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Abstract 26 

 27 

Uncertainty analysis in LCA studies has been subject to major progress over the last years. In the context of waste 28 

management, various methods have been implemented but a systematic method for uncertainty analysis of waste-29 

LCA studies is lacking. The objective of this paper is (1) to present the sources of uncertainty specifically inherent to 30 

waste-LCA studies, (2) to select and apply several methods for uncertainty analysis and (3) to develop a general 31 

framework for quantitative uncertainty assessment of LCA of waste management systems. The suggested method is a 32 

sequence of four steps combining the selected methods: (Step 1) a sensitivity analysis evaluating the sensitivities of 33 

the results with respect to the input uncertainties, (Step 2) an uncertainty propagation providing appropriate tools for 34 

representing uncertainties and calculating the overall uncertainty of the model results, (Step 3) an uncertainty 35 

contribution analysis quantifying the contribution of each parameter uncertainty to the final uncertainty and (Step 4) 36 

as a new approach, a combined sensitivity analysis providing a visualization of the shift in the ranking of different 37 

options due to variations of selected key parameters. This tiered approach optimizes the resources available to LCA 38 

practitioners by only propagating the most influential uncertainties. 39 

 40 
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1. Introduction 46 

 47 

Waste management has during the last decade been subject to a range of life cycle assessment (LCA; described in 48 

ISO, 2006) studies e.g. Damgaard et al. (2011), Finnveden et al. (2005), Lazarevic et al. (2010) and Pires et al. 49 

(2011). The purposes of these studies have been to help quantifying, for example, where in the waste management 50 

system the environmental loads and savings are taking place, which technologies are preferable under specific 51 

conditions, or the balance between material and energy recovery. LCA-models specifically focusing on waste 52 

management systems are available; see Gentil et al. (2010) for a review of the models. 53 

 As for any LCA study, results are subject to uncertainty due to the combined effects of data variability, 54 

erroneous measurements, wrong estimations, unrepresentative or missing data and modelling assumptions. 55 

Uncertainty is of two different natures: while epistemic uncertainty relates to an incomplete state of knowledge 56 

(Hoffman and Hammonds, 1994), stochastic uncertainty originates from the inherent variability of the natural world. 57 

Such uncertainty can be spatial (e.g. when the farming practice of land receiving compost varies spatially) or 58 

temporal (e.g. when the performance of a process varies with time). These two different natures of the uncertainty are 59 

usually treated together and referred to by the term “uncertainty”.  60 

 Several authors have suggested typologies to describe the different types of uncertainties in LCAs. A well 61 

established one was introduced by Huijbregts (1998) and divides uncertainties into three groups (Lloyd & Ries, 62 

2007): (1) parameter uncertainties refer to the uncertainty in values due to e.g. inherent variability, measurement 63 

imprecision or paucity of data; (2) scenario uncertainties are due to the necessary choices made to build scenarios; 64 

and (3) model uncertainties are due to the mathematical models underlying LCA calculations. A first objective for 65 

this paper is to identify uncertainties in the particular context of waste-LCA studies. 66 

Numerous methods have been developed to assess uncertainties and gathered under the term “uncertainty 67 

analysis”. Their common goal is to assess the robustness of results, but they employ different mathematical 68 

techniques to reach this goal. Sensitivity analysis evaluates the influence of input changes on a model’s results. The 69 

most common example is scenario analysis where assumptions are changed one-at-a-time. The procedure of 70 

calculating the uncertainty of a result due to all input uncertainties is referred to as “uncertainty propagation”. In 71 

LCA, uncertainty assessments are increasingly included in the interpretation phase, and life cycle inventory (LCI) 72 

databases include increasing amounts of information concerning uncertainty (Finnveden et al., 2009). Lloyd and Ries 73 

(2007) reviewed quantitative uncertainty analysis in 24 LCA studies performed on various products and services. 74 

They found that stochastic modelling was the most frequently-used method to propagate uncertainties in LCA. This 75 

method propagates probability distributions using random sampling like the Monte Carlo analysis. However, they 76 

noted that many of the studies using such modelling seemed to select uncertainty distributions somewhat arbitrarily. 77 
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Other methods have been proposed to more faithfully depict epistemic uncertainties in LCA modelling e.g. by 78 

Benetto et al. (2008) and Heijungs and Tan (2010) using possibility theory (Dubois and Prade, 1988), or Chevalier 79 

and Le Téno (1996) using intervals.  80 

 In LCA-modelling of waste management the amount of data available is still limited for establishing the 81 

inventories of the waste management systems under study (including data on waste composition, collection systems, 82 

source separation systems, recovery and conversion technologies, landfilling, and technologies for utilizing 83 

recovered materials). Few waste management LCAs have employed quantitative uncertainty assessment and these 84 

studies have often been limited to scenario analyses. Uncertainty propagation has been applied to specific waste 85 

management issues: for example Sonnemann et al. (2003) used stochastic modelling to evaluate emissions from an 86 

incinerator followed by a sensitivity analysis by means of correlation coefficients. Kaplan et al. (2009) used the same 87 

approach to evaluate and compare different waste management planning options, while Hung and Ma (2009) 88 

evaluated the relative contributions of the inventory, impact assessment, normalisation and weighting steps. Lo et al. 89 

(2004) applied a Bayesian Monte Carlo method to compare various waste treatment options. Each uncertainty 90 

analysis method has a specific goal and applicability depending on the nature of the model. Therefore the choice of 91 

the right tool may be difficult for LCA practitioners not familiar with uncertainty analysis. 92 

 Consequently we propose to select appropriate methods for waste-LCA models and show their benefits, 93 

complementarities and levels of complexity. The purpose of this paper is (1) to review the uncertainties commonly 94 

encountered in waste LCA-modelling, (2) to select and apply a range of methods for uncertainty analysis to waste 95 

LCA-modelling, (3) to develop a framework for the uncertainty analysis of waste management systems that 96 

combines various methods. The methods in this paper are applied to a case study that compares anaerobic digestion 97 

and incineration of organic kitchen waste in Denmark.  98 

 99 

2. Uncertainties in LCA of waste management systems  100 

 101 

This first section presents and discusses the sources of uncertainty typically encountered in LCA-modelling of waste 102 

management systems, based on the literature and experience acquired over the last decade. The characteristics and 103 

importance of an uncertainty analysis depend on the scope of the study and on the quality of the data available. The 104 

presentation and discussion below may provide valuable input for identifying sources of uncertainty in waste-LCAs, 105 

but each study should be associated with a specific identification. These uncertainties are presented in Table 1 using 106 

the framework introduced by Huijbregts (1998) that divides them into model, scenario and parameter uncertainties. 107 

Other frameworks have been developed that provide different insights into uncertainties in LCA such as by Reap et 108 

al. (2008) and Williams et al. (2009). Concerning the choice between attributional and consequential approaches or 109 
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the choice of the impact categories included in the assessment, we realise they are issues but they were considered 110 

methodological choices rather than uncertainties. 111 

 112 

2.1. Model uncertainties 113 

Model uncertainties arise from the mathematical equations used to model reality. Generic problems in LCA are 114 

presented first, followed by model uncertainties more specifically found in waste management (See Table 1 for an 115 

overview of processes). 116 

 117 

Intrinsic limitations of LCA: In most of the current models, emissions are aggregated over time and space before 118 

impact assessment is performed. This loss of spatial information generates uncertainty regarding the potential 119 

damage to the environment. Therefore several site-dependent impact assessment models are being developed, e.g. by 120 

