle uplift (Brun and Wenzel, 1991; Edel et al., 1975;
Mueller et al., 1980; Wenzel et al., 1991) and its western border shows local thermal
anomalies (Clauser et al., 2002) (Fig 2b). Consequently, the Buntsandstein in the Upper Rhine

Graben has become a target for geothermal development (Dezayes et al., 2010).



Borehole EPS1, drilled through the sedimentary cover and into the basement (Fig. 2c¢),
was cored continuously from a depth of 930 m, in the Muschelkalk limestone, to a depth of
2220 m in the Palaeozoic granite (Genter and Traineau, 1992; Vernoux et al., 1995). The
cores therefore provide a continuous vertical section through the geothermal Buntsandstein

sandstone reservoir between 1008.90 and 1416.77 m depth.

2.2. Depositional features and fracturing

According to Ménillet et al. (1989), the Buntsandstein consists of four stratigraphic
units: the Annweiler Sandstone (grés d'Annweiler), Vosgian Sandstone (gres vosgiens),
Intermediate Beds (couches intermediaires) and Voltzia Sandstone (gres a Voltzia). Other
authors (Sizun, 1995a; Vernoux et al., 1995) have provided sedimentary descriptions of the
cores from borehole EPS1 (Fig. 3a). Thus the basal Permian Sandstone (Gres permiens)
(1416.77-1407.70 m) and Annweiler Sandstone (1407.70-1349.15 m) are composed of
decimetre- to several metre thick facies sequences, medium- to fine-grained sandstones,
interpreted as relatively distal braided fluvial networks in which sandy channels alternate with
finer flood-plain and lacustrine deposits. The overlying Vosgian Sandstone (1349.15-1084.80
m) comprises two generally upward-fining units: the Lower Vosgian Sandstone (Gres
vosgiens inférieurs) from the bottom of the unit to 1176.00 m, and the Upper Vosgian
Sandstone (Gres vosgiens supérieurs) from 1176.00 m to the top of the unit. The Lower
Vosgian Sandstone is made up of the Rehberg and Trifels beds consisting mainly of medium-
grained sandstone sequences between one and several metres thick, and the Upper Vosgian
Sandstone is composed of the Karlstal beds forming metre-thick medium- to coarse-grained
sandstones sequences. Bourquin et al. (2009), propose a detailed stratigraphic column with
genetic units based on a sedimentary and gamma-ray analysis (Fig. 3a, b) of the Vosgian
Sandstone. They suggest that the Lower and Upper Vosgian Sandstone are made up of three

sedimentary facies distinguished according to their mode of deposition (Fig. 3a): braided river



deposits within an arid alluvial plain (1349-1243 m; 1215-1183 m; 1112-1084 m), playa-lake
deposits and fluvial and aeolian sand sheets (1183-1112 m), and fluvial-aeolian marginal erg
deposits (1243-1215 m). The Intermediate Beds, located between 1084.80 and 1020.50 m, can
be subdivided into four units from the base up: 1) the Obere Felsone (1084.80-1064.50 m)
composed of metre-thick fluvial sandstone sequences, 2) the Bitche Conglomerate
(conglomérat de Bitche; 1064.50-1060.00 m) consisting of micro conglomerate, 3) the Middle
Intermediate Beds (couches intermédiaires moyennes; 1060.00-1044.00 m) made up of two
upward-fining sequences, and 4) the Upper Intermediate Beds (couches intermédiaires
supérieures; 1044.00-1020.50 m) beginning with a thin layer of conglomerate followed by a
succession of thin upward-fining sandstone sequences. Globally, the Intermediate Beds reflect
a braided fluvial system characterised by thinner and more differentiated sequences than the
thick generally homogenous Vosgian Sandstone sequences. The Voltzia Sandstone, the
uppermost formation of the Buntsandstein succession (1020.50-1008.90 m), is composed of
beds several decimetres thick and reflects a transition to the lagoonal argillaceous deposits of
the Muschelkalk. Buntsandstein sandstone are dominantly composed of lithic and feldspathic
sandstones, the amount of clay allow the distinction between lower units (Annweiler
sandstone and Permien Sandstone) and upper units (Intermediate Beds and Voltzia Sandstone)
(Fig. 3b) (Vernoux, 1995). Buntsandstein Sandstone, from outcrops analysis, indicate a global

composition of quartz (~80%), K-Feldspar (~20%) and micas (~1%) (Perriaux, 1961).

