

Polar organic chemical integrative sampler (POCIS) uptake rates for 17 polar pesticides and degradation products: laboratory calibration

Imtiaz Ibrahim, Anne Togola, Catherine Gonzalez

▶ To cite this version:

Imtiaz Ibrahim, Anne Togola, Catherine Gonzalez. Polar organic chemical integrative sampler (POCIS) uptake rates for 17 polar pesticides and degradation products: laboratory calibration. Environmental Science and Pollution Research, 2012, pp.1-9. 10.1007/s11356-012-1284-3. hal-00749855v1

HAL Id: hal-00749855 https://brgm.hal.science/hal-00749855v1

Submitted on 8 Nov 2012 (v1), last revised 14 Aug 2013 (v2)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Polar-Organic-Chemical-Integrative Sampler

- 2 (POCIS) uptake rates for 17 polar pesticides
- 3 and degradation products: laboratory
- 4 calibration
- 5 Imtiaz Ibrahim^{a,b}, Anne Togola^a, Catherine Gonzalez^b.

Authors

6

7

8

9 I.Ibrahim

- 10 ^aBureau de recherche géologiques et minières (BRGM), Laboratory Division, 3
- 11 avenue Claude Guillemin, 45100 Orléans, France
- 12 bEcole des mines d'Alès (EMA), LGEI Center, 6 Avenue de Clavieres, 30319 Alès,
- 13 France
- 14 <u>i.imtiaz@mines-ales.fr</u>
- 15 Tel: (+33)4.66.78.27.22; Fax: (+33)4.66.78.27.01

16

- 17 A.Togola
- ^aBureau de recherche géologiques et minières (BRGM), Laboratory Division, 3
- 19 avenue Claude Guillemin, 45100 Orléans, France
- 20 <u>a.togola@brgm.fr</u>
- 21 Tel: (+33)2.38.64.38.36; Fax: (+33)2.38.64.39.25.
- C. Gonzalez
- 23 ^bEcole des mines d'Alès (EMA), LGEI Center, 6 Avenue de Clavieres, 30319 Alès,
- 24 France

27

- 25 <u>catherine.gonzalez@mines-ales.fr</u>
- 26 Tel: (+33)4.66.78.27.65; Fax: (+33)4.66.78.27.01

Abstract

- Polar organic chemical integrative samplers (POCIS) are useful for monitoring a wide range of
- chemicals, including polar pesticides, in water bodies. However, few calibration data are available,
- 30 which limits the use of these samplers for time-weighted average concentration measurements in
- 31 an aquatic medium. This work deals with the laboratory calibration of the pharmaceutical

configuration of a polar organic chemical-integrative sampler (pharm-POCIS) for calculating the sampling rates of 17 polar pesticides ($1.15 \le log K_{ow} \le 3.71$) commonly found in water. The experiment, conducted for 21 days in a continuous water flow-through exposure system, showed an integrative accumulation of all studied pesticides for 15 days. 3 compounds (metalaxyl, azoxystrobine and terbuthylazine) remained integrative for the 21-day experiment. The sampling rates measured ranged from 67.9 to 279 mLday⁻¹ and increased with the hydrophobicity of the pesticides until reaching a plateau where no significant variation in sampling rate is observed when increasing the hydrophobicity.

<u>Keywords</u>: laboratory calibration, passive sampling, POCIS, polar pesticides

I

43 Abbreviations

Polar organic chemical integrative sampler	POCIS
Pharmaceutical polar organic integrative sampler	Pharm-POCIS
Pesticide polar organic chemical integrative sampler	Pest-POCIS
Time weighted average	TWA
Desethylatrazine	DEA
Desisopropylatrazine	DIA
Desethylterbuthylazine	DET
Solid phase extraction	SPE
Polyethersulfone	PES
Ultra performance liquid chromatography	UPLC
Relative standard deviation	RSD
Reaction monitoring mode	MRM

Introduction

Over the past decades, many organic contaminants have been found in different aquatic environments. Among these pollutants, pesticides are mainly derived from agricultural activities (Schwarzenbach et al. 2006). Runoff over fields and infiltration caused by precipitation are the major causes of the presence of these agrochemicals in surface- and ground waters (Beltran et al. 1993). Pesticide pollution can be not only problematic for human health, considering drinking water, but also for aquatic organisms.

52 Continuous monitoring of pesticide concentrations in aquatic environments is necessary for 53 assessing the water quality (Liess et al. 1999), whereby sampling is a crucial step. The 54 conventional methods of screening for aquatic pollutants rely on the analysis of grab samples, but 55 these techniques generally do not provide appropriate information on variability of micro-56 pollutants concentration in water. Spot sampling provides only a snapshot of pollutant 57 concentrations at the time of sampling and is often insufficient for detecting and quantifying trace 58 levels of contaminants in water. In addition, the concentration of pollutants can fluctuate 59 depending on environmental conditions, and frequent sampling is required to monitor contaminant 60 levels. However, increasing the sampling frequency means taking a larger number of water 61 samples, which is time consuming, laborious and expensive.