Finnveden and Nilsson (2005) and Mutel and Hellweg (2009), but they are not yet implemented in commonly used 121 

methods. Furthermore, most of the LCA models assume linear processes, both for inventory and impact assessment, 122 

which may not reflect reality. For example, the effect of an emission on the environment and human health is 123 

modelled as linear while it often depends on the concentration in the environment and the period of exposure rather 124 

than on the total amount released over years (Ekvall et al., 2007). These simplifications are recognized by LCA-125 

practitioners and sometimes incorporated in the discussion section. 126 

 127 

Impact assessment method: Life-cycle impact assessment (LCIA) methods hold large uncertainties because they 128 

attempt to model the impacts of each substance on humans and the environment by quantifying substance fate, 129 

pathways through the environment and potential effects. Several studies have illustrated the large discrepancies in 130 

results obtained with different LCIA methods e.g. Pizzol et al. (2011a, 2011b).  131 

 132 

Models of waste treatment facilities in general: There are different approaches to model emissions from a waste 133 

treatment, as presented by Gentil et al. (2010). Emissions are usually modelled as process-specific (e.g. the emission 134 

of nitrous oxides from combustion does not depend on waste composition and thus can be modelled as a function of 135 

the quantity of entering waste) or waste-specific (e.g. the emission of mercury from an incinerator is a function of the 136 

quantity of entering mercury).  137 

 138 

Model for waste collection: Driving, idling and compaction during collection of waste can be modelled in different 139 

ways: some models are very detailed and take into account the number of stops and the truck capacities, while others 140 
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have generic emissions per tonne and/or per kilometre related to the diesel consumption for serving a certain urban 141 

area. 142 

 143 

Model for biodegradation: Models for degradation in biological treatments take different approaches: some assume 144 

generic emissions and quantities of biogas and products while others calculate them based on waste composition and 145 

technical parameters as described for example by Boldrin et al. (2011). The same applies to landfill gas generation: it 146 

can be based for example on a first-order decay of degradable organic carbon as suggested by IPCC (2006), with 147 

varying numbers of waste fractions and properties. In addition, some models include site-specific gas collection, 148 

utilization and oxidation rates, while others assume default values. These modelling choices influence significantly 149 

the way emissions are quantified and consequently the environmental profile of the biological treatment or the 150 

landfill.  151 

 152 

Model for leaching: Leaching models are needed when applying materials on soil: in landfills (e.g. Damgaard et al., 153 

2011), when using residues from thermal treatment (e.g. Toller et al., 2009) or residues from biological treatment 154 

(e.g. Boldrin et al., 2010). They estimate the amounts of pollutants transferred to soil and groundwater, or generic 155 

emissions per tonne of waste. They are usually based on experimental leaching tests but the behaviour of each 156 

pollutant depends highly on the geochemistry of the solid which is much more complex, with variations as a function 157 

of pH, Eh, mineral phase solubility, etc. Therefore simplification of these processes generates model uncertainty. 158 

 159 

Model for use of waste on land: Several models have been developed to quantify direct and avoided impacts of 160 

application of treated organic waste on agricultural land. Even if they have the same general approach, they use 161 

slightly different assumptions and calculation methods, e.g. with respect to plant uptake and the substitution of 162 

fertilizer production. Furthermore, agricultural practice and climate conditions affect nutrient cycling. This leads to 163 

variations in the results obtained when the same scenario is simulated in different models as shown in the comparison 164 

presented by Hansen et al. (2006). 165 

 166 

2.2. Scenario uncertainties 167 

Scenario uncertainties arise from the construction of scenarios when choices have to be made to model the different 168 

options under study. 169 

 170 

System boundaries: The decision as to which processes to include in the assessment and which not to include is a 171 

key aspect in LCA and the reliability of its results. According to the ISO 14040 (ISO, 2006) all significant processes 172 
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should be included and the decision of leaving out processes, called a cut-off, should be justified. The most-frequent 173 

way of aggregating inventories is the process-LCA technique: a bottom-up approach which uses process-specific 174 

data gathered at the plant’s scale and chains of processes (the top-down approach, called input-output-LCA, IO-LCA, 175 

is explained further). In process-LCA the practical difficulty is to evaluate a priori if a process will be significant and 176 

should be included in the assessment (Finnveden et al., 2009). This decision should be based on a scientific 177 

justification of the small environmental relevance of an input or output stream in comparison with the environmental 178 

relevance of the main streams: however this is often poorly justified (Suh et al., 2004). In waste management, the 179 

treatment of ashes or gypsum produced in incineration plants is often disregarded, but when making this choice, 180 

modellers must be certain of the absence of high-value metals in these ashes. Another common cut-off is the 181 

exclusion of capital goods from inventories. Frischknecht et al. (2007) have investigated the contribution of capital 182 

goods to several environmental impacts for a range of products and services of the database ecoinvent v1.2. In their 183 

study, capital goods contributed 6.6% of the acidification potential for incineration and 45% for sanitary landfills. 184 

The underestimation of impacts induced by cut-offs is often called a truncation error and several studies 185 

have tried to quantify it by using IO-LCA (Lenzen and Treloar, 2003). The IO-LCA originates from the input-output 186 

analysis and is a top-down technique: it uses sectorial monetary transactions to model exchanges between industries 187 

in a national economy (Suh et al., 2004). Thus where process-LCA has finite boundaries, IO-LCA includes all 188 

interconnections between industries. This means that capital goods are systematically included in IO-LCA, e.g. the 189 

impacts of the construction of an incineration plant, but also higher orders of service like the impacts of the transport 190 

sector for bringing materials to the construction site. In this way, IO-LCA gives a more complete impact assessment 191 

than process-LCA. However it suffers from other uncertainties in particular the high level of aggregation of data and 192 

the conversion between monetary and physical flows (Reap et al., 2008). A hybrid LCA technique has been 193 

introduced to take advantages of process-LCA and IO-LCA, see Suh et al. (2004) and Finnveden et al. (2009) for 194 

further details. 195 

Another system boundary issue in consequential LCA is to consider all consequences of a decision. In the 196 

example of paper recycling, waste management systems can be expanded to take into account the effects of saved 197 

biomass: the newly available quantities of wood produced by forestry can be sent to energy production which will 198 

substitute for energy production from fossil fuels. Merrild et al. (2008) have shown that this change in system 199 

boundaries had a determining effect on assessing the environmental performances of paper recycling over 200 

incineration. 201 

 202 

Representativity of technologies: Technology data are usually available only for a specific process or plant. This 203 

may limit the value of the data with respect to geographical and temporal representativity (e.g. ten year-old data from 204 
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a single composting plant may not represent the composting plants operating in a large region for the next 20 years). 205 

Furthermore, recovered materials may be traded on a market, maybe a world market, and since the plant receiving 206 

the recovered materials cannot be known, a world average technology should be used. However, such data are 207 

usually not available. For example, with respect to paper recycling, Merrild et al. (2008) compared global warming 208 

impacts when combining low- and high-performing recycling plants to low- and high-performing incineration 209 

technologies with energy recovery. This led to a large range of results, favouring in some cases recycling and in 210 

others incineration.  211 

 Moreover, LCA generally tries to assess future situations, typically for periods of 20 to 30 years in the case 212 

of waste management systems, while LCIs are normally based on former measurements. Spatial representativity is 213 

also questionable, especially when the study intends to evaluate a technology for an entire region or country. This 214 

applies to waste technologies but also to every process of material and energy productions included in available 215 

databases. They all have spatial, temporal and technological variabilities. Williams et al. (2009) suggested ways to 216 

improve the analysis of them by using IO-LCA, while Bovea et al. (2010) performed a sensitivity analysis where two 217 

different databases were tested: the ecoinvent database and the integrated waste management (IWM) model. 218 