Natural fracturing was analysed on the continuous cores oriented using borehole
imagery (Genter et al., 1997) (Fig. 4). The fracture trends were determined by the tectonic
history of the Upper Rhine Graben area with a probable reactivation of some Hercynian
structures (Illies, 1972; Illies, 1975; Rotstein et al., 2006; Schumacher, 2002; Villemin and
Bergerat, 1987). A total of 325 fractures has been identified along the 408 m of core, with

seven different fracture-density zones (Figs. 3d and 4): 1) 2.47 fract/m from 1008.90 to



1020.44 m, 2) 0.86 fract/m from 1020.44 to 1114.40 m, 3) 0.42 fract/m from 1114.40 to
1171.87 m, 4) 2.08 fract/m from 1171.87 to 1216.4 m, 5) 0.47 fract/m from 1216.40 to
1366.69 m, 6) 2.14 fract/m from 1366.69 to 1381.46 m, and 7) 0.26 fract/m from 1381.46 to
1416.77 m. The mean fracture density of the sedimentary sequence is 0.81 fract/m. The highly
fractured zones (1), near the transition between the Muschelkalk and the Upper
Buntsandstein, and (4) are both associated with the presence of major faulting (Vernoux et al.,
1995), known as the Soultz Fault (Schnaebele, 1948) in the upper part of the borehole. The
distribution of free fracture apertures (Figs. 3e and 4) and that of the fractures with depth
(Vernoux et al., 1995) show a close relationship, with the largest free apertures being located
within the high-density fracture zones. The vertical distribution of fracture azimuths (Fig. 4b)
shows that the azimuths are fairly scattered in fracture zones 1, 2 and 5, and less scattered in
zone 4 where a set of general N-S trends emerges. This set is also seen in fracture zone 6 and
to a less extent in zones 3 and 7. The distribution of fracture dips with depth (Fig. 4a) is
relatively stable. The fracture zones show steeply dipping values ranging from 42° to 88°,
except in zone 1 and at the base of zone 5, where the fractures appear to be less inclined. The

dips are equally balanced between east and west.

2.3. Drilling and borehole data

A temperature log (Fig. 3c), undisturbed by technical drilling operations such as mud
circulation was run in borehole EPS1 in November 1991 nine months after the drilling, was
completed and when the well was at thermal equilibrium. The logging technique was a
continuous analogue measurement using a 4-wire cable with a PT1000 sensor (Schellschmidt
(2011), personal communication). The log gives temperature data for each metre through the
sandstone, with temperatures ranging from 120.24 °C at the top of the Buntsandstein (1009.19

m) to 136.45 °C at the bottom (1415.95 m). The mean geothermal gradient in this part of the



borehole is 39.85 °C/km. Fluid loss during the drilling operation had been noted at around

1200, 1215, 1230 and 1370 m.

2.4. Thermal conductivity and permeability measurements on core samples

At least three techniques exist for measuring the thermal conductivity of rocks: i.e. the
divided-bar steady-state technique, the needle-probe transient technique and the optical
scanning technique (Popov et al., 1999; Sass et al., 1971; Sass et al., 1984). In this study we
used the optical scanning technique because its ease of use enabled us to rapidly obtain a large
number of measurements. The method is based on scanning a black-primed sample surface
with a mobile constant and continuously operated heat source in combination with two
infrared temperature sensors (Popov, 1999). The heat source and the trailing temperature
sensors move at the same relative speed along the core sample, maintaining a constant
distance from one another and from the analysed surface. The trailing temperature sensors
continuously register the value of the maximum temperature increase along the heating line
for each measurement and so provide a continuous thermal conductivity profile. The size of
the heating spot is 1 mm and the relative measurement error is about 3% of the measured
value. Knowing the temperature rise, the strength of the heat source, the distance between the
heat source and the temperature sensors, and the thermal conductivity of two standards, one is

able to determine the thermal conductivity of each sample along the scanning line.

