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Abstract We consider some practical issues of the determination of the b-value of

sequences of magnitudes with the bootstrap method for short series of length L and various

quantization levels Dm of the magnitude. Preliminary Monte Carlo tests performed with

Dm ¼ 0 demonstrate the superiority of the maximum likelihood estimator bMLE, and the

inconsistency of the, yet often used, bLR estimator defined as the least-squares slope of the

experimental Gutenberg–Richter curve. The Monte Carlo tests are also applied to an

estimator, bKS, which minimizes the Kolmogorov–Smirnov distance between the cumu-

lative distribution of magnitudes and a power-law model. Monte Carlo tests of discrete

versions of the bMLE and bKS estimators are done for Dm ¼ f0:1; 0:2; 0:3g and used as

reference to evaluate the performance of the bootstrap determination of b. We show that all

estimators provide b estimates within 10 % error for L C 100 and if a large number,

n = 2 9 105, of bootstrapped sample series is used. A resolution test done with Dm ¼ 0:1
reveals that a clear distinction between b = 0.8, 1.0, and 1.2 is obtained if L C 200.

Keywords Power law � Bootstrap � b-values � Earthquake series

1 Introduction

The space and time variations of the seismic parameters in a given region are often

considered as indicators of changes in the seismicity regime, eventually announcing the

occurrence of a large earthquake (e.g. Schorlemmer et al. 2010). Among the seismic

parameters whose variations are studied, the most popular are certainly the amplitude,
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A, and the exponent, b, of the Gutenberg–Richter (GR) power-law distribution of earth-

quake magnitudes (Gutenberg and Richter 1944; Main 2000),

Nðm�MÞ ¼ A� 10�bM; ð1Þ

where N(m C M) is the number of earthquakes with a magnitude m greater than or equal to

M. The amplitude A fixes the rate of seismicity while the exponent b—also called the

b-value—controls the proportion of earthquakes with different magnitudes.

Although a value of b & 1 is observed for the global worldwide seismicity (e.g. Kagan

1999), numerous studies report that the b-value may significantly change both in space and

in time (e.g. Wiemer and Benoit 1996; Ayele and Kulhánek 1997; Wiemer et al. 1998;

Gerstenberger et al. 2001; Schorlemmer et al. 2003). Spatial variations are tentatively

considered to depend on the fault heterogeneity (e.g. Meyer et al. 2004), and on the level of

stress and pore pressure in the crust (e.g. Scholz 1968; Wyss 1973; Amitrano et al. 2003;

Schorlemmer et al. 2005). Temporal decreases in the b-value have also been reported

before the occurrence of main earthquakes (e.g. Wyss and Habermann 1988; Nuannin et al.

2005). Other studies present small-scale spatiotemporal mappings of the b-value under

active regions such as volcanoes in order to identify regions of magma migration (Wiemer

and McNutt 1997; Wyss et al. 1997, 2001; Murru et al. 2004; McNutt 2005).

The number of studies devoted to time and space variations of the b-value regularly

increases (e.g. Zöller et al. 2002; Zhao and Wu 2008; Papadopoulos and Baskoutas 2009;

Telesca et al. 2009) while a debate remains on the reality and on the physical significance

of these variations (e.g. Frohlich 2004). Beside the necessity to progress on the physical

understanding of the b-value variations, the reliability of these reported variations gains an

increasing importance. Indeed, many studies recently published use different b estimators

and apply them on eventually short earthquake series (e.g. Bouhadad and Laouami 2002;

comment by Peléez Montilla and Hamdache 2004). Because of the power-law behavior of

the analyzed series of magnitudes, the statistical determination of b poses specific issues

early recognized by Aki (1965) and Utsu (1965) (see also Bender 1983), and more recently

by Goldstein et al. (2004) in the general framework of the determination of power-law

slopes encountered in many complex systems, physical or not. A recent review of the most

popular b estimators, written by Marzocchi and Sandri (2003), presents and discusses the

different statistical estimators of b proposed in the seismological literature. In particular,

these authors point out that the problem of the experimental determination of the b-value

remains open (see for instance the case study in the paper by Papadopoulos et al. (2006))

and that no unique practice is in usage in the seismological community, making difficult to

compare results from independent studies. Further complications arise in studies of regions

with a low seismicity rate (i.e. small A in Eq. 1) where the number of earthquakes is small.

Such a situation is not uncommon, even in highly active tectonic areas where low seis-

micity rate may be observed either in gap regions or in sub-regions to study the seismic

parameters of particular faults (e.g. Zhao and Wu 2008).