 When performing a consequential study, the practitioner must decide on the marginal technology, meaning 219 

the technology affected by the change. This marginal technology is most often difficult to select and depends largely 220 

on the extent of the change. Testing different alternatives is usually recommended, as done for example by Gentil et 221 

al. (2009) who implemented two different marginal electricity productions in their waste management systems. 222 

 223 

Waste composition: Waste composition data are expensive to produce and only few data sets are available. As for 224 

technology data, this limits the geographical and temporal representativity of the data available and adds significant 225 

uncertainty if waste composition data are used outside their geographical and temporal window.  226 

 227 

Time horizon of inventories: In LCA, all inputs should be traced back to raw materials and all outputs should be 228 

emissions to nature. In many cases, the definition of this second type of system boundaries is relatively simple. 229 

However in systems implying a time perspective like landfilling, forestry and agriculture, the definition of these 230 

boundaries is more complex (Finnveden et al., 2009). In these processes, emissions occur over long periods of time, 231 

e.g. carbon emissions to air from landfill or nitrogen leaching from application of compost on land. The choice of 232 

this time horizon will directly affect the inventories of these processes.  233 

In particular, landfill emissions of pollutants to water, air and soil occur over hundreds of years (Manfredi 234 

and Christensen, 2009). On the one hand, if a time horizon of 100 years is chosen, the toxic impacts from landfilling 235 

will appear very low. On the other hand, the impacts from emissions of pollutants leaching over hundreds of years 236 
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cannot be put at the same level as the impacts from emissions occurring during the first 100 years. As a temporary 237 

solution, Hauschild et al. (2008) suggests to sum these impacts in separate toxicity categories and let the LCA 238 

practitioner discuss this issue in the weighting and interpretation phases.  239 

The inclusion of carbon sequestration is directly related to the selection of a time boundary. When waste is 240 

landfilled or applied on land, a fraction of its biogenic carbon will not be degraded and emitted to the atmosphere. 241 

Depending on the study, this carbon sequestration is either accounted as an avoided emission of CO2 or else not 242 

considered (Christensen et al., 2009).  243 

 244 

Time horizon of impact characterisation: This is the time period during which the fate, exposure and effects of 245 

each emission are modelled to calculate characterisation factors. A hundred years is a common choice but if other 246 

time horizons were selected, characterisation factors of emissions could vary significantly. For example the 247 

characterisation factors of methane for global warming rises from 7.6 (kg CO2-eq / kg CH4) for 500 years, to 25 for 248 

100 years and up to 72 for 20 years (Ramaswamy et al., 2001). This has a particularly large influence on results from 249 

waste-LCAs because of the methane emissions from anaerobic decomposition of organic materials common in waste 250 

management systems.  251 

 252 

Allocation: Allocation is one of the two ways of handling multi-functional processes (Finnveden et al., 2009). Waste 253 

management is often dealing with multi-functional processes such as an incineration plant which has the functions of 254 

treating waste, producing energy and recovering materials. In most cases, waste-LCAs will use systems expansion to 255 

deal with these processes by accounting for the substitution of primary energy and virgin material productions. 256 

However, system expansion is a demanding work and it is common to perform allocation for higher-layer processes 257 

for example in a combined heat and power plant. 258 

 259 

Normalisation and weighting: The impact assessment phase involves many choices, for instance the normalization 260 

and weighting methods to use and their reference periods and scales. This will have a substantial influence on the 261 

importance given to each impact category and consequently on the final recommendation.  262 

 263 

2.3. Parameter uncertainties 264 

Each specific parameter in the model has inherent uncertainty and/or variability. The ones particularly relevant in the 265 

context of waste management systems are listed in Table 1; some of them will be further discussed in the case study.  266 

 267 

 268 
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3. Methods for uncertainty analysis of waste-LCA studies 269 

 270 

3.1 Selection of methods 271 

Various methods for sensitivity and uncertainty analyses have been developed in scientific and engineering 272 

modelling; as presented by Saltelli et al. (2006). No single best method can be applied to all models: the choice 273 

depends on different criteria, namely the nature of the model, the requirements of the analysis and the resources 274 

available especially in terms of software (Morgan and Henrion, 1990). In this study, methods were selected that are 275 

adapted to different levels of available resource and to different waste-LCA models, that are relatively simple in 276 

terms of continuity and complexity.  277 

It is fundamental to start by defining the requirements of the analysis in terms of expectations. A common pitfall 278 

is to perform an analysis without having a clear goal. Morgan and Henrion (1990) identified three key questions, 279 

which we address in the following sections: 280 

- Sensitivity analysis: computing the effect of changes in input on model results, 281 

- Uncertainty propagation: calculating the uncertainty of the model result due to all input uncertainties, 282 

- Uncertainty contribution analysis: investigating where the output uncertainty originates. 283 

 284 

3.2. Sensitivity analysis 285 

Sensitivity analysis aims at identifying sensitive inputs. Local one-at-a-time approaches were selected because 286 

calculations are simple to implement and results easy to communicate, which is why these techniques have been the 287 

most used among the scientific community for years (Saltelli et al., 2006). Like any method, they have limitations in 288 

particular related to non-linearity in waste-LCA models but they provide useful first approximations. Other methods 289 

including global sensitivity analysis are presented by Saltelli et al. (2006) and might be more adapted to other types 290 

of models.  291 

 292 

3.2.1 Contribution analysis 293 

Contribution analysis is used very often, although not always identified as a sensitivity analysis. It is a self-evident 294 

method presented by Heijungs and Kleijn (2001). Contribution analysis consists in decomposing the LCA result 295 

(characterised, normalised or weighted impact) of a system into its individual process contributions, providing a 296 

quick overview of the important contributors. Processes that have both positive and negative impacts have to be 297 

subdivided into their sub-components, to avoid neglecting important processes. For example an incineration process 298 

might have an impact close to zero, but as the net total of high direct impacts (fossil CO2 emission from burning of 299 
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plastic) and high avoided ones (produced electricity substituting fossil CO2 emissions from a coal-burning power 300 

plant). 301 

 302 

3.2.2 Perturbation analysis 303 

Perturbation analysis is used to assess the influence of parameter uncertainties (Heijungs and Kleijn, 2001). The aim 304 

is to determine the effect of an arbitrary change of single parameter values on the model’s result. Each parameter 305 

value is individually varied by a small increment. The variation of the result is calculated and two ratios are 306 

particularly interesting to generate:  307 

- The sensitivity coefficient (SC), which is the ratio between the two absolute changes.  308 

    
parameter

result
SC




      (1) 309 

- The sensitivity ratio (SR), which is the ratio between the two relative changes. If a parameter has a SR of 2, 310 

it implies that when increasing its value by 10%, the final result is increased by 20%.  311 

    

parameterinitial

parameter

resultinitial

result

SR

_

_





     (2) 312 

 313 

3.2.3 Scenario analysis 314 

This sensitivity analysis consists in testing different options individually and observing the effect of these changes on 315 

the final result. The new results obtained for each scenario can easily be compared with the baseline results to 316 

identify the uncertainties that change some scenario result significantly or the ranking between alternatives.  317 