The thermal conductivity of the core samples was measured under saturated
conditions. For this, the samples were initially dried to a constant weight at 60 °C, and then
saturated by submerging them in distilled water inside a sealed vacuum chamber for 48 hours.

The thermal conductivity of the water-saturated samples was then measured perpendicular



(1,) to the bedding in a direction parallel to the vertical heat-flow. A total of 77 cores were

measured (Table 1).

The thermal conductivities measured on the cores perpendicular to the stratification
(Table 1) range between 2.21 and 5.95 W/(mK) (respectively in the Annweiler Sandstone and
the Upper Vosgian Sandstone) with a mean value of 3.84+0.16 W/(mK). The Annweiler
Sandstone and Voltzia Sandstone exhibit the lowest mean thermal conductivities of 3.30+0.24
W/(mK) and 3.234+1.08 W/(mK), respectively. With the Vosgian Sandstone, the upper part
has a specific mean thermal conductivity that is higher than in the lower part (4.53+0.58
W/(mK) for the Upper Vosgian Sandstone, and 4.01+0.19 W/(mK) for the Lower Vosgian
Sandstone). In the Intermediate Beds, the Obere Felsone and Upper Intermediate Beds
returned similar mean thermal conductivity values of 3.82+£1.03 W/(mK) and 3.81+0.43
W/(mK), respectively; the lowest values (3.66+0.42 W/(mK)) were in the Middle
Intermediate Beds. The two Bitche Conglomerate samples returned 4.72 W/(mK) and 3.43

W/(mK).

In situ permeability measurements along all the cores of borehole EPS1 were
performed using a portable Tiny-perm II air minipermeameter (Fig. 3g), which provides
reliable permeability values in the 1 mD to 10 D range. The measurement is performed by
squeezing a rubber nozzle (inner diameter: 10 mm; outer diameter: 24 mm) against the sample
surface and withdrawing the air from the permeameter with a single stroke of a syringe. As air
is pulled into the sample, a micro-controller unit simultaneously monitors the syringe volume
and the transient vacuum pulse created at the sample surface (7iny Perm User’s Manual). In
all, 1112 measurements were made parallel to the stratification along the cores, giving

approximately one measurement every 35 cm, with each site being carefully and gently



brushed to remove dust prior to the permeability measurement. In order to validate the
measurements obtained with the portable air minipermeameter, the results were compared
with permeability data obtained by Sizun (1995b) using a classic laboratory constant-head gas
permeameter with nitrogen as fluid; Sizun’s measurements were performed on cylindrical
samples (length: 6 cm; diameter: 2 cm) drilled from the borehole cores, both parallel and
perpendicular to the stratification. Our air permeability values proved to be close to the gas
permeability values (Fig 3g). Moreover, both measurement methods enable one to determine

the matrix permeability taking into account structures smaller than a few centimetres.

Permeability measurements performed on the cores of borehole EPS1 (Table 2) range
over three orders of magnitude, from 0.1 mD to 0.5 D. Several kinds of section are
distinguished along the cores (Fig. 3g and Table 2); those with relatively stable intermediate
permeability values ranging from 0.66 mD to 8.77 mD, and four zones with large
permeability value variations: 1) values from 181.53 to 0.34 mD from the base of the Vosgian
Sandstone to 1300 m, reflecting a global upward trend with depth; 2) values between 0.63 and
512.68 mD, with a mean of 40.48 mD, in the Fluvio-aeolian marginal erg facies; 3) values
between 0.35 and 387.24mD, with a mean of 38.25 mD indicating high heterogeneity and a
downward trend between the Upper and Lower Vosgian Sandstone contact and 1120 m in the
Playa lake facies; and 4) values globally increasing from 0.81 to 87.52mD, with mean value

of 11.81 mD, in the Obere Felsone .