In the present paper, we aim at contributing to the assessment of a practical method-

ology for determining b-values from short series of quantized magnitudes. Instead of

assuming a particular model to derive the statistical characteristics of the b estimators, we

use a nonparametric approach, namely the bootstrap method, to directly compute the

probability density distributions of b-values from a single series of magnitudes. Let us

recall that bootstrap consists in producing an ensemble of n magnitude sequences gener-

ated by randomly sampling with replacement the single original data series. A key issue of

this approach is to verify that the bootstrap resampling procedure correctly reproduces the
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statistical variability of the b-values derived from short quantized series. While many

examples exist which demonstrate that bootstrap often leads to sound statistical conclu-

sions, the obvious dependence of the obtained results on the original data series implies

that we have no guaranty of systematic success. This makes the bootstrap a problem-

dependent method, both from the view point of the data available and from the view point

of the parameters to be derived (Young 1994). In the present paper, we proceed by

comparing the results of bootstrapping with Monte Carlo simulations to document the

domain where bootstrap may be efficient to recover the statistical characteristics of b-value

estimators.

The paper is organized as follows: we introduce several classically used b-value esti-

mators and performed Monte Carlo checks of their reliability, both in the continuous and in

the discrete cases. These tests, performed for series of magnitude of length L = 50, 100,

200, and 400, produce probability distributions of the b estimators for both truncated and

quantized series of magnitudes. These probability distributions are further used as refer-

ences which are compared with probability distributions obtained with the bootstrap. In the

last section of the paper, we illustrate the resolution power of the method by applying it to

synthetic series with different b-values. The conclusion summarizes several practical

recommendations.

2 b-value estimators

We now introduce the most two popular estimators of the b-value, namely the linear

regression and the maximum likelihood estimators. In addition, we propose a third esti-

mator based on the Kolmogorov–Smirnov test. In a first step, we present the continuous

version of these estimators.

2.1 Least-squares linear regression estimator (LR)

The linear regression estimator of b is straightforwardly obtained by rewriting Eq. (1) in

the log-log domain to obtain a linear relation between N and M,

log Nðm�MÞ½ � ¼ log A� b�M: ð2Þ

From this equation, fitting a straight line to the log-transformed GR law gives the linear

regression estimate of b (e.g. Okal and Kirby 1995; Triep and Sykes 1997; Main 2000;

Zöller et al. 2002),

bLR ¼
L
PL

i¼1 mi log10ðNiÞ �
PL

i¼1 mi

PL
i¼1 log10ðNiÞ

L
PL

i¼1 m2
i �

PL
i¼1 mi

� �2
; ð3Þ

where L is the number of magnitudes, mi, used in Eq. (2). Equation (3) corresponds to the

standard least-squares regression case discussed in details by Castellaro et al. (2006) who

also give the expressions for the standard deviation associated with bLR. Although

appealing for its simplicity and easy implementation through line fitting software, many

authors point out the pitfalls of the bLR estimator and we refer the readers to the recent

study of Goldstein et al. (2004).
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2.2 Maximum likelihood estimator (MLE)

The maximum likelihood estimator, bMLE, initially proposed by Aki (1965) and Utsu

(1965) is directly derived from the power-law probability density distribution of the

magnitudes m,

pðmÞ ¼ b lnð10Þ10�bðm�mzÞ; ð4Þ

where mz is the threshold magnitude beyond which the recurrence curve is straight. The

probability, lðbjMÞ, that a given series of magnitudes, M¼ fmi; i ¼ 1; . . . ; Lg is a

realization of the stochastic process (4) reads,

lðbjMÞ ¼
YL

i¼1

pðmiÞ: ð5Þ

Inserting (4) in Eq. (5), and taking the log-likelihood L � lnðlÞ gives,

LðbjMÞ ¼ L ln bþ L ln½lnð10Þ� � b lnð10Þ
XL

i¼1

ln mi � mzð Þ: ð6Þ

The MLE of the b-value, bMLE, is such that the log-likelihood is maximum:

o

ob
LðbjMÞ

�
�
�
�
bMLE

¼ 0: ð7Þ

This gives:

bMLE ¼
1

lnð10Þ L�1
PL

i¼1 mið Þ � mz

� �

¼ 1

lnð10Þ m� mzð Þ ;
ð8Þ

where m is the average magnitude of the L events such that mi C mz. The stan-

dard deviation associated with the bMLE has a close analytical form given by Aki

(1965),

rðbMLEÞ ¼
bMLE
ffiffiffi
L
p : ð9Þ

It should be noted that the lnð10Þ factor in Eq. (8) does not appear in the formula given

by Newman (2005). This difference explains the 3.04 power-law slope obtained by this

author for the distribution of California earthquakes instead of the b ^ 1 value published in

seismological studies. A similar lnð10Þ normalizing factor is used by Marzocchi and Sandri