 318 

3.2.4 Combined sensitivity analysis  319 

In this analysis two parameters are varied simultaneously and the change in the results is observed, for example the 320 

difference between the two scenarios’ results. The aim is to find the conditions for which the ranking of scenarios 321 

may change. This can be visualized in a two dimensional contour graph with contour lines showing the difference 322 

between the two scenarios. Scenario and model uncertainties could be analysed as well by performing separate 323 

calculations using different scenarios and models. 324 

 325 

 326 

 327 
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3.3 Uncertainty propagation 328 

Uncertainty propagation consists in propagating input uncertainties to calculate the result’s uncertainty. Before 329 

propagating them, the practitioner has to choose a representation for these input uncertainties. A short introduction to 330 

the question of uncertainty representation is given in section 3.3.1. For this case study, the probability theory was 331 

adopted and a sampling propagation method selected. An analytical method could as well have been implemented, 332 

e.g. the first order approximation from the Taylor series as explained by Morgan and Henrion (1990), but it is 333 

impractical in the case of waste-LCA models because it requires lots of resources to express each LCA impact as a 334 

function of all input parameters. Hong et al. (2010) performed analytical uncertainty propagation in an LCA study. 335 

Among sampling methods, the Monte Carlo analysis was chosen because it is the most common method and 336 

the calculation was fast enough. If larger data or more complex modelling was used, a more efficient sampling 337 

method could be used such as the Latin Hypercube technique (Morgan and Henrion, 1990). 338 

 339 

3.3.1 Choice of representation 340 

Two main approaches can be chosen to represent uncertainties: the probability and possibility theories. In the case 341 

study presented below, it is assumed that all uncertainties can be represented by single probability distributions, even 342 

though there may be little data to substantiate these distributions in a statistical sense. If so-called “subjective” 343 

probability distributions (Savage, 1954) are selected for representing each uncertain parameter, then uncertainty 344 

propagation can be performed using the Monte Carlo method.  345 

It is recognized, however, that this is not necessarily the case, especially considering that in real-world 346 

waste LCAs, epistemic uncertainties (reflecting paucity of information) generally dominate and therefore the 347 

modeller must rely on information sources such as expert (or personal) judgement, literature data, scarce 348 

measurements, etc. Alternative tools have been developed for representing uncertainty with an aim of consistency 349 

with available information. Such tools range from simple min-max intervals (as in Chevalier and Le Téno, 1996) to 350 

fuzzy sets (Dubois and Prade, 1988) or, more generally, imprecise probabilities (Shafer, 1976; Walley, 1991). 351 

Benetto et al. (2006) introduced the question of uncertainty representation in the field of LCA. As shown by many 352 

researchers (e.g. Ferson and Ginzburg, 1996), the arbitrary selection of probability distributions in the presence of 353 

incomplete information, especially associated with the common hypothesis of parameter independence, leads to 354 

severe underestimation of the likelihood of outlier results. Yet in a context of aversion to risk (e.g. of greenhouse gas 355 

emissions), outliers are of significant importance for the decision-making process. 356 

 357 

 358 

 359 
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3.3.2 Uncertainty propagation for all scenarios 360 

Monte Carlo analysis consists in randomly sampling the probability distribution of each uncertain parameter and then 361 

computing the result using the model. By performing this procedure a large number of times, a frequency histogram 362 

is constructed from the results and a probability distribution representing model results can be computed. While 363 

independence between model parameters is assumed below, dependencies between parameters can be accommodated 364 

using rank correlation methods (Connover and Iman, 1982). Adopting the point of view of Morgan and Henrion 365 

(1990), scenario and model uncertainties were not modelled in the probabilistic modelling: decision variables and 366 

value parameters are better assessed by performing separate uncertainty propagations using several « plausible » 367 

scenarios and models in the calculations, to reflect the variability of possible outcomes. 368 

 369 

3.3.3 Discernibility analysis 370 

While uncertainty propagation yields the probability distribution of the LCA results for each scenario, discernibility 371 

analysis provides the distribution of the difference between the scenarios’ results (Heijungs and Kleijn, 2001). This 372 

can be important because some uncertainties may have the same influence on the scenarios but no influence on the 373 

differences between them. For instance, if two scenarios have the same consumption of electricity and the electricity 374 

mix is uncertain, both scenario results will have uncertainty but this should not affect the difference between them. 375 

Therefore the final decision should not be affected by this uncertainty.  376 

 377 

3.4 Uncertainty contribution analysis 378 

The uncertainty contribution analysis, also called key-issue analysis, consists in calculating the contribution of each 379 

parameter uncertainty to the calculated uncertainty (Heijungs et al., 2005). This method is different from perturbation 380 

analysis (Section 3.3.1) because input uncertainties are included in the calculation. An analytical calculation based on 381 

the first order approximation of the Taylor series was chosen because a simplified method (called later the SC 382 

method) was identified and applied. Other methods based on sampling uncertainty propagation can also be used, as 383 

described by Morgan and Henrion (1990). This method is based on the additive property of variances and uses the 384 

first-order terms of a Taylor Series expansion. Considering two variables x and y independent and normally (or at 385 

least symmetrically) distributed and z a function of these variables, the variance of z can be approximated by: 386 

)var(*)var(*)var(

22

y
y

f
x

x

f
z 












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










      (3) 387 

Thus, the relative contribution of the uncertainty in x to the uncertainty in z is: 388 
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This contribution can be calculated analytically by defining the LCA result as a function of all parameters or by 390 

approximating 
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 considering that the variations of x are relatively small. In this case the SC calculated 391 

using Equation 1 can be used: 392 
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    (5) 393 

The results obtained with the analytical method and the SC method are compared in Section 4.4, to validate the SC 394 

method. 395 

 396 

4. Uncertainty modelling of a case study  397 

 398 

A hypothetical case study was set up in order to implement the methods, illustrate their features, identify their 399 

complementarities and propose a procedure for uncertainty quantification in waste LCA-modelling. While the focus 400 

was not on intense data collection, processes were taken from the EASEWASTE database (Kirkeby et al., 2006). For 401 

the purpose of clarity, the study only presents results for the impact category global warming. Hence normalisation 402 

and weighting are excluded, although these may be important steps contributing to uncertainty in LCA modelling. 403 

The latest characterisation factors from the IPCC (Forster et al., 2007) were used, on a 100-year time horizon.  404 

The two systems were modelled in the waste-LCA tool EASEWASTE (Kirkeby et al., 2006) and global 405 

warming factors (GWF) of all sub-processes were calculated. GWF are defined as the impact on global warming of 406 

the waste management system and expressed in kg CO2-eq per tonne of waste treated. They were directly used for 407 

one-at-a-time sensitivity analyses, while they served as inputs in a MATLAB (R2010b version) program to perform 408 

the uncertainty propagation and the combined sensitivity analysis.  409 

 410 

4.1 Case study  411 

The case study aims at evaluating the benefits of sorting organic kitchen waste at the source and sending it to 412 

anaerobic digestion (AD), versus incineration together with residual waste. The functional unit is the collection and 413 

treatment of 1 tonne of organic kitchen waste from households in Denmark in 2011. 414 
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 The waste composition used originates from a sorting analysis of residual household waste in Denmark in 415 

2001 by Petersen and Domela (2003). Organic waste was source-sorted from this waste with an assumed efficiency 416 

of 60% and, as erroneously-sorted materials, 5% of other combustible and non-combustible fractions. This 417 

corresponds to a composition of the sorted waste of 62% of vegetable food waste, 19% of animal food waste and 418 