3. Method Description

3.1. Heat-flow density



Heat-flow density (q in mW/m?) is determined from the product of the thermal conductivity (A
in W/(mK)) and the temperature gradient (dT/dz in °C/km) according to Fourier's law (1-D

case), Eq. (1):
q= -AxdT/dz (1)

The heat-flow density in the basal unit of borehole EPS1 represents the heat-flow entering the
sedimentary series from the granitic basement and is assumed to be constant across the
sandstone reservoir in a system considered to be conductive. The heat production rate in the
Buntsandstein sandstone is about 1 pW/m® (Schellschmidt and Clauser, 1996) because of the
low amount of disintegrable radioactive elements. This cumulative contribution is ignored in

the heat-flow density calculation.

The heat-flow density in the basal Permian sandstone was determined according to
Fourier's law (Eq. 1) using the interval method (Powell et al., 1988) whereby the heat-flow
density is calculated from the thermal gradient and thermal conductivity. In the present case
the thermal gradient was calculated as the average of the measured thermal gradients in the
borehole intersecting the Permian unit (29.76+1.44 °C/km), and the mean thermal
conductivity (3.17+0.47 W/(mK)) was calculated from A, measured on the cores and
corrected from the in situ temperature according to the law proposed by Vosteen and
Schellschmidt (2003) (Table 1). Based on the above thermal-gradient and thermal-
conductivity values, the calculated heat-flow density through the basal unit gives a value of

about 94 mW/m?.

3.2. Thermal gradient determined from thermal conductivity measurements on cores

and Fourier's law

The thermal gradient was calculated for each core depth along the Buntsandstein series

from the measured thermal conductivity, corrected for in situ temperature, and knowledge of



the heat-flow density determined above. The values range from 19.77 to 50.31 °C/km across

the Buntsandstein, with a mean value of 31.38+1.28 °C/km (Fig. 3f).

3.3. Thermal gradient determined from temperature log data

The thermal gradient was also calculated from the temperature log data (Fig. 3f). It
appears relatively constant and low in the lower part of the sedimentary series (thermal
gradient through the Permian Sandstone: 29.99 °C/km) and increases upward toward the top
of the Buntsandstein sandstone reservoir (thermal gradient through the Voltzia Sandstone:
71.15 °C/km). The thermal gradient maxima within the Lower Vosgian Sandstone (~1220 m
deep) and Upper Vosgian Sandstone (~1120 m deep) are around 48 and 59 °C/km

respectively.

4. Results

A number of authors suggest that fluid circulation in the Upper Rhine Graben, from
the granitic basement to the overlying Mesozoic formations, induces heat transfer by
conduction and convection or advection (Aquilina et al., 1997; Clauser and Neugebauer,
1991; Clauser and Villinger, 1990; Flores Marquez, 1992; Pribnow and Clauser, 2000;
Pribnow and Schellschmidt, 2000; Rybach, 2007; Schellschmidt and Clauser, 1996). In order
to identify these flow zones we compared theoretical thermal gradients induced by the
conductive flux against measured thermal gradients induced by conductive and convective
transfer. The theoretical thermal gradient (or calculated gradient) was obtained using the heat-
flow density calculated at the bottom of the sedimentary series and the thermal conductivity
measured on core samples; it is indicative of the conductive part of the heat-flow. This
calculated gradient is fairly constant, with some variations induced by different thermal

conductivities of the different sedimentary facies. The measured thermal gradient (or



measured gradient) was determined from the temperature profile run in the borehole, and
presents several variation zones. Comparing the calculated and measured thermal gradient
profiles reveals two cases (Fig. 3f). The one is where the values in the calculated and
measured gradients are equal, which indicates that the heat transfer is governed mainly by
conduction and that there is no significant occurrence of hot fluid flow. The other case is
where the measured gradient gives higher values than the calculated gradient, which leads one

to suspect the presence of hot fluid circulation.