In environmental analysis, the development and application of monitoring techniques based on passive sampling offer a new and alternative approach to monitoring programmes that rely on collecting spot samples. Passive sampling, in contrast to spot sampling, enables determination of the time-weighted average (TWA) concentration of water contaminants over long sampling periods, permits the detection of trace and ultra-trace contaminants by the *in-situ* pre-concentration of pollutants, and finally offers significant handling, use and economic benefits compared with

Various types of samplers exist with different design characteristics for the sampling of aquatic organic pollutants of different polarities. Among the passive samplers available, the most widely used for sampling polar organic pollutants are the Chemcatchers®(Kingston et al. 2000, Greenwood et al. 2007, Vrana et al. 2007) and polar organic chemical integrative samplers (POCIS).POCIS consists of a solid sequestration phase (sorbent) enclosed between two hydrophilic microporouspolyethersulfone (PES) membranes (porosity 0.1 μm). The surface area of POCIS is 41 cm², and two configurations are commercially available: pharmaceutical-POCIS

76 (pharm-POCIS) and pesticide-POCIS (pest-POCIS) (Alvarez et al. 2004).

conventional grab-sampling techniques (Kot et al. 2000).

62

63

64

65

66

67

68

77 The sorbent in POCIS samplers is usually based on polystyrene divinylbenzene combined with 78 active carbon in the case of pest-POCIS, or Oasis™ HLB sorbent in pharm-POCIS. This sampler 79 can retain a large range of polar organic pollutants from different classes of organic compounds, 80 such as pesticides, non-ionic detergents, polar pharmaceuticals, or natural and synthetic hormones 81 (Alvarez et al. 2004; MacLeod et al. 2007; Li et al. 2011; Pesce et al. 2011). Alvarez et al. 82 (2004)reported that pharm-POCIS is more suitable for organic polar compounds with multiple 83 functional groups, and Mazzella et al. (2007) mentioned that it is more convenient for the sampling 84 of basic and neutral herbicides. There are some practical advantages in using pharm-POCIS for 85 monitoring polar organic contaminants, including the use ofless solventsthan for recovering 86 analytes from pest-POCIS (Li et al. 2011).

A detailed description of these tools and their respective applications is available in the literature

88 (Alvarez 1999; Alvarez et al. 2004; Petty et al. 2004; MacLeod et al. 2007; Mazzella et al.

89 2007; Arditsoglou and Voutsa 2008; Li et al. 2011; Pesce et al. 2011).

- The POCIS approach has been used as a screening tool for determining the presence of possible
- 91 sources and relative amounts of organic contaminants in surface water and wastewater This
- approach allows the detection of new compounds such as pharmaceuticals, detergent identified as
- 93 "emerging pollutants", that cannot be detected by spot sampling, (Petty et al. 2004).
- However, the use of POCIS as a quantitative tool for determining TWA concentrations requires
- 95 calibration studies for the estimation of sampling rates of the targeted compounds. To date, POCIS
- sampling rates have been determined for only few pesticides(Mazzella et al. 2007; Togola and
- 97 Budzinski 2007; Arditsoglou and Voutsa 2008; Li et al. 2011). The theory of passive sampling was
- described earlier as well (Alvarez et al. 2004; Mazzella et al. 2007; Togola and Budzinski 2007).
- The objective of this study was to determine the sampling rates of 17 polar pesticides (Table 1) by
- pharm-POCIS in a laboratory-calibration experiment, in order to use this sampler as a quantitative
- 101 tool for TWA concentration measurements in different aquatic environments. The studied
- $102 \qquad \text{compounds} \quad \text{were} \quad \text{atrazine,} \quad \text{simazine,} \quad \text{desethylatrazine} \quad \text{(DEA),} \quad \text{desisopropylatrazine} \quad \text{(DIA),} \quad \text{(DIA)$
- desethylterbuthylazine (DET), terbuthylatrazine, diuron, isoproturon, chlortoluron, linuron,
- propyzamide, alachlor, metolachlor, acetochlor, metalaxyl, penconazole and azoxystrobine.