18% of ten other waste fractions. The detailed distribution as well as chemical composition and physical 419 

characteristics of each material fraction are presented in Table A.1 of supplementary information (Riber and 420 

Christensen, 2006a, 2006b). 421 

 In the first scenario, the organic waste is routed with the residual waste to an incineration plant, while in the 422 

second scenario the organic waste is sorted at the source and brought to an AD plant. Both plants are located 10 423 

kilometres from the collection area and the vehicles transporting the waste use diesel and subscribe to the Euro3 424 

exhaust standard. Two different collection technologies were used: organic waste collected as part of the residual 425 

waste used 3.27 L diesel/t, while separately collected organic waste used 7.2 L diesel/t. 426 

 The incineration plant used to represent incineration in Denmark is based on data from the plant located in 427 

Aarhus. It is a grate incinerator with mixed flue gas cleaning (two lines with wet, one with semidry) and has 20.7% 428 

electricity and 74% heat recovery based on the lower heating value (LHV) of the waste. Bottom ashes are transported 429 

50 kilometres away to be landfilled, while air pollution control residues and fly ashes are shipped to Norway to be 430 

utilized for neutralization of waste acid. 431 

The AD plant represents the state of the art in Western Europe (Møller et al., 2010). The gas produced is 432 

used in a gas turbine which recovers electricity (39% efficiency) and heat (46%). The digestate, which has 97% 433 

water content, is transported 30 km away to be used on agricultural land where it substitutes for the uses of N, P and 434 

K fertilizers (Bruun et al., 2006). Carbon sequestration was accounted for. In both scenarios, the energy system is 435 

based on marginal electricity and heat productions from hard coal. Concerning the heat production, the substituted 436 

technology is a combined heat and power (CHP) plant located in Aarhus and the allocation is made based on exergy 437 

(See Cherubini et al., 2011 for a review of allocations methods). 438 

 439 

4.2 Results of sensitivity analysis 440 

4.2.1 Contribution analysis 441 

Both scenarios have beneficial GWF: -357 kg CO2-eq/t waste collected for the incineration scenario and -301 kg 442 

CO2-eq/t for the AD scenario. Figure 1 presents the contributions of all processes to the two scenarios’ GWF and the 443 

details for the three processes that contribute both to direct and avoided emissions.  444 

 The two scenarios obtain almost equal benefits. The AD scenario obtains benefits from both the energy 445 

recovery (-398 kg CO2-eq/t waste) and from the land application of digestate because of the substitution of fertilizer 446 
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production (-60 kg CO2-eq/t waste) and carbon sequestration (-41 kg CO2-eq/t waste). Incineration obtains 21% more 447 

benefits from energy recovery than AD because the LHV of the collected waste is 4.8 GJ/t while the energy 448 

contained in the biogas produced anaerobically is 2.9 GJ/t waste. In addition, the heat recovery is much higher in the 449 

incinerator (74%) than in the gas engine (46%). At the same time, the AD scenario has larger loads than the 450 

incineration scenario. While the direct loads from the waste treatments are almost equal, the difference between the 451 

two scenarios’ loads originates from the use on land of the digestate, which generates emissions of nitrous oxides and 452 

a consumption of diesel.  453 

 454 

4.2.2 Perturbation analysis 455 

Sensitivity coefficients (SC) and sensitivity ratios (SR) were calculated for all parameters of the two systems. 456 

Variations of +10% and -10% were generated for 55 parameters and only the highest of the two SR values was 457 

retained. Figure 2 presents, for each of the two scenarios, SR higher than 0.1 as absolute values. SC results are not 458 

presented; they will be used in the uncertainty contribution analysis.  459 

 This analysis highlights the parameters that have a large influence on each scenario’s GWF. For example, 460 

the electricity recovery of the incinerator has a SR of 0.81 on the GWF of the incineration scenario. This means that, 461 

when increasing this parameter by 10%, the benefits of the incineration scenario in terms of GWF increase by 8.1%. 462 

Yet this is only a relative result: it does not show anything about how uncertain the result is, because it does not take 463 

into account the actual uncertainty of the input values. 464 

 The analysis shows that three parameters have SR values greater than 1 (as absolute value) for the 465 

incineration scenario, meaning that a variation of their value induces a larger relative variation in the scenario’s 466 

GWF. These parameters are all related to the waste composition. For the AD scenario four parameters have such 467 

high SR: the methane yield and the electricity recovery are parameters of the digester, while the methane potential 468 

and water content are properties of the treated waste. It can be noted that the water content has a significant negative 469 

influence on both scenario performances as it dictates how much solid is available for energy production, since the 470 

amount of waste is depicted as wet weight.  471 

 The use of SR is particularly useful for evaluating the sensitivity of the model to parameter uncertainties and 472 

comparing them in order to select important parameters for the uncertainty propagation. It also helps to identify 473 

needs for further data collection. Between the two ratios, SC is quite easy to communicate but is not well suited for 474 

comparing the relative influence of parameters. SR enables comparison of the sensitivities of the model to different 475 

parameters. 476 

 477 

 478 
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4.2.3 Scenario analysis 479 

The impacts of several scenario and model uncertainties on both scenarios’ GWF were investigated individually by 480 

the use of scenario analyses. The results are presented in Figure 3.  481 

 482 

LCIA method: The use of the IPCC global warming potentials (GWP) from 2001 (Ramaswamy et al., 2001) did not 483 

have a significant impact on the two GWF (less than 1% variation). 484 

 485 

Time horizon of impacts: The IPCC reports provide global warming potentials for three time horizons: 20, 100 and 486 

500 years. The results were tested for the two other time horizons and this choice changed the results significantly. 487 

Indeed, as the time horizon increases, the GWP of methane decreases. Consequently emissions of fossil CO2 become 488 

more and more important compared to the other emissions. When changing the time horizon from 100 to 20 years, 489 

the GWF of the incineration scenario became 27% more beneficial, while the one of the AD scenario increased by 490 

only 9%. This is due to direct emissions of methane from the AD plant. With a time horizon of 500 years, the 491 

incineration scenario became 10% less beneficial, while the AD scenario became 1% more beneficial. 492 

 493 

Carbon sequestration: The choice of not including carbon sequestration decreased the AD scenario benefits by 494 

14%, accentuating the predominance of the incineration scenario. 495 

 496 

Choice of electricity substitution: In this consequential LCA, we assumed that the electricity production was 497 

marginal electricity produced from coal, emitting 1.042 kg CO2-eq/kWh. Both scenarios were tested with a marginal 498 

electricity production in natural gas CHP plants with steam turbine emitting 0.616 kg CO2-eq/kWh. Benefits of the 499 

two scenarios decreased: -25 % for the incineration scenario and -39 % for the AD scenario. 500 

 501 

Choice of heat production: In the two scenarios heat production was modelled as substituting for heat production at 502 

a coal-fired CHP plant. The allocation between electricity and heat production at the CHP plant was based on exergy, 503 

so the substituted heat production had low carbon emissions: 0.194 kg CO2-eq/kWh. A high carbon-emitting heat 504 

production was modelled to observe the effects on the two scenarios’ GWF. A heat production at a hard coal 505 

industrial furnace emitting 0.472 kg CO2-eq/kWh was used. The incineration scenario obtained 77% more benefits 506 

and the AD scenario 35% more because the incineration plant recovered more heat than the AD plant. This choice 507 

changes the results significantly but does not change the scenario ranking. 508 

 509 
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Choice of material substitution: Another process of the EASEWASTE database was tested for the substituted 510 

production of nitrogen fertilizer. The original fertilizer production process emitted 15.33 kg CO2-eq/kg N while the 511 

second one emitted 16.34. The net benefit of the AD scenario increased by 1.4%, which did not modify the scenario 512 

ranking. 513 

 514 

Choice of incineration process: The incineration plant used to represent incineration in Denmark was based on data 515 

from the plant located in Aarhus. To observe the impacts of this choice, another incineration plant, located in 516 