(2003) and Sornette and Werner (2005). The bMLE given by Eq. (8) explicitly depends on

the threshold magnitude, mz, and a wrong choice of this quantity may result in bias in the

bMLE (Wiemer and Wyss 2000). In any case, mz must never—even slightly—be smaller

than the magnitude of completeness. The bMLE is easily obtained through the simple

formulas (8) and (9) and it is recommended for its statistical consistency when applied to

long data series (e.g. Goldstein et al. 2004)
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2.3 Kolmogorov–Smirnov estimator (KS)

A third estimator for b can be obtained by maximizing the Kolmogorov–Smirnov proba-

bility that the data obey a power-law behavior. Although suggested by Goldstein et al.

(2004), the application of the Kolmogorov–Smirnov test to power-law fitting remains

largely ignored and, in the present paper, we shall consider it for comparison with the

popular bMLE. Accordingly, the bKS estimator is defined as the value of b which minimizes

the D-statistic of the Kolmogorov–Smirnov goodness-of-fit norm,

bKS such min
b

sup jNiðmj [ miÞ � NCðmi; bÞj
� �

; ð10Þ

where NC(mi) is the theoretical power law to be compared with the experimental cumu-

lative curve Ni, and the sup function returns the largest value in the list. Contrarily to the

bMLE, there is no close form for the variance of bKS.

3 Monte Carlo assessment of continuous b-value estimators for short magnitude
series

We now test the performances of the continuous b-value estimators presented in Sect. 2 by

applying them to an ensemble of n synthetic magnitude series counting a moderate

number, 50.L. 400, of events. The n b-value estimates obtained for each estimator and

each length L are subsequently used to compute both the mean b and its associated standard

deviation r.

3.1 Generation of the synthetic sequences

The Monte Carlo tests have been performed with synthetic series of magnitudes gen-

erated with the general branching stochastic process called the epidemic-type aftershock

series (ETAS) initially proposed by Ogata (1985, 1988). This model accounts for the

Omori law which controls the aftershock sequences following every earthquake (Utsu

1961; Enescu et al. 2006). The ETAS model counts few parameters: the base level R of

the rate of production of earthquakes, the efficiency a of an earthquake to produce

aftershocks, and controls the decay rate p’ 1 of aftershock productivity. Only after-

shocks with magnitude larger than mz are produced, and, contrary to the classical

definition of aftershocks, the ETAS model allows aftershocks to have a larger mag-

nitude than their triggering earthquake (e.g. Felzer et al. 2002). The total rate of

earthquakes of the model is obtained by summing all aftershock series, ai(t), completed

by a Poissonian process, l(t), representing the seismic activity induced by the regional

tectonic loading.

Figure 1a shows an ETAS magnitude series of NT = 5,000 events generated with the

following values of model parameters: b = 1, mz = 1.5, l = 0.005, R = 0.04,

c = 0.01, a = 0.4, and p = 1.2. Figure 1b shows the inter-event times of the series. The

Gutenberg–Richter curve of this series is shown on the right part of Fig. 1. We find that the

results obtained with ETAS sequences and shown in the remaining of the present paper do

not differ from those obtained with sequences of magnitudes drawn from a homogeneous

power-law model.
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3.2 Monte Carlo assessment of b estimators

The three estimators bLR, bMLE and bKS have been applied to ETAS series with a number

of events L = 50, 100, 200 and 400, and Table (1) gives the mean and standard deviation

for each estimator and each series length. We observe that r decreases as L increases for all

three estimators, indicating that the larger the number of events the smaller the uncertainty

over the determined b-value. This is, for instance, the case of r(bLR) which diminishes by a

factor of & 1.8 from L = 50 to L = 400. The experimental values of r(bMLE) given in

Table (1) are remarkably coherent with the values predicted by Eq. (9).

The results of Table (1) show that the mean values bLR are biased by about 5 % toward

the lower values of b whatever the number of events L. The bias in the determination of

power-law slopes has recently been reviewed by Goldstein et al. (2004) who show that the

biased bLR may advantageously be replaced by the maximum likelihood bMLE. An

extensive comparison of both types of slope estimates performed by Newman (2005)

confirms the generally superior performance of the MLE against the LR one. Indeed, the

bMLE’s fall very near the theoretical value, b = 1 (Table 1), and the associated standard

deviations, r(bMLE), are smaller than the r(bLR) and in full agreement with Eq. (9) which

predicts r(bMLE) = 0.14, 0.10, 0.07, and 0.05 for L = 50, 100, 200, and 400, respec-

tively. The results obtained for bKS are very similar to those for bMLE with mean bKSs not

significantly different from the bMLE estimates and also falling very near the theoretical

value, b = 1 (Table 1). The standard deviations, r(bKS), are slightly larger than the

r(bMLE). However, the results presented here indicate that bKS is also a good statistical

estimator of the b-value, but not as intuitive or simple.