Material and methods

Chemicals and materials

105

106

123

- All pesticides analytical standards (purity >98%) were provided by Dr. Ehrenstorfer (CIL, Sainte
- 108 Foy La Grande, France). Individual solutions of pesticides (500 mg L⁻¹) were prepared in
- acetonitrile and stored in the dark at −18° C. Standard working mixtures of pesticides (3 mg L⁻¹)
- 110 prepared in acetonitrile were used for the experiment. Deuterated labelled compounds, simazine-
- d10 (98%) and atrazine-d5 (97.5%) were obtained from Dr.Ehrenstorfer (see above) and were used
- for recovery control and analytical control, respectively. Acetonitrile and methanol (HPLC grade)
- were obtained from Fisher Chemical (Illkirch, France) and formic acid was from Avantor
- 114 (Deventer, the Netherlands). Water used for experimental processes was generated by a Millipore
- direct-ultrapure water system with a specific resistance of 18.2 MΩcm⁻¹. OasisTM HLB extraction
- cartridges (500 mg, 60 µm) were purchased from Waters Corporation (Guyancourt, France).
- 117 Exposmeter SA (Tavelsjö, Sweden) provided the pharmaceutical POCIS samplers. Empty
- polypropylene solid-phase extraction (SPE) tubes with polyethylene frits were purchased from
- Supelco (Saint-Quentin Fallavier, France). An HPLC pump (ProStar 220, Varian, LesUlis, France)
- and a peristaltic pump (Labcraft) were used in the experimental set-up for supplying water. An
- Autotrace SPE workstation (Caliper Life Sciences, Villepinte, France) was used for the water-
- sample processing and a Visiprep SPE Manifold (Supelco) was used for POCIS processing.

Experiment design

- The POCIS calibration experiment was conducted in a 100 L stainless steel tank filled with tap
- water (pH = 8.3) initially fortified at 1.1 μ g L⁻¹ of each target pesticide. The tank was designed to

contain an inert Teflon carrousel, connected to an electric motor with an adjustable rotation speed for simulating turbulent conditions in water. For determining the sampling rates, 12 pharm-POCIS were initially immersed in the tank, attached to the carrousel. To study the kinetic accumulation of pesticides in the POCIS, the samplers were successively removed from the tank in triplicate at set time intervals (5, 9, 15 and 21 days) and analysed to determine the amount of accumulated chemicals. In order to maintain the concentration of pesticides in water constant, the tank was continuously supplied with tap water spiked with pesticides at 1.1 µg L-1 with flow rate of 7 mLmin⁻¹. The volume of methanol added in the tank for the initial supplementation was very low (less than 0.03% of the total volume) and thevolume of methanol added all along the experiment was estimated to 0.004% and doesn't change significantly the DOC value. The monitoring of pesticide concentrations in the tank during the experiment was done by sampling 200 mL of water in triplicate from the outlet of the tank at each time the POCIS were removed. The water temperature and pH in the tank were monitored during the experimental period and remained stable with a mean of 21°C (from 20.8°C to 21.5 °C) for temperature and from 8.2 to 8.4 with a mean of 8.3 for pH. The carrousel rotation speed was fixed at 10 rpm (0.115 ms⁻¹). Blank POCIS have been deployed during exposure in parallel, showing no contamination by targeted compounds during the experiment.

Sample treatment

After exposure, each POCIS was opened and the sorbent was recovered from the PES membranes with ultrapure water and transferred into a 1 mL empty SPE tube with a polyethylene frit and packed under vacuum by using the Visiprep SPE manifold. The sorbent was dried for 30 min under vacuum. Prior to extraction, 75 µL of atrazin-d5 (0.5 mg L⁻¹) was added during the sequestering phase. Pesticides were extracted by eluting under vacuum with 10 mL of acetonitrile. The eluate was evaporated under a gentle stream of nitrogen and the volume of the extract was reduced to 1 mL.After elution, the sorbent was dried at 40°C and weighted. All results were corrected by using the real mass of sorbent in each exposed sampler.

Water samples (200 mL) were extracted via SPE using the autotrace SPE workstation. The HLB cartridges were successively pre-conditioned with 5 mL acetonitrile, 5 mL methanol and then 5 mL of ultrapure water at 5 ml min⁻¹. Prior to extraction, each sample was fortified with 125 ng of atrazine-d5. The samples were passed through the cartridges under vacuum at a flow rate of 10 mlmin⁻¹. Before elution, the cartridges were dried under vacuum for 1 h. Analytes were recovered by eluting the cartridges with 8 mL of acetonitrile at a flow rate of 3 mLmin⁻¹. The sample volume was reduced to 1.5 mL under a gentle stream of nitrogen and transferred to an autosampler vial.

All sample extracts were spiked before analysis with 50 μ L of the deuterated internal standard simazine-d10 (2 mg L⁻¹).

Pesticide analyses

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186187

188 189

190

All POCIS and cartridges extracts were analysed by UPLC-MS/MS. Liquid chromatography separations were done in a Waters ACQUITY UPLC system (Waters, Guyancourt, France) using a 150 mm × 2.1 mm × 1.7 μm ACQUITY BEH C18 column. The mobile phase was composed of solvent A (0.05% formic acid in water) and solvent B (0.05% formic acid in acetonitrile) at a constant flow of 0.4 mLmin⁻¹. The gradient was programmed to increase the amount of B from 0 % to 100% in 7.5 min, with stabilization at 100% for 1.5 min before returning to the initial conditions (0% B) in 0.3 min. These conditions were maintained for 15 min. Mass spectrometry detection was done with a Quattro Premier XE MS/MS (Waters, Guyancourt, France) fitted with an ESI interface and controlled by MassLynx software. Typical interface conditions were optimized for maximum intensity of the precursor ions as follows: nebulizer and desolvation (drying gas, N₂) flows were set at 650 and 150 Lh⁻¹, respectively; source block and desolvation temperatures were 100 and 350°C, respectively. The ESI polarity ionization mode was set individually for each target compound. Argon was used as collision gas at a pressure of 3.7×10⁻³mBar. Mass spectra were performed in the multiple reaction-monitoring mode (MRM). The mass-spectrum acquisition of each compound was done by recording two characteristic fragments; a transition one was used for quantitation and the other for confirmation.