Copenhagen, was used. This plant is a grate incinerator with wet flue gas cleaning and has 17.9% electricity and 78% 517 

heat recovery based on the waste LHV. The benefits of the incineration scenario decreased from -357 to -272 kg 518 

CO2-eq/t waste, due to both lower electricity substitution and higher energy and material consumptions in the plant. 519 

 520 

Choice of AD plant: The anaerobic digestion could as well be changed to examine the influence of this choice on 521 

the results. However this treatment is parameterized to a great extent in the EASEWASTE model, using potential 522 

methane yields for each material fraction as well as the content of methane in biogas and the energy recoveries of the 523 

gas engine. As all parameters were tested in the perturbation analysis this change of technology was not tested.  524 

 525 

Finally the contribution analysis showed that the treatment of bottom ashes and APC residues did not have a 526 

significant impact on the GWF so no other option was studied for these residues. Minor material productions were 527 

also discarded for the same reasons. The inclusion of capital goods could not be assessed due to lack of data. 528 

 529 

4.2.4 Combined sensitivity analysis 530 

The water content and heating value (of dry matter) were chosen to perform the combined sensitivity analysis. 531 

Variations of these two parameters within chosen intervals were implemented and the difference between the AD and 532 

the incineration scenario computed. The contour lines (50 kg CO2-eq/t) are presented in Figure 6. The cross shows 533 

the initial conditions for which incineration is favourable. If both parameters are varied, the relative benefits s change 534 

and a shift of ranking between the two options can be visualized.  535 

 536 

4.3 Results of uncertainty propagation 537 

4.3.1 Choice of representation 538 

For the purpose of stochastic modelling, probability distributions were selected for each model parameter. As the 539 

purpose of this case study was to illustrate the different methods, these statistical parameters were mainly based on 540 

expert judgement. They are presented in Table 2. Section 3.3.1 discusses how other tools that are better suited for 541 
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representing expert judgement than single probability distributions, can be implemented in the uncertainty 542 

propagation. 543 

 For consumptions of materials and energy as well as for emissions, log-normal distributions were adopted, 544 

as they exclude negative value. For these parameters, geometric standard deviations were assumed using a method 545 

adapted from Frischknecht et al. (2005). The other parameters are waste properties and technical parameters of the 546 

plants, such as methane yields and electricity recoveries, for which normal distributions were selected. Two 547 

parameters reflect the uncertainty of the distribution between waste fractions. While all parameter uncertainties were 548 

assumed to be independent, it is acknowledged here that the heating value and methane potential could be partially 549 

correlated when considering biowaste. Finally, the uncertainties on methane potential and yield were applied only to 550 

the two biowaste fractions (vegetable and animal) which contribute to more than 95% of the total methane 551 

production of the source-separated organic waste.  552 

 553 

4.3.2 Uncertainty propagation for all scenarios 554 

The 24 parameters obtaining a SR higher than 0.05 in the perturbation analysis were implemented in a Monte Carlo 555 

calculation with 10 000 iterations. Figure 4 presents results as relative frequency histograms as well as cumulative 556 

relative frequency plots.  557 

 The histogram in Figure 4a distributes the calculated GWF relative frequencies between bins of 25 kg CO2-558 

eq/t. This is useful for visualising the spread of GWF values around their means. The GWF of the incineration 559 

scenario obtains a mean of -359 kg CO2-eq/t with a standard deviation of 104 kg/t, while the AD scenario obtains a 560 

mean of -292 kg/t with a standard deviation of 76 kg/t. The cumulative relative frequencies in Figure 4b display the 561 

same results in a different form which allows the identification of percentiles. For example, as indicated by the dotted 562 

lines, the probability that the incineration scenario should obtain a benefit of at least 400 kg CO2-eq/t is 34%, while 563 

the probability is only 9% for the AD scenario. In a similar fashion, 95% confidence intervals can be determined 564 

with this plot: [-570; -166] (kg CO2-eq/t) for the incineration scenario and [-450; -154] for the AD scenario. 565 

 566 

4.3.3 Discernibility analysis 567 

The dispersed frequency diagrams obtained for both scenarios do not inform about the relative predominance of one 568 

option over the other, because several parameters were used in the two scenarios, e.g. the electricity system and the 569 

water content. Therefore a discernibility analysis was performed to compute the difference between the GWF of the 570 

AD and the incineration scenarios. The relative frequency histograms and the cumulative relative frequency plots are 571 

presented in Figure 5. The difference between the two scenarios is 67 kg CO2-eq/t with a standard deviation of 74 572 
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kg/t. Using the cumulative probability distribution, it can be observed that AD obtains more benefits than 573 

incineration in 18% of the cases. 574 

 575 

4.4 Uncertainty contribution analysis 576 

The contributions of the 24 parameter uncertainties to the overall uncertainty were calculated using both the 577 

analytical (using Equation 4) and the SC methods (using Equation 5), for the two scenarios and the difference 578 

between them. The results obtained by the two methods vary by less than 0.5 percentage points, confirming that the 579 

simpler SC method can be used as a good approximation of the contributions. It should be noted that the analysis was 580 

performed using Equation 3 even though some of the parameters were not symmetrically distributed and that the first 581 

order terms of the Taylor series produce only an approximation. Consequently the sum of all contributions never 582 

reaches 100%. 583 

 The results obtained with the analytical method are presented in Table 3. The water content appears to be 584 

predominant as it contributes to more than half of the uncertainty of both scenarios. However, as it has similar 585 

negative effects on both scenarios, water content has less influence on the difference between them. The other 586 

predominant parameters with respect to uncertainty of the incineration (resp. AD) scenario are the heating value and 587 

the electricity recovery (resp. methane content, yield and electricity recovery) because they determine the energy 588 

recovery of each treatment.  589 

 With respect to the final decision, the three most predominant parameters are the heating value and water 590 

content of the waste and the electricity recovery from incineration. This analysis makes it possible to consider both 591 

data input uncertainties and sensitivities of the model in order to identify the parameter uncertainties of primary 592 

importance.  593 

 594 

5. Discussion  595 

 596 

Seven methods for quantifying the uncertainty of LCA results have been selected and applied in a comparative study 597 

of two waste management systems. This study was reduced to two scenarios and one impact category but it led to 598 

more general findings presented in this section. The presented study provides valuable insight into the possibilities 599 

offered by each method as well as its limitations and the difficulties of implementation. Based on the 600 

complementarities of these methods, as illustrated by the case study, we suggest that a tiered approach be used for 601 

quantitative uncertainty assessment of waste LCA. The general approach is illustrated in Figure 7. Following an 602 

introductory step (Step 0), the sequential approach contains four separate steps: (Step 1) evaluating the sensitivity of 603 

the result to each individual source of uncertainty, (Step 2) representing parameter uncertainty based on available 604 
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information and calculating the uncertainty of the model’s results, (Step 3) analysing the origins of this uncertainty, 605 