4 Discrete versions of b-value estimators

In the examples of the preceding sections, the magnitudes were assumed perfectly known

with a negligible quantization error Dm ¼ 10�5 corresponding to numerical rounding in the

computer code. In practice, such an accurate determination of the magnitude is never

obtained, and we now assume that the values of magnitudes are quantized in intervals of

width Dm. Consequently, the L values of magnitudes belong to the finite and discrete set

S ¼ fmn ¼ mmin þ nDm for n ¼ 0; . . .;Ng; where mmin is now the smallest quantized

magnitude in the catalogue not to be confused with the magnitude of completeness. This

quantization of the magnitudes will produce a bias in the bMLE if the average magnitude, m,

in Eq. (8) is replaced by the average of the quantized magnitudes (see Appendix for

Table 1 Mean (standard deviation) of the b estimators determined for an ensemble of n = 2 9 105 ETAS
series of length L

L Monte Carlo statistics

bLR ðrÞ bMLE ðrÞ bKS ðrÞ
Eq. (3) Eq. (8) Eq. (10)

50 0.95 (0.24) 1.02 (0.15) 1.02 (0.18)

100 0.95 (0.21) 1.01 (0.11) 1.00 (0.13)

200 0.94 (0.18) 1.00 (0.07) 0.99 (0.08)

400 0.94 (0.14) 1.00 (0.05) 1.00 (0.06)

Numbers in parenthesis are one standard deviation
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details). In the remaining of the paper, we shall no more consider the bLR estimator and we

refer the interested readers to the detailed study by Castellaro et al. (2006).

4.1 Discrete MLE estimators

A first unbiased estimator may be obtained under the assumption that the number, N, of

bins is sufficiently large, which in practice is satisfied whenever N C 10 (Appendix). The

so-derived estimator reads (Bender 1983),

bB ¼
1

lnð10ÞDm
ln 1þ Dm

mb1 � mmin

� 	

: ð11Þ

This estimator is identical to the one used by Tinti and Mulargia (1987).

A second simplification occurs if Dm! 0. Solving this equation leads to the unbiased

b-value estimate given by Utsu (1965),

bU ¼
1

lnð10Þ mb1 � mmin þ Dm
2

� � : ð12Þ

Observe that the expression for bU may also be directly obtained by substituting mmin !
mmin � Dm=2 in the formula for the bMLE (Eq. 8).

4.2 Discrete KS estimator

A discrete version, bKSD, of the KS estimator is obtained by replacing the continuous

probability density NC in Eq. 10 with the discrete probability distribution Pn given by Eq.

17 in Appendix.

4.3 Monte Carlo determination of discrete b estimators

Monte Carlo runs similar to those presented in Sect.3.2 have been performed to assess for

the accuracy of the bB, bU, and bKSD estimators. The results are given in Table 2 for the

three quantization levels Dm ¼ 0:1; 0:2; and 0:3: The bB estimator has constant good

performances whatever the length L and the quantization level Dm. This estimator also has

an associated standard deviation identical to the one for the continuous bMLE. The bU

estimator also displays overall good performances with, however, a slight and progressive

degradation as long as the quantization level Dm increases. The standard deviation for this

estimator remains coherent with the values obtained for bMLE. The discrete version of the

Kolmogorov–Smirnov estimator, bKSD, shows the paradoxical behavior to have better

performances for the roughest quantization level Dm ¼ 0:3. We have no sound theoretical

explanation for this result that we suspect to be due to the conservative nature of the

Kolmogorov–Smirnov test combined with the diminution of the number of degrees of

freedom in the data set as Dm increases. The standard deviation of bKSD is identical to the

one of its continuous version bKS for all tested L and Dm. However, only the bKSD obtained

for L = 400 are correct, and this estimator does not appear reliable for smaller values of L.