Stability of pesticides in the aqueous phase

During the 21 days of the experiment, the aqueous concentration of pesticides in the tank was monitoredat each time the POCIS were removed. If concentrations are kept relatively constant during laboratory calibration, the sampling rate for each pesticide can be calculated when accumulation in the sampler follows a linear pattern. The results showed a relatively constant chemical concentration (R.S.D = 3–12%) in the exposure tank throughout the experiment, with average concentrations ranging from 568 ng L⁻¹ (penconazole) to 1337 ng L⁻¹ (DIA) (Table 2). Average concentrations presented in table 2 concern mean values calculated from water sampled in triplicate at the 5th, 9th and 15th day of exposure (9 water samples) and used for calculations.

Sampling rate calculation

- Accumulation of contaminants by passive samplers typically follows first-order kinetics, which includes an initial integrative phase, followed by curvilinear and equilibrium-partitioning phases.

 POCIS requires a relatively long sampling time before reaching equilibrium, and accumulation thus tends to remain for a long period after deployment in the integrative phase when analyte uptake is linear. In the linear region of POCIS uptake, the amount of a chemical accumulated in the sampler (M) is described by equation (1):
- 197 M = CwRst (1)
- where R_S is the sampling rate (Lday⁻¹), Cw is the concentration of the compound in water (ngL⁻¹) and t the exposure time (day).

The experimental data obtained from the laboratory calibration tests were used for calculating the sampling rates (R_s) of the target pesticides according to equation (1). To simplify the calculation of R_s, the regression line for each pesticide was fitted through the origin. A linear regression model with zero intercept was also used in other studies (Mazzella et al. 2007; Arditsoglou and Voutsa 2008; Martínez Bueno et al. 2009). For each pesticide, the sampling rate was determined by dividing the slope of the linear regression curve by the mean aqueous concentration for the selected compoundsduring the first 15-days exposure.

The sampling rate of each compound was calculated by dividing the slope of the uptake curve plotted for 15 days exposure by the mean aqueous concentration of the corresponding compound computed for the similar exposure time, which corresponds to an average of 9 water samples. As the experience of analytes uptake by POCIS has been done in triplicate, the mean and standard deviation of R_s for each compound was calculated by taking in account the values obtained for the POCIS in triplicate.

213

214

215

222

231

207

208

209

210

211

212

Results and discussion

Pesticide uptake kinetics by POCIS

- Characteristic pesticide uptake curves for the pharm-POCIS after an exposure of 5, 9, 15 and 21
- days in the spiked tap water under water flow over the POCIS conditions are shown in figure 1.
- The results showed that for most of the studied compounds, the uptake in POCIS follows a linear
- pattern until 15 days with an equilibrium state reached after a 21-day exposure. However, for three
- 220 compounds (metalaxyl, azoxystrobine, terbuthylazine), the accumulation in POCIS remained
- 221 linear for the whole 21-day experiment.

Determining sampling rates

- The correlation coefficients of the linear regressions for most pesticides were acceptable, with
- values from 0.7924 (DEA) to 0.9706 (azoxystrobine) (Table 3). Pesticide sampling rates expressed
- in mL g⁻¹ d⁻¹ and mL day⁻¹ (computed for 200 mg of HLB sorbent phase) are given in Table 3. The
- 226 calculated R_s values ranged from 67.9 to 279 mL day⁻¹ with RSD ≤17%. The lowest sampling rate
- value was obtained for the most polar compound DIA ($logK_{ow} = 1.2$), demonstrating that POCIS is
- less effective for sequestering this molecule. A similar result was observed by Mazzella et al.
- 229 (2007) when calibrating pharm-POCIS in the laboratory. Penconazole showed the highest R_s value
- 230 (279 mL day⁻¹).