(Step 4) visualising the shift of scenario ranking due to combined variations of key parameters. These steps start 606 

from a coarse evaluation and evolve to achieve a more precise analysis of the uncertainty in each step. As the 607 

complexity of the calculations and the amount of data required increase, the analysis can be applied on a decreasing 608 

number of scenarios, impact categories or input uncertainties, in order to cope with resource limitations. In addition it 609 

should be kept in mind that model uncertainties can rarely be assessed quantitatively but should be considered. They 610 

can be accommodated by using several plausible alternative models and aggregating the results in a single restitution.  611 

 612 

Step 0: Contribution analysis 613 

This preliminary analysis should be performed on all scenarios and impact categories. All LCA results are 614 

disaggregated to visualize contributions of every process to loads and savings. However, this analysis does not 615 

provide any information on the sensitivity or the uncertainty of the results. Figure 1 provided an example of a 616 

contribution analysis. 617 

 618 

Step 1: Sensitivity analysis 619 

A proper sensitivity analysis should always be performed on as many input uncertainties as possible. The method 620 

suggests that parameter uncertainties are assessed by perturbation analysis (step 1a) comparing SR. Figure 2 621 

provided an example of a perturbation analysis using SR. Model and scenario uncertainties should be analysed by 622 

scenario analysis (step 1b) and not propagated in a stochastic modelling. Figure 3 provided an example of a scenario 623 

analysis. This should be performed on all scenarios and as many impact categories as possible. It does not require 624 

extra data collection and gives valuable information on how the model and the scenarios react to variations in the 625 

input. Nevertheless it does not give any information on the uncertainty of the final result because it does not reflect 626 

the actual input uncertainties. Sensitivity analysis is very valuable to find where more data collection is needed, 627 

estimate the robustness of results and reduce the number of parameters for the uncertainty propagation. 628 

 629 

Step 2: Uncertainty propagation 630 

The choice of representation is of primary importance since the uncertainty in model results depends largely on the 631 

uncertainties assigned to input parameters and scenarios (Step 2a). In this paper, we suggest adopting probabilistic 632 

modelling techniques, that are widely used. The shortcomings of these methods in a context of incomplete 633 

information have been referred to in section 3.3.1 and are currently being addressed in ongoing research. 634 

As shown in the case study, if single probability distributions are assumed for all uncertain parameters, a 635 

Monte Carlo analysis can be used to propagate these uncertainties into that of the model results. This analysis 636 
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provides the modeller with the uncertainty relative to each scenario’s results through parameter uncertainty 637 

propagation (Step 2b). The uncertainty of the final decision is obtained by considering the difference between two 638 

alternative scenarios in the discernibility analysis (Step 2c). Considering the amount of data required in order to 639 

inform the uncertainties pertaining to input parameters, it is recommended to use the results of the sensitivity analysis 640 

to reduce the number of uncertainties implemented in the uncertainty propagation. The number of scenarios and 641 

impact categories investigated can also be reduced to the most critical ones. 642 

Results of both steps can be presented as relative frequency histograms and cumulative relative frequencies. 643 

Figures 4 and 5 provided an example of an uncertainty propagation using a Monte Carlo analysis. Results of the 644 

discernibility analysis (step 2c) might be easier to communicate by presenting only the percentage of cases where 645 

one option obtains more favourable results than the other, especially if there are more than two scenarios.  646 

 647 

Step 3: Uncertainty contribution analysis 648 

This analysis tells us which parameter uncertainties are the most important and can help prioritize further efforts in 649 

data collection. The contribution of each parameter’s uncertainty to the overall uncertainty can be easily 650 

approximated with Equation 5 using results of steps 1a and 2a. Table 3 showed the result of an uncertainty 651 

contribution analysis. 652 

 653 

Step 4: Combined sensitivity analysis 654 

This analysis illustrates the conditions under which one attractive scenario is favoured with respect to another 655 

attractive scenario. An example of this result was presented in Figure 6. The result of this analysis is relatively easy 656 

to communicate and comparisons between more than two scenarios can be performed by adding more plots in the 657 

same figure. However only two parameters can be varied at a time. Finally, implementation of this analysis requires 658 

additional resources, either to parameterize the results or to run a large number of simulations. 659 

 660 

The proposed sequential method for quantitative uncertainty assessment should be applied to all waste-LCA studies. 661 

However, it can be reduced to steps 0 and 1 if time and available resources are limited, because these steps only 662 

require an LCA model and no additional data. To implement waste properties and composition, the use of a 663 

dedicated tool for waste management, e.g. the EASEWASTE model, is recommended because parameters can be 664 

changed easily. For example, the definition of biogas production potentials of different waste fractions is facilitated 665 

in a dedicated waste-LCA model. Step 2 requires the use of additional features to implement a Monte Carlo analysis. 666 

This has already been implemented in some LCA models. Then step 3 can easily be implemented by using results 667 

from steps 1 and 2. Finally step 4 requires substantial additional resources. 668 



 23 

 669 

6. Conclusions 670 

 671 

LCA of waste management is subject to significant sources of uncertainty of diverse origins. In order to improve the 672 

reliability of the results, uncertainties must be addressed in a systematic and quantitative fashion. We described, 673 

based on a decade of experience, where the main uncertainties can be found within LCA –modelling of waste 674 

management systems. A systematic sequential method to evaluate uncertainty in LCA studies of waste management 675 

systems has been suggested and exemplified. It includes four steps with increasing calculation complexity and data 676 

requirement. Modellers can adapt this method to their resources and should first focus on their requirements to 677 

choose the right tools. 678 

 It has been recognized in this paper that in real-world situations of waste LCAs, the modeller is typically 679 

confronted with different types of information regarding parameter uncertainties. The information might be “rich” 680 

(when a significant number of measurements are available), in which case a statistical analysis of the data can 681 

provide probability distributions describing parameter variability, or the information can be “poor” (when expert 682 

judgement, literature data, scarce measurements or gross estimates have to be used), in which case alternative 683 

uncertainty-representation tools may seem more consistent with available information (e.g. fuzzy sets and probability 684 

boxes). As shown previously by e.g. Baudrit et al. (2006) and Dubois and Guyonnet (2011), different modes of 685 

uncertainty representation can be propagated jointly in model calculations. Hence forthcoming research will focus on 686 

how such methods can be applied to uncertainty representation and propagation in waste LCAs. This will avoid the 687 

arbitrary assignment of single probability distributions in presence of incomplete information and hence the common 688 

confusion between stochastic and epistemic uncertainties. 689 

690 
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TABLES 904 

 905 

Table 1: Uncertainties in LCA of waste management systems 906 

 Process Model uncertainty Scenario uncertainty Parameter uncertainty 

General 

  

Linearity of emissions 
 

Modelling of waste- and process-

specific emissions 

 

  

System boundaries 
 

Database for energy and material 

productions (e.g. Ecoinvent) 
 

Time horizon of inventories 
 

Allocation 
 

 

Impact 

assessment 

  

Model for substances' fate and effects 

to calculate characterisation factors.  
 