5 Bootstrap determination of b

We now touch the main objective of the present paper by addressing the practical deter-

mination of the b-value from a single series of magnitudes with L events. In such a case,
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contrarily to the previous Monte Carlo runs, the mean b and its standard deviation are

evaluated from an ensemble of series obtained by bootstrapping a single original data

series. Assuming that the data series is representative of the whole variability of the

underlying stochastic process, an ensemble of re-sampled series may be constructed

through a combinatorial arrangement of the original data. In such a bootstrap approach, the

original data are considered as if they were the entire unknown population. However, even

a moderate number L of data involves a huge number, LL, of combinations, the full set of

re-sampled series is impossible to be exhaustively visited. In order to tackle this practical

difficulty, Efron (1982) and others proposed the so-called Monte Carlo bootstrapping

which consists in randomly sampling a subset of n series by randomly drawing (with

replacement) data from the initial series. Since each re-sampled series counts the same

number L of data as the original one, multiple replications of a given magnitude are

possible in the resampling. Estimates of the quantities of interest (e.g. b-values) are then

derived from the set of re-sampled series and can be used to compute various statistical

parameters (mean, standard deviation, etc., see e.g. Davison and Hinkley 1997).

Although bootstrap is a popular and commonly used procedure in many fields of sci-

ence, it must be kept in mind that there is no guaranty that bootstrapping always correctly

reconstructs an ensemble of series with statistical properties identical to those for an

ensemble of independent series, see for instance the discussion by Abadie and Imbens

(2008). The statistical convergence of bootstrapping is particularly problematic for data

exhibiting a power-law behavior because of the huge inequitable probability of appearance

between small and large magnitude values. Consequently, the larger the magnitude mn, the

larger the bias expected to alter the number, Nn, of data with this magnitude.

In the present section, we discuss an experimental assessment of bootstrapping in the

particular case of earthquake series with a particular emphasis for short data series. We

Table 2 Mean (standard deviation) of the discrete b estimators determined for an ensemble of n = 2 9 105

Monte Carlo (left half of Table) and bootstrap (right half) ETAS series of length L, and for quantization
levels, Dm ¼ 0:1; 0:2; and 0:3

L Monte Carlo statistics Bootstrap statistics

bB ðrÞ bU ðrÞ bKSD ðrÞ bB ðrÞ bU ðrÞ bKSD ðrÞ

Dm ¼ 0:1

50 1.01 (0.15) 1.00 (0.15) 0.79 (0.18) 1.09 (0.16) 1.09 (0.16) 0.72 (0.21)

100 1.01 (0.10) 1.00 (0.10) 0.90 (0.12) 0.93 (0.08) 0.92 (0.08) 0.71 (0.12)

200 1.00 (0.07) 1.00 (0.07) 0.95 (0.09) 0.94 (0.07) 0.94 (0.07) 0.86 (0.10)

400 1.00 (0.05) 1.00 (0.05) 0.98 (0.06) 1.01 (0.05) 1.00 (0.05) 0.99 (0.07)

Dm ¼ 0:2

50 1.03 (0.16) 1.00 (0.15) 0.91 (0.18) 1.05 (0.14) 1.03 (0.13) 0.80 (0.18)

100 1.01 (0.10) 1.00 (0.10) 0.95 (0.12) 1.00 (0.09) 0.99 (0.09) 0.91 (0.13)

200 1.00 (0.07) 0.99 (0.07) 0.98 (0.08) 1.05 (0.07) 1.03 (0.07) 1.00 (0.09)

400 1.00 (0.05) 0.98 (0.05) 0.99 (0.06) 1.04 (0.05) 1.02 (0.05) 0.98 (0.06)

Dm ¼ 0:3

50 1.02 (0.15) 0.98 (0.13) 0.94 (0.17) 0.92 (0.13) 0.87 (0.12) 0.76 (0.15)

100 1.01 (0.10) 0.97 (0.09) 0.96 (0.12) 1.06 (0.12) 1.01 (0.11) 1.02 (0.15)

200 1.00 (0.07) 0.96 (0.06) 0.98 (0.08) 0.95 (0.07) 0.92 (0.06) 0.92 (0.08)

400 1.00 (0.05) 0.96 (0.05) 0.99 (0.06) 1.07 (0.06) 1.02 (0.06) 1.07 (0.07)

Numbers in parenthesis are one standard deviation
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proceed in two stages: (1) we perform bootstrapping of a single series of magnitudes as in

real situations, and (2) we perform a series of bootstraps to have a glance at the variability

of the results.

5.1 Bootstrapping bB, bU, and bKSD

In order to mimic a real situation where a single short data series is available, we now

apply the bootstrap to a single synthetic ETAS series of length L = 50, 100, 200, 400, and

for quantization levels Dm ¼ 0:1; 0:2 and 0.3. No particular selection is made to obtain the

processes series which were randomly drawn in the ETAS sequence of Fig. 1.