Comparison of sampling rates

- An overview of our sampling rates and those of previous studies is given in Table 4 concerning
- only experiments fitting with our own experiment in term of exposure conditions (water renewal
- and non-quiescent exposure). For several pesticides, the sampling-rate values from our study were

similar to those obtained by authors (Mazzella et al. 2007; Hernando et al. 2007; Lissalde et al. 2011) who used a similar experimental set-up for pharm-POCIS calibration as ours. The R_s values we obtained for terbuthylazine and linuron were 1.5 and 1.7 times lower, respectively, than those reported by Mazzella et al. (2007) and Lissalde et al. (2011) even if the results for the other compounds are very closed. This difference cannot be explained and those both results seem to be not reliable because of the important difference of sampling rate compared to the other compounds owning to the same chemical group (140ml day for linuron instead of respectively 256.7 and 236.5 for diuron and isoproturon). Our sampling rates were of the same order of magnitude as those obtained by Thomatou et al. (2011), even though these authors used a pest-POCIS in a stirred-renewal exposure design for a calibration experiment using natural lake water. Sampling-rate values for diuron from other studieswere systematically below our values: 3 times lower for Martínez Bueno et al. (2009) and 5.7 times lower for Alvarez et al. (2004),respectively. The experimental set-ups used by these authors use a static system stirred by a magnetic bar, but their salinity values were quite different.

It is thus clear that great disparities exist between the methods used for calibrating POCIS. Detailed descriptions of experimental parameters and R_s comparisons during POCIS calibrations for several pesticides and other chemicals are given by Munaron et al. (2011) and Morin et al. (2012). For the pesticides, R_s values are comparable to the present study and the observed differences can be explained by considering the different parameters, such as the experimental setup for calibration (such as water renewal..), water-temperature and turbulence conditions that affect the sampling rate, the POCIS configuration and the value of its surface area - sorbent-phase ratio. Large differences between the experimental conditions used may lead to large variations in R_s values. As described by Morin et al. (2012), there is a lot of studies in which all the needed information (speed of rotation, water temperature, calibration methods...) are not clearly expressed. These discrepancies highlight the need for standardized POCIS manufacture and calibration procedures in order to compare and use R_s data obtained in the different studies. A first EN-ISO document (EN-ISO 2011) is already available, but this document gives a general guidance and could not constitute a basis for use as a standard. It should be implemented by definitions of exposure conditions that need to be respected or explicated to enhance reliability of obtained data.

Relationship between sampling rates and physical-chemical

properties

A non-linear regression was performed for sampling rates determined from the calibration experiments, using a second-order polynomial function of $\log K_{ow}$ (Y = -44.701 X^2 + 289.14 X–199.69; r^2 =0.9221) (Fig. 2). To obtain a better correlation, the R_s values of metalaxyl, propyzamide and azoxystrobine were not plotted, even though their mean R_s values are included in the graph. The quadratic curve shows an increase of the sampling rates with the hydrophobicity ($\log K_{ow}$), reaching a plateau for compounds with $\log K_{ow}$ ranging from 1.15 to 3.7. Mazzella et al.

(2007) and Thomatou et al. (2011) when calibrating POCIS for polar pesticides established a similar relationship. Arditsoglou and Voutsa (2008) when working with steroid and phenolic compounds found no clear correlation, but they showed a similarity in sampling-rate values across a range of hydrophobic molecules. The observed plateau from our study, which describes a similarity of POCIS uptake over a range of hydrophobicity (logK_{ow}:1.7-3.7), was also reported for pesticides on polar Chemcatchers®(Shaw et al. 2009) for the uptake by the RPS-SDB sorbent phase for the compounds studied (log K_{ow} : 1.78–4.0). According to Alvarez et al. (2007b), POCIS are able to accumulate compounds with $log K_{ow} < 3$. The selected pesticides in this work have logK_{ow} values that range from 1.15 (DIA) to 3.72 (penconazole). For all compounds studied except DIA, we obtained sampling rates of over 100 mLday⁻¹. The sampling rates generated by Arditsoglou and Voutsa (2008) when working with steroid and phenolic compounds (logK_{ow}: 2.81-4.67) ranged from 90 to 221 mL day⁻¹; their experimental data suggest that POCIS can be used even with compounds whose logKow is over 4. The limits of POCIS performance and sampling efficiency should be defined by considering compounds from the same chemical groups. Fig. 3 focuses on the range of compound sampling rates on the plateau of the curve described above (Fig. 2). The mean sampling rate calculated for the 13 compounds is 239 mL day⁻¹ with a relative standard deviation of 14%. Considering that the determination of average concentrations by passive sampling with an RSD of 20 % in environmental measurements is acceptable, the main idea could be to use a unique sampling rate value for calculating the TWA concentration of any pesticide in the aquatic environment whose polarity falls in the logK_{ow} interval determined above. In order to further develop this point, other experiments are needed with a large number of compounds belonging to different chemical classes and with a wide range of polarity values. Rs variability for molecules falling in the proposed logKow interval is much lower than the Rs variability for various conditions of temperature and agitation. The demonstration is highlighted by the result presented in figure 3. It is also possible to consider an "average global" R_s for all compound owning to the logKow intervals and to focus the research on developing correction of lab-R_s to fit with environmental conditions. Different ways could be investigated: use of PRC compounds (Mazzella 2007), use of passive flow monitor (O Brien, 2012) already applied for SPMD (semipermeable membrane device) and PDMS (polydimethylsiloxan) passive samplers and which could be useful for POCIS. It will be more interesting tofocus the research on developing correction of lab-Rs to fit with environmental conditions with a validation by in-situ calibrations.