Linearity of response 

Time horizon of impact 

characterisation 
 

Normalization method and reference  
 

Weighting method and reference  
 

 Characterisation factors 

Waste 

composition 

  

  

 

Choice of a specific waste 

composition 

  

Waste fractions distribution; chemical 

composition of fractions (e.g. water 

content; heating value) 

Collection 

  

Model for collection  

  

Choice of a collection scheme (e.g. 

separate or common collection) 

Consumption of fuel; emissions from 

fuel combustion;  

source-sorting efficiencies 
 

Transport     Distance; consumption of fuel; 

emissions from fuel combustion 
 

Material 

recovery facility 

  

  

Choice of a specific technology 

  

Sorting efficiencies; consumption of 

materials and energy 
 

Thermal 

treatment 

  

  

  

Choice of a specific technology (e.g. 

dry/wet flue gas cleaning with 

SCR/SNCR) 
 

Choice of specific technologies for 

outputs' treatments 

Electricity and heat recoveries; 

consumption of materials and energy; 

emissions of substances to outputs and 

environment; water content of 

produced ashes; consumption of 

materials and energy for outputs’ 

treatments 
 

Biological 

treatment 

  

  

 

Model for biodegradation (e.g. based 

on CH4-potential or on hemi-celluloid 

material) and CH4/ CO2 ratio in biogas 
 

  

Choice of a specific technology  

  

 

Degradation rates of organic matter; 

nitrogen distribution; gas cleaning 

removal efficiencies; composition of 

biogas (CH4/CO2); consumption of 

materials and energy; emissions of 

CH4 and energy recovery in gas engine 
 

Use on land 

  

  

Model for plant uptakes and fertilizer 

substitution  
 

Model for leaching 
  

Choice of a specific technology (e.g. 

on sandy or loamy soil) 
 

 

Substitution rate of compost / 

fertilizers (%); carbon binding (%); 

distribution of N; run-off; leaching 
 

Landfill Model for gas generation 
 

Model for leachate generation and 

leaching to groundwater 

  

Choice of a specific technology (e.g. 

conventional or bioreactor) 
 

Choice of gas utilization 
 

Choice of a technology for leachate 

treatment 

  

Gas composition (elements; CH4, 

CO2); collection, utilization and 

oxidation rates; leachate composition, 

collection rate; removal efficiencies at 

leachate treatment; consumption of 

materials and energy; emissions and 

energy recovery of gas engine 
 

Recycling  Choice of specific technologies for the 

recycling plant and the avoided 

material production 
 

 

Substitution rate; consumption of 

materials and energy of recycling 

plant and substituted process 
 

907 
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Table 2: Assumed probability distributions of parameters used in the case study (AD: anaerobic digestion, UOL: use 908 

on land, TS: total solid, ww: wet weight, VS: volatile solids, LHV: lower heating value, GHG: greenhouse gas)  909 

Parameter Mean a Unit Distribution St. dev. or GSD2 

or half-width b 

Ratio of vegetable out of food waste 76.1 % Normal 6 

Part of plastic fraction in waste 1.12 %  Normal 0.25 

Water content of waste 67.1 % ww Normal 4 

Heating value of dry waste  19.21 MJ / kg TS Normal 1 

Methane potential of waste 450 m3 CH4 / t VS Normal 30 

Diesel consumption for collection of organic waste 7.2 L/ t Log-normal 1.16 

Distance from digester to use on land 30 km Log-normal 2.33 

GHG emissions of diesel production 3.108 kg CO2-eq / L Log-normal 1.14 

Electricity consumption of incineration 65.7 kWh / t Log-normal 1.10 

Electricity recovery of incineration 20.7 % of LHV Normal 2 

Heat recovery of incineration 74 % of LHV Normal 5 

CH4 content of biogas in digester 63 % Normal 3 

Electricity consumption of digester 48.9 kWh / t Log-normal 1.10 

Electricity recovery from gas in digester 39 %  Normal 2 

Heat recovery from gas in digester 46 %    Normal 4 

Methane potential yield in digester 80 % Normal 5 

Unburnt methane in digester 2 %  Log-normal 1.10 

Water content of digestate 3 % of ww Uniform 2 

Carbon binding in soil 13 % of C  Normal 2 

N fertilizer substitution 40 % of N  Uniform 10 

GHG emissions from N fertilizer production 15.33 kg CO2-eq / kg Log-normal 1.23 

N2O emissions from use on land 1.4 % of N in digestate Log-normal 1.43 

GHG emissions of electricity system 1.042 kg CO2-eq / kWh Log-normal 1.07 

GHG emissions of heat system  0.194 kg CO2-eq / kWh Log-normal 1.12 

a
: Geometrical mean for lognormal distributions 910 

b
: Standard deviation for normal distributions, square of geometric standard deviation for lognormal distributions, 911 

half of the width of the interval for uniform distributions 912 

913 
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Table 3: Contribution of each parameter uncertainty to the uncertainties of each scenario and to the difference 914 

between them, obtained with the analytical method 915 

Parameter Incineration 

scenario 

Anaerobic 

digestion 

scenario 

Difference 

between 

scenarios 

Ratio of vegetable out of food waste 9.9 % 4.6 % 4.9 % 

Part of plastic fraction in waste 0.0 % 0.0 % 0.0 % 

Water content of waste 66.5 % 56.4 % 14.0 % 

Heating value of dry waste  10.4 % - 20.5 % 

Methane potential of waste - 9 % 9.5 % 

Diesel consumption for collection of organic waste - 0.0 % 0.1 % 

Distance from digester to use on land - 1.4 % 1.5 % 

GHG emissions of diesel production - 0.3 % 0.2 % 

Electricity consumption of incineration 0.1 % - 0.2 % 

Electricity recovery of incineration 7.2 % - 14.2 % 

Heat recovery of incineration 1.6 % - 3.1 % 

CH4 content of biogas in digester - 0.0 % 0.0 % 

Electricity consumption of digester - 0.1 % 0.1 % 

Electricity recovery from gas in digester - 4.8 % 5.1 % 

Heat recovery from gas in digester - 0.7 % 0.7 % 

Methane potential yield in digester - 7.9 % 8.4 % 

Unburnt methane in digester - 0.1 % 0.1 % 

Water content of digestate - 2.4 % 2.5 % 

Carbon binding in soil - 0.7 % 0.7 % 

N fertilizer substitution - 1.3 % 1.4 % 

GHG emissions from N fertilizer production - 0.7 % 0.7 % 

N2O emissions from use on land - 2.4 % 2.5 % 

GHG emissions of electricity system 0.5 % 1.5 % 0.1 % 

GHG emissions from heat system  1.1 % 0.3 % 0.9 % 
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FIGURES 918 

 919 

  

Figure 1: Contribution analysis of the global warming 

factors of the two scenarios. Rejects refers to ashes for 

the incineration scenario and to digestate for the 

anaerobic digestion scenario. 

Figure 2: Parameter sensitivity ratios with respect to 

global warming factors of the incineration and the 

anaerobic digestion scenarios. Only sensitivity ratios 

greater than 0.1 as absolute value are presented (GHG: 

greenhouse gases). 
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 921 

Figure 3: Global warming factors obtained for the two scenarios when implementing different choices in the 922 

scenario analysis. 923 

924 
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 925 

  

Figure 4: Relative frequency histograms and cumulative 

relative frequency distributions for the global warming 

factors of the two scenarios. The dotted lines indicate the 

percentiles of cases achieving a benefit of more than 400 

kg CO2-eq /t in both cases, i.e. a global warming factor 

lower than -400 kg/t. 

 

Figure 5: Relative frequency histograms and cumulative 

relative frequencies for the difference between global 

warming factors of the anaerobic digestion and the 

incineration scenarios. A positive difference implies that 

incineration is preferable to anaerobic digestion. 
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 927 

Figure 6: Contour lines of the difference between the global warming factors of the two scenarios (in kg CO2-eq / 928 

tonne) with two parameters variations. The bottom right area shows the conditions where incineration should be 929 

preferred while in the top left anaerobic digestion should be favoured. 930 

 931 

 932 

Figure 7: A sequential approach for qualitative uncertainty analysis. 933 
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