The numerous tests performed in the background of the present study clearly indicate

that the number n of bootstrap series to generate is of a critical importance to obtain

reliable b estimates. In practice, we observed that a huge number n of series is necessary to

derive correct results, and in the present study n = 2 9 105. Although much larger than the

n values suggested in the literature (e.g. Efron 1992), computations with such a large

number of replicas nowadays take a couple of minutes with a laptop computer. The results

are given in Table 2 and show that the standard deviations obtained by bootstrapping are in

good agreement with their Monte Carlo counterparts. Most b estimates depart by less than

10 % from the true value (i.e. b = 1); however, several biases may be as large as 30 % for

the bKSD estimator which also suffers from the highest standard deviates.

We recall that the results of Table 2 are obtained for a single series of magnitude values

for each L, and it is of much importance to further explore the nature of the observed biases

observed. Are the biases systematically corrupting a particular b estimator or are they

specific biases associated with the particular data series analyzed in the example of

Table 2? To document this issue, we performed numerous bootstrap runs with different

initial data sequences in order to detect the occurrence of systematic biases. The results

obtained for a subset of 10 runs are shown in Fig. 2 for the three estimators bB, bU, and

bKSD. This Figure shows a decrease in the standard deviation of the bootstrap estimators

when the series length L increases with values identical to those obtained with Monte Carlo

runs (Table 2). Figure 2 also shows that most bootstrap b estimates have the true b = 1 in

their 95 % confidence interval. It may also be observed that the results obtained for the

three b estimators look very similar. For instance, when highly biased estimates occur, they

are coherently obtained for all three b estimators as, for instance, for Dm ¼ 0:2 and

L = 200 and 400. Since the same series is used to compute bB, bU and bKSD for a given L

0 1000 2000 3000 4000 5000

1

2

3

4

5

M
ag

ni
tu

de

0 1000 2000 3000 4000 5000

Event number

0

5

10

In
te

r-
ev

en
t t

im
e 

(d
ay

s)

(b)

(a)

1 2 3 4 5 6
10

0

10
1

10
2

10
3

10
4

Magnitude

E
ve

nt
 n

um
be

r

Fig. 1 : Synthetic earthquake series produced by the ETAS model (see text for parameter values).
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Fig. 2 Estimates for bKSD, bB, and bU obtained for 10 bootstrap runs (each with 2 9 105 replicated series)
for Dm ¼ f0:1; 0:2; 0:3g, and L = {50, 100, 200, 400}. The thick and thin vertical bars are 1 - r and
2 - r error bars, respectively
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and Dm, the bias may be attributed to the particular realization of the series of magnitudes

and not to a particular b estimator.

The bKSD estimates appear scattered in a wider range than for the bB and bU estimators.

This results in a number of significantly biased estimates about three times larger for bKSD

than for the other two estimators. The abnormal high number of negatively biased esti-

mates obtained for the bKSD estimator at L = 50 and Dm ¼ 0:1 is coherent with the results

of the Monte Carlo runs which give bKSD = 0.78 (Table 2). The bU and bB estimators

perform equally well and slightly larger confidence intervals obtained with bKSD. These

0 0.5 1 1.5 2

b
KSD

 estimator, L = 50

b−value
0 0.5 1 1.5 2

b
KSD

 estimator, L = 100

b−value
0 0.5 1 1.5 2

b
KSD

 estimator, L = 200

b−value
0 0.5 1 1.5 2

b
KSD

 estimator, L = 400

b−value

b = 0.8
b = 1.0
b = 1.2

b = 0.8
b = 1.0
b = 1.2

b = 0.8
b = 1.0
b = 1.2

b = 0.8
b = 1.0
b = 1.2

0 0.5 1 1.5 2

b
B
 estimator, L = 50

b−value
0 0.5 1 1.5 2

b
B
 estimator, L = 100

b−value
0 0.5 1 1.5 2

b
B
 estimator, L = 200

b−value
0 0.5 1 1.5 2

b
B
 estimator, L = 400

b−value

b = 0.8
b = 1.0
b = 1.2

b = 0.8
b = 1.0
b = 1.2

b = 0.8
b = 1.0
b = 1.2

b = 0.8
b = 1.0
b = 1.2

0 0.5 1 1.5 2

b
U

 estimator, L = 50

b−value
0 0.5 1 1.5 2

b
U

 estimator, L = 100

b−value
0 0.5 1 1.5 2

b
U

 estimator, L = 200

b−value
0 0.5 1 1.5 2

b
U

 estimator, L = 400

b−value

b = 0.8
b = 1.0
b = 1.2

b = 0.8
b = 1.0
b = 1.2

b = 0.8
b = 1.0
b = 1.2

b = 0.8
b = 1.0
b = 1.2

Fig. 3 Experimental probability density functions for bKSD, bB, and bU obtained by bootstrapping a single
ETAS series with b = 0.8 (thin line), b = 1.0 (medium line), and b = 1.2 (thick line). The quantization
level Dm ¼ 0:1
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tests indicate that the random re-sampling of the bootstrap implemented in the present

study correctly reproduces the statistical distribution of the b estimator.