304

305

273

274

275

276

277

278

279280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

Conclusions

- The quantitative use of POCIS requires suitable sampling-rate values for each compound of interest. Very few sampling-rate data are available for estimating ambient contaminant concentrations from analyte levels in exposed POCIS.
- A laboratory experiment based on a flow-through exposure system was designed and implemented for the calibration of POCIS (pharmaceutical configuration), and the sampling rates of 17 polar

311	pesticides were determined. The calibration revealed integrative uptakes of the target pesticides for
312	15 and 21 days. The obtained sampling rates ranged from 67.9 to 279 mL day-1 and demonstrated
313	the effectiveness of POCIS for achieving a lower quantification limit for the selected compounds,
314	compared to standard active-sampling methods. Foran exposure duration of 15 days, we have the
315	equivalence of a 1 to 4 L grab water sample, depending on the targeted compounds.
316	The calibration results obtained showed a similar POCIS sampling capacity for several compounds
317	belonging to different chemical classes, with a $log K_{ow}$ ranging from 1.7 to 3.7. The use of an
318	average laboratory-R _s could be considered for determining the TWA concentration in water for a
319	given compound, whose polarity falls within a defined interval with other compounds that have
320	similar sampling-rate values. This Lab-R _s , need to be improved and corrected (by PRC or passive
321	flow monitor) to fit better with realistic environmental conditions.
322	
323	Acknowledgements
324	The authors would like to thank C. Coureau for her valuable assistance in laboratory analyses and
325	M.Kleuvers for his precious help for the english text correction. We also thank the Carnot institute
326	(BRGM) and the engineering school of Alès (EMA)for financial support of this study, which is a
327	part of a PhD research.
328	
329	
330	References
331	Alvarez DA (1999) Development of an integrative sampling device for hydrophilic organic
332	contaminants in aquatic environments, Missouri-Columbia, Columbia, 160 pp
333	Alvarez DA, Petty JD, Huckins JN, Jones-Lepp TL, Getting DT, Goddard JP, Manahan SE (2004)
334	Development of a passive, in situ, integrative sampler for hydrophilic organic contaminants in
335	aquatic environments. Environ. Toxic. and Chem. 23:1640-1648
336	Alvarez DA, Huckins JN, Petty JD, Jones-Lepp T, Stuer-Lauridsen F, Getting DT, Goddard JP,
337	Gravell A (2007a) Tool for monitoring hydrophilic contaminants in water: polar organic chemical
338	integrative sampler (POCIS). In: Greenwood R, Mills GA, Vrana B (Editors), Comprehensive
339	Analytical Chemistry. Passive Sampling Techniques in Environmental Monitoring. Elsevier, pp.
340	171-197
341	Alvarez DA, Huckins JN, Petty JD, Jones-Lepp T, Stuer-Lauridsen F, Getting DT, Goddard JP,
342	Gravell A (2007b) Chapter 8 Tool for monitoring hydrophilic contaminants in water: polar organic
343	chemical integrative sampler (POCIS). In:Greenwood R, Mills GA, Vrana B (Editors), Passive
344	Sampling Techniques in Environmental Monitoring. Comprehensive Analytical Chemistry.
345	Elsevier, pp. 171