From the sandstone/granite interface to 1235 m depth, both the measured and
calculated thermal gradients indicated similar values (Fig. 3f); the average measured gradient
obtained from the temperature logs is 33.11+0.26 °C/km (ranging between 26.26 and 45.45
°C/km), and the average calculated gradient is 32.98+1.66 °C/km (ranging between 26.54 and
50.31 °C/km). These variations result from the thermal conductivity variations of the different
sedimentary facies described in this part of the sedimentary sequence (Fig. 3a and Table 1),
and so the heat transfer in this interval is apparently governed only by conduction without any
hot fluid circulation. Between 1235 and 1190 m in the borehole, the measured gradients are
higher than the calculated ones; the average measured gradient obtained from the temperature
logs is 40.37+1.37 °C/km, whereas the average calculated gradient is 27.06+2.37 °C/km. This
large difference between the two values could be the result of hot fluid circulation in this part
of the borehole. Then from 1190 to 1150 m, the two gradients are again similar, indicating
that the heat transfer is again controlled mainly by conduction. The observation of zones in
which both thermal gradients indicate same values and encircling a hot flowing zone, involve
that this hot fluid don’t disturb the heat-flow of the surrounding formations. Thus, in this case,
hot fluid circulation zones can’t be assimilating to massive heat production zones. The lack of
measurements between 1150 and 1130 m prevents us from determining precisely the nature of

the heat exchanges for this depth interval; nevertheless, the measured gradients deduced from



the temperature logs increase to values in excess of 40.00 °C/km as against around
30.00 °C/km associated with the conductive flux, and so we can assume that hot fluid
circulation occurs in this depth interval. From 1080 m to the top of the formation, the
measured gradient increases gradually to a maximum of 85.15°C/km in the upper
Buntsandstein. At the same time, the calculated gradient associated with the conductive flux
remains below 40.00 °C/km (apart from the last two values near the top at 42.89 and
48.08 °C/km) indicating low thermal conductivity values (Table 1). These observations
suggest a decreasing influence of conduction in the heat transfer from a depth of 1180 m
toward the top of the Buntsandstein and thus an increasing contribution of hot fluid

circulation toward the top of the sandstone formation.

5. Discussion

Comparing the macroscopic flow/non-flow zones, deduced from the thermal gradient
analysis, against the matrix permeability measurements on the one hand and the sedimentary
facies and fracture dispersion along the core on the other, allows us to determine what
components control the hot fluid circulation. Four main situations are depicted: 1) zones with
no indication of heat or fluid transfer (i.e. the thermal gradient curves are quite similar) and
with low measured permeability values; 2) zones with no indication of heat or fluid transfer
and with high permeability values; 3) zones with an indication of heat or fluid transfer and
with high permeability values; and 4) zones with an indication of heat or fluid transfer and

with low permeability values. Each of these is discussed below.

Different fluid pathways may occur. For example, open fractures can provide good
drainage for fluid circulation (Caine et al., 1996); they define a large-scale permeability but

without effect on the matrix structure, which is a transfer property not described by our



permeability measurements. Another pathway can be formed by the porosity network at
matrix scale and be controlled by sedimentary or diagenetic processes or by microfissures; the
permeability of these small-scale networks is measurable with a portable air
minipermeameter. In the cases described below we have combined these two kinds of

structures to explain our results in term of the porous network or fluid pathway.

Non-flow zones (NFZ)

The non-flow zones are characterized by similar values for a) thermal gradients calculated
from thermal conductivity measurements and reflecting conductive heat flux, and b) thermal
gradients measured from the borehole temperature profile and reflecting conductive and
convective heat flux. Three such zones were localized in borehole EPS1 (Fig. 3f): 1) at the top
of the Playa lake level (NFZa), 2) at the bottom of the Playa lake level (NFZb), and 3) in the
bottom part of the formation (NFZc), from 1235 m depth to the granite/sandstone contact. The
first two zones are relatively thick and also associated with low permeability levels. The third
zone (NFZc) incorporates the Permian Sandstone, the Annweiler Sandstone and the first unit
of Braided river facies in the Lower Vosgian Sandstone (Fig. 3a). The lower part of this third
zone is characterized by high permeability values (Fig. 3g), whereas the Annweiler
Sandstone, Permian Sandstone and upper part of the first unit of braided river facies have
relative low permeability values (Table 2). This particular relationship could be induced by
the macroscopic sedimentary facies with crossbeds and thick clayey beds forming a complex
network of impermeable layers that strongly reduces the macroscopic permeability even
though the matrix permeability is high. The highly fractured zone 6 in the Annweiler
Sandstone (Fig. 3d) consists mainly of sealed fractures with a few fractures showing small
free apertures (Fig. 3e) that are insufficient for a network connection to the hot fluid feeding

arca.



Flow zones

The flow zones are characterized by measured thermal gradients (deduced from the
temperature logs) that are higher than the calculated thermal gradients determined from the
thermal conductivity. Three main flow zones are recognized from the top down (Fig. 3f): 1) at
the top of the Buntsandstein (FZa); 2) in the Playa lake facies between 1130 and 1150 m
(FZb); and 3) in the second Braided river facies and the underlying Fluvio-aeolian marginal
erg facies between 1190 and 1235 m (FZc). Although FZa is composed of relative low
permeability sandstone (Table 2), except in the Obere Felsone, the Buntsandstein in this part
of the borehole is marked by the highly fractured zone 1 and the upper part of zone 2 (Fig. 3d)
with many open fractures (Fig. 3e). Moreover, the fracture zones near the transition between
the Muschelkalk and the Upper Buntsandstein are associated with the presence of a major
fault and its damage zone (Fig. 5). Thus it is through fractures that the deep hot fluid source
feeds this flow zone. FZb is characterized by high matrix permeability values (Table 2) and a
very few sealed fractures (Fig. 3e); it is thus controlled mainly by sedimentary or diagenetic
properties and is connected with the deep hot fluid sources through the westward-developed
fault damage zone (Fig. 5). For FZc, the bottom part in the fluvio-aeolian marginal erg facies
(Fig. 3a) has a high matrix permeability (Table 2) and a few sealed fractures (Fig. 3e),
whereas the top, in the braided river facies, has a relative low matrix permeability (Table 2)
and a high fracture density (fracture zone 4, Fig. 3d) with many large free apertures (Fig. 3e)
forming the damage zone developed around a major fault zone. The open fractures in the fault
zone would appear to form a pathway for the deep hot fluids, enabling them to flow widely

into the underlying permeable Fluvio-aeolian facies (Fig. 5).

Fracturing



The open fracture azimuths controlling the flow zone at the top of the Buntsandstein
formation are fairly scattered (Fig. 4c), corresponding to the brittle deformation associated
with the major fault damage zone. The orientation of the open fractures in fracture zone 6,
corresponding to a non-flow zone, is globally N-S (Fig. 4c) and could be described as a
fracture corridor activated during the Oligocene opening of the Upper Rhine Graben. The
orientation of the open fractures in the second fault zone, corresponding to the flow zone of
fracture zone 4, is rather scattered, but with many of the fractures again showing a global N-S
orientation (Fig. 4c). It would thus appear that every open fracture near the two major fault
zones, regardless of the strike, are channels for hot fluid flow. The deeper fracture zones are
farther from the major faults (Fig. 5) and it would appear that, with depth, the globally N-S-
striking open fractures are less well, or not at all, supplied with hot fluid from the major fault
zone. Consequently it would be open fractures with other orientations that channel the hot

fluid in the deeper flow zones.

Conceptual model

Analysis of the thermal gradients in borehole EPS1 has enabled us to locate permeable zones
where hot fluid flows occur at formation scale in the Buntsandstein. Nevertheless different
pathways are needed to explain the observed thermal gradient anomalies (Fig. 5). For
example, an upward-flowing path for these fluids from the deep part of the basin is provided
by fault zones. The damage zones associated with the faults would also enable the upward
flowing fluids to connect with the stratigraphic reservoirs (‘horizontal layers’). Such transfer
paths to the stratigraphic reservoirs are controlled mainly by sedimentary and diagenetic
processes. The reservoirs have high matrix permeability and an excellent horizontal
connectivity and are formed by the Playa Lake and Fluvio-aeolian marginal erg facies.
Conversely the braided river facies, despite high matrix permeability, present a broad network

of thick oblique argillaceous layers which decreases the macroscopic permeability.