5.2 Discrimination of different b-values from short series of magnitudes

As a brief illustrative example of practical application, we apply the different bootstrap

estimators discussed above to distinguish different b-values from experimental series with

Dm ¼ 0:1; L ¼ f50; 100; 200; 400g, and b = {0.8, 1.0, 1.2}. As in the tests discussed in

the preceding sections, a single series of magnitude is used for each value of b and L, and

the number of bootstrap series is n = 2 9 105. The experimental probability density

functions (pdf) of the bKSD, bB, and bU estimators are shown in Fig. 3. All estimators give

poor results for L = 50 with wide pdf making any b discrimination unreliable. In one

instance (bKSD, L = 50), two pdf are almost indistinguishable, and in another one (bU,

L = 50), the b = 0.8 and b = 1.0 pdf appear inverted, giving a lower estimate of b for the

series generated with b = 1. This is understandable in regard to the results in the top part

of Fig. 2, showing that the bias occurring for L = 50 may likely exceed the resolution

necessary to distinguish among b = {0.8, 1.0, 1.2}. The situation appears better at

L = 100 for bB and bU but strong bias remains likely. All estimators give reliable results

for L = {200, 400} with narrow distinguishable pdf.

6 Conclusion

The numerical tests performed in the present study provide some practical guidelines

concerning the practical computation of the b-value with several common estimators. We

considered the case of magnitude series with different lengths L = 50, 100, 200, and 400,

and different quantization levels Dm ¼ 0:1; 0:2 and 0.3 to reach the limits of efficiency of

the bootstrap procedure to obtain reliable estimates of the b-value. The results detailed in

the present study allow to enumerate the following recommendations:

1. The Monte Carlo tests performed with series of exact magnitudes (Sect. 3.2 and

Table 1) confirm that the bLR estimator has a negative bias of more than 5 %, while the

bMLE and bKS estimators appear unbiased whatever the length L of the series. The

standard deviation of bLR is 2 or 3 times larger than the standard deviation of bMLE

which is well-predicted by formula (9). These results agree with the conclusions of

Goldstein et al. (2004) and Newman (2005). We emphasize that the linear least-

squares bLR estimator must not be used to derive b-value estimates.

2. A Monte Carlo evaluation of the quantization of the magnitude values is done (Sect.

4.3) with Dm ¼ 0:1; 0:2 and 0.3 for three discrete version of b estimators (bB, bU, and

bKSD). The results summarized in Table 2 show that the bB estimator performs as well

as the continuous bMLE for all quantization levels and series lengths. Despite slightly

altered performances, the bU estimator may also be considered reliable. Excepted for

L = 400 where it performs well, the bKSD estimator is biased by about 10 %.

3. The bootstrap analysis performed in Sect. 5 and summarized in Table 2 show that

bootstrapping retrieves the Monte Carlo statistics for L = 400 and all quantization

levels. For other values of L, all estimators display slightly degraded performances

with bias of less than 10 % except for the bKSD estimator which may have a bias of

more than 20 %. A large number n = 2 9 105 of bootstrapped series is necessary to

obtain reliable statistical figures (Wehrens et al. 2000).
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4. By repeating bootstrap studies with different data series, we observed that, when

present, a bias simultaneously affects all three b estimators (Fig. 2). This allows us to

conclude that the bias of the estimators is inherited from a sampling bias in the original

data series to be bootstrapped. In such a case, bootstrap fails at correctly reproducing

the statistical variability as obtained with the Monte Carlo method of Sect. 4.3

(unfortunately impossible to apply to real data). This bias problem is mainly observed

for L = 50 and 100.

5. The analysis of short series of magnitude with L B 100 must be considered with much

caution because of the significant probability of occurrence of strong biases. For such

series, the analysis should be supplemented by a Monte Carlo analysis giving the

probability of occurrence of a given value of the bias. This can be practically achieved

by doing a statistical analysis of an ensemble of results like those shown on Fig. 2 for

the relevant values of L and Dm.