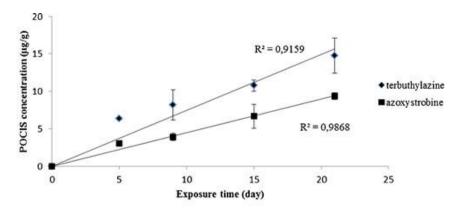
- Arditsoglou A, Voutsa D (2008) Passive sampling of selected endocrine disrupting compounds
- 347 using polar organic chemical integrative samplers. Environ.Pollut. 156:316-324
- 348 Beltran J, Lopez FJ, Hernandez F (1993) Solid-phase extraction of pesticide residues from ground
- water: comparison between extraction cartridges and extraction discs. Anal.Chim.Acta 283:297-
- 350 303
- 351 Greenwood R, Mills GA, Vrana B (2007) Passive sampling techniques in environmental
- 352 monitoring. Comprehensive analytical chemistry. Elsevier
- 353 ISO 5667-23:2011 Water quality -- Sampling -- Part 23: Guidance on passive sampling in surface
- 354 waters, 23p
- Kingston JK, Greenwood R, Mills GA, Morrison GM, Persson LB (2000) Development of a novel
- passive sampling system for the time-averaged measurement of a range of organic pollutants in
- aquatic environments. J. Environ.Monit. 2:487-495
- Kot A, Zabiegała B, Namiesnik J (2000) Passive sampling for long-term monitoring of organic
- pollutants in water. Trend Anal Chem 19:446-459
- 360 Li H, Helm PA, Paterson G, Metcalfe CD (2011) The effects of dissolved organic matter and pH
- on sampling rates for polar organic chemical integrative samplers (POCIS). Chemosphere 83:271-
- 362 280
- Liess M, Schulz R, Liess MHD, Rother B, Kreuzig R (1999) Determination of insecticide
- 364 contamination in agricultural headwater streams. Water Res. 33:239-247
- Lissalde S, Mazzella N, Fauvelle V, Delmas François, Mazellier P, Legube B (2011) Liquid
- 366 chromatography coupled with tandem mass spectrometry method for thirty-three pesticides in
- natural water and comparison of performance between classical solid phase extraction and passive
- 368 sampling approaches. J Chromatogr. A 1218:1492-1502
- Hernando M.D, Lambropoulou D, Konstantinou I, Bueno MMJ, Gabrielides D, Alba FAR,
- 370 Albanis T (2007) Passive sampling techniques for monitoring organic contaminants in aquaculture
- and environment. Proceedings of the 10th International Conference on Environmental Science and
- Technology, Kos Island, Greece, 5-7-September 2007.
- 373 MacLeod S, McClure E, Wong C (2007) Laboratory calibration and field deployment of the Polar
- 374 Organic Chemical Integrative Sampler for pharmaceuticals and personal care products in
- wastewater and surface water. Environ. Toxicol.and Chem., pp. 2517–2529
- 376 MartínezBueno MJ, Hernando MD, Agüera A, Fernández-Alba AR (2009) Application of passive
- 377 sampling devices for screening of micro-pollutants in marine aquaculture using LC-MS/MS.
- 378 Talanta 77:1518-1527
- Mazzella N, Dubernet JF, Delmas F (2007) Determination of kinetic and equilibrium regimes in
- 380 the operation of polar organic chemical integrative samplers: Application to the passive sampling
- of the polar herbicides in aquatic environments. J Chromatogr A 1154:42-51
- Morin N, Miège Cécile, Coquery M, RandonJérôme (2012) Chemical calibration, performance,
- validation and applications of the polar organic chemical integrative sampler (POCIS) in aquatic
- 384 environments. Trend Anal Chem36:144

- Munaron D, Tapie N, Budzinski Hélène, Andral B, Gonzalez JL (2011) Pharmaceuticals,
- alkylphenols and pesticides in Mediterranean coastal waters: Results from a pilot survey using
- passive samplers. Estuar Coast Shelf S, doi 10.1016/j.ecss.2011.09.009 (in press)
- O'Brien D, Komarova T, Mueller JF (2012) Determination of deployment specific chemical uptake
- rates for SPMD and PDMS using a passive flow monitor. Mar Pollut Bull. 64(5):1005-1011
- Pesce S, Morin S, Lissalde S, Montuelle B, Mazzella N (2011) Combining polar organic chemical
- integrative samplers (POCIS) with toxicity testing to evaluate pesticide mixture effects on natural
- 392 phototrophic biofilms. Environ.Pollut. 159:735-741
- Petty JD, Huckins JN, Alvarez DA, Brumbaugh WG, Cranor WL, Gale RW, Rastall AC, Jones-
- 394 Lepp T, Leiker TJ, Rostad CE, Furlong ET (2004) A holistic passive integrative sampling
- 395 approach for assessing the presence and potential impacts of waterborne environmental
- 396 contaminants. Chemosphere 54:695-705
- 397 Schwarzenbach RP, Escher BI, Fenner K, Hofstetter TB, Johnson CA, von Gunten U, Wehrli B
- 398 (2006) The challenge of micropollutants in aquatic systems. Science 313:1072-1077
- 399 Shaw M, Eaglesham G, Mueller JF (2009) Uptake and release of polar compounds in SDB-RPS
- 400 EmporeTM disks; implications for their use as passive samplers. Chemosphere 75:1-7
- Thomatou AA, Zacharias I, Hela D, Konstantinou I (2011) Passive sampling of selected pesticides
- in aquatic environment using polar organic chemical integrative samplers. Environ.Sci. and Pollut.
- 403 Res. 18, 1222-1233
- Togola A, Budzinski H (2007) Development of Polar Organic Compounds Integrative Samplers
- for analysis of pharmaceuticals in aquatic systems. Anal. Chem. 79:6734–6741
- Vrana B, Mills GA, Kotterman M, Leonards P, Booij K, Greenwood R (2007) Modelling and field
- 407 application of the Chemcatcher passive sampler calibration data for the monitoring of hydrophobic
- 408 organic pollutants in water. Environ.Pollut. 145-3:895-904

411
412
413 Table 1 Physico-chemical properties of selected compounds

Compound	Cas number	type	Chemical class	Chemical Molecular		LogK _{ow}	pKa
				formula	weight (g/mol)		
Azoxystrobine	131860-33-8	fungicide	strobilurine	$C_{22}H_{17}N_3O_5$	403,4	2,5	nd
Metalaxyl	57837-19-1	fungicide	amide	$C_{15}H_{21}NO_4$	279,3	1,7	nd
Penconazole	66246-88-6	fungicide	azole	$C_{13}H_{15}Cl_2N_3$	284,2	3,7	1,5
Acetochlor	34256-82-1	herbicide	chloracetanilide	$C_{14}H_{20}CINO_2$	269,8	3,0	nd
Alachlor	15972-60-8	herbicide	chloracetanilide	C ₁₄ H ₂₀ ClNO ₂	269,8	3,5	nd
Atrazin	1912-24-9	herbicide	triazine	C ₈ H ₁₄ ClN ₅	215,7	2,6	1,7
Chlortoluron	15545-48-9	herbicide	urea	C ₁₀ H ₁₃ ClN ₂ O	212,7	2,4	nd
DEA	6190-65-4	herbicide	triazine	C ₆ H ₁₀ ClN ₅	187,6	1,5	nd
			metabolite				
DET	30125-63-4	herbicide	triazine	$C_7H_{12}CIN_5$	201,7	2,3	nd
			metabolite				
DIA	1007-28-9	herbicide	triazine	C ₅ H ₈ ClN ₅	173,6	1,2	nd
			metabolite				
Diuron	330-54-1	herbicide	urea	$C_9H_{10}Cl_2N_2O$	233,1	2,7	nd
Isoproturon	34123-59-6	herbicide	urea	$C_{12}H_{18}N_2O$	206,3	2,9	nd
Linuron	330-55-2	herbicide	urea	$C_9H_{10}Cl_2N_2O_2$	249,1	3,2	nd
Metolachlor	51218-45-2	herbicide	chloracetanilide	$C_{15}H_{22}CINO_2$	283,8	3,1	nd
Propyzamide	23950-58-5	herbicide	amide	C ₁₂ H ₁₁ Cl ₂ NO	256,1	3,4	nd
Simazin	122-34-9	herbicide	triazine	C ₇ H ₁₂ ClN ₅	201,7	2,2	1,6
terbuthylazin	5915-41-3	herbicide	triazine	C ₉ H ₁₆ ClN ₅	229,7	3,2	2

Table 2 Selected pesticides mean aqueous concentrations in the tank for 15 days experiment


	ble 2 Selected pesticides mean aqueous concentrations in the t average		
	concentration (μg/L)		
	(n=9)		
acetochlor	0,843	7%	
alachlor	0,790	6%	
atrazin	0,880	3%	
diuron	0,890	12%	
linuron	1,020	8%	
chlortoluron	1,045	8%	
desethylatrazin	1,220	4%	
desethylterbutylazin	0,971	3%	
desisopropylatrazin	1,337	5%	
isoproturon	1,199	7%	
metolachlor	0,964	5%	
propyzamide	1,047	6%	
simazin	0,918	4%	
terbuthylazin	0,973	4%	
azoxystrobine	0,586	7%	
metalaxyl	0,658	6%	
penconazole	0,568	4%	

					Correlation
		Rs (mLday ⁻¹ g ⁻¹)	Rs (mLday -		coefficient
Compounds	logKow	(n=3)	¹) (n=3)	RSD (%)	(r ²)
DIA	1,2	339,4	67,9	12	0,9221
DEA	1,5	664,7	132,9	14	0,7924
Simazine	2,2	1088,6	217,7	15	0,8377
DET	2,3	1268,5	253,7	14	0,8404
Atrazine	2,7	1269,1	253,8	14	0,8588
Terbuthylazine	3,2	816,3	163,3	14	0,8726
Acetochlor	3	1115,7	223,1	9	0,9599
Metolachlor	3,1	1341	268,2	14	0,8655
Alachlor	3,5	1277,7	255,5	12	0,8572
Chlortoluron	2,4	1257,4	251,5	12	0,876
Isoproturon	2,5	1182,5	236,5	14	0,8378
Diuron	2,7	1283,7	256,7	17	0,8092
Linuron	3,2	702,5	140,5	14	0,9231
Metalaxyl	1,7	1321	264,2	15	0,8497
Azoxystrobine	2,5	768,8	153,8	14	0,9706
Propyzamide	3,4	973,9	194,8	15	0,9038
Penconazole	3,7	1394,8	279	8	0,9429

 $422 \qquad \text{Table 4 Comparison of our sampling rates (Rs in mLday-1) and previous studies using water renewal conditions}$

Compounds	This study	(Mazzella et al. 2007)	(Lissalde et al. 2011)	Hernando et al, (2007)	(Thomatou et al. 2011)	(Martínez Bueno et al. 2009)	(Alvarez et al. 2007a)
Experimental set-up	Tank with a rotary exposure system	Aquarium for static exposure	Aquarium for static exposure	Aquarium for static exposure	Beaker under stirring conditions	Beaker under stirring conditions	Beaker under stirring conditions
Type of water and sampler Atrazine	Tap water pharm- POCIS 253.8	Tap water pharm- POCIS 