The flow paths thus appear as a composite network controlled by ‘sedimentary’
permeability on one hand and by ‘fracture’ permeability on the other. Fracturing associated
with the two fault zones is used by the upward flowing fluids to connect with usable
stratigraphic levels characterized by high matrix permeability with no impermeable
macroscopic layers. This is why the Playa Lake and Fluvio-aeolian marginal erg facies

provide a suitable reservoir that could be easily be connected to a deep hot fluid source.

6. Conclusion

A methodology, based on thermal gradient analysis, is presented for locating hot fluid
flow in a rock formation. The method involves determining the thermal gradient from thermal
conductivity measurements on core samples and also from borehole temperature logs run in
the same borehole. With a heat-flow density calculation and thermal conductivity
measurements, one can apply Fourier's law to calculate the thermal gradient in a rock system
where the heat transfer is assumed to be controlled only by conduction and thus taking into
account lithological heterogeneities. The thermal gradient calculated from a measured
temperature log profile takes into account both the conductive and the convective or advective
part due to fluid circulation. On the one hand, if the thermal gradient deduced from
temperature logs indicates similar values to the thermal gradient calculated with Fourier's law,
the heat transfer is assumed to be controlled solely by conduction in the rock formation and
thus involves no relative hot or cold fluid circulation. If, on the other hand, the thermal
gradient deduced from the temperature logs indicates higher or lower values than that

calculated with Fourier's law, then respectively hot or cold fluid flow could be suspected.

We applied this method to borehole EPS1 (Soultz-sous-Foréts, Upper Rhine Graben)

for which temperature logs and core samples from the Buntsandstein are available. Variations



between the two determined thermal gradient curves revealed three main hot fluid flow levels
alternating with non-flow zones in the sandstone formation. The pattern was then compared
against the fracture distribution, and also against sedimentological analyses determined from
the borehole cores, in order to determine the driving components of the fluid flows. The flow
zones in the Buntsandstein are controlled on the one hand by a macroscopic network with two
major fault zones providing a flow path for the deep heat source and on the other hand by a
matrix network formed during sedimentary or diagenetic processes within the Playa-lake and
Fluvio-aeolian marginal erg facies. At another level in the Buntsandstein sequence, the
sedimentary braided river formations may have high matrix permeability, but would not
support a macroscopic fluid flow; this is due to their macroscopic sedimentary structure of
thick oblique clayey layers that drastically reduce the level’s connectivity and thus its

permeability.

The proposed method can be used to identify the major fluid-flow levels or structures.
Comparing the macroscopic and microscopic data is helpful in determining the relative

contribution of the two networks on fluid flow at formation scale.
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Figure 1. a) Schematic representation of the thermal gradient measurable in a borehole
intersecting a rock formation with no fluid circulation. Variations in the thermal gradient are
caused by lithological variations, and heat transfer is induced by conductive processes. b)
Schematic representation of the thermal gradient in the same rock formation, but where hot
and cold fluid flows occur at different levels; heat input and output induce ‘positive’ and

‘negative’ variations in the gradient.
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Figure 2. a) Location of the Upper Rhine Graben (URG) in Western Europe. b) URG map
(modified from Schumacher (2002)); the black dot and small black dotted line locate borehole
EPS1 and the geological cross-section (c) respectively; the grey lines indicate the temperature
at 1500 m depth based on data from GGA Hannover (Genter et al., 2004; Pribnow and
Schellschmidt, 2000). ¢) Soultz-sous-Foréts geological cross-section (redrawn after Place et

al. (2010)) showing the approximate location of borehole EPS1 at depth.