6. The last question raised in the present study addresses the resolution which can be achieved

with the bB, bU, and bKSD estimators to distinguish series with different b-values. Our tests

(Fig. 3) indicate that, despite small bias, all estimators are able to resolve b-value

difference of Db ’ 0:2 for L C 200. In order to get reliable results, each time window

must be bootstrapped and a Monte Carlo analysis of possible bias is recommended.
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Appendix: Derivation of unbiased MLEs

In what follows, we assume that the magnitudes are quantized in intervals of width Dm,

that is, the L values of magnitudes forming the analyzed series belong to the finite and

discrete set S ¼ fmn ¼ mmin þ nDm n ¼ 0; . . .;Ng; where mmin is the smallest quantized

magnitude. Equation (4) implies that the probability density distribution of the magnitudes

is a power law,

pðmÞ ¼ A10�bm; ð13Þ

where A is a suitable normalizing constant. A bias in the MLE b-value estimate may appear

if the average magnitude which appears in Eq. (8) is taken as the average of the quantized

magnitudes of the analyzed series. This can be checked by considering the average

magnitude, mn; computed over the n’s bin interval ½mn�1
2
;mnþ1

2
�:

mn ¼ A

Z
m

nþ1
2

m
n�1

2

m10�bmdm

¼
mn�1

2
� mnþ1

2
10�bDm

1� 10�bDm
þ 1

lnð10Þb

¼ mn�1
2
þ Dm

1� 10bDm
þ 1

lnð10Þb :

ð14Þ

In practice, the average magnitude associated with the n’s bin is taken as

mbn ¼ mn ¼ mmin þ nDm, that is, the center of the ½mn�1
2
;mnþ1

2
� interval. The bias, d, is

straightforwardly obtained from Eq. (14),
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d ¼ mbn � mn

¼ Dm

2
� 1þ 10�bDm

1� 10�bDm
� 1

lnð10Þb : ð15Þ

Observe that the bias is constant whatever the interval considered.

The average of the discretized data is given by,

mbN ¼
XN

n¼1

Pnmbn

¼
XN

n¼1

Pnmn þ d ð16Þ

with
P

n=1
N Pn = 1 where the Pn’s are the probabilities integrated over the bins,

Pn ¼
� lnð10Þb

10
�bm

Nþ1
2 � 10

�bm�1
2

Z
m

nþ1
2

m
n�1

2

10�bmdm

¼ 1

10
�bm

Nþ1
2 � 10

�bm�1
2

10�bm
� �m

nþ1
2

m
n�1

2

¼ 10
�bm

nþ1
2 � 10

�bm
n�1

2

10
�bm

Nþ1
2 � 10

�bm�1
2

¼ 10�bðn�1
2
ÞDm 1� 10�bDm

1� 10�bNDm
: ð17Þ

Considering Eq. (16) again, we obtain,

mbN ¼ mN þ
Dm

2
� 1þ 10�bDm

1� 10�bDm
� 1

lnð10Þb : ð18Þ

The computation of the continuous average, mN , involves the same kind of integral as in

Eq. (14) but for the whole interval ½m�1
2
;mNþ1

2
� spanning the range of the quantified

magnitudes. This results in

mN ¼ m�1
2
þ NDm

1� 10bNDm
þ 1

lnð10Þb ; ð19Þ

and, inserting this last expression in Eq. (18), we obtain,

mbN ¼ m�1
2
þ Dm

2
þ Dm10�bDm

1� 10�bDm
� DmN10�bNDm

1� 10�bNDm

¼ mmin þ
Dm10�bDm

1� 10�bDm
� DmN10�bNDm

1� 10�bNDm
:

ð20Þ

In the expression above, the quantity mbN is the average magnitude which is effectively

computed from the data. So, Eq. (20) may be used to derive a value for b (Bender 1983).

Various degrees of approximation may be applied to the general expression (20). The

first one consists in considering that mNþ1
2
!1 (or, equivalently, that N !1) so that the

rightmost term of the second member of Eq. (20) vanishes. This approximation is almost
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always satisfied since generally N C 10. The average of the discrete magnitudes then

reads,

mb1 ¼ mmin þ Dm
10�bDm

1� 10�bDm
: ð21Þ

The b-value estimate obtained by solving Eq. (21) is given by,

bB ¼
1

lnð10ÞDm
ln 1þ Dm

mb1 � mmin

� 	

; ð22Þ

identical to the one used by Tinti and Mulargia (1987).

A second simplification occurs if Dm! 0; which gives,

mb1 ¼ m�1
2
þ 1

lnð10Þb ; ð23Þ

where the asymptotic value for the last term was obtained by applying l’Hospital rule.

Solving this equation leads to the unbiased b-value estimate given by Utsu (1965),

bU ¼
1

lnð10Þ mb1 � mmin þ Dm
2

� � : ð24Þ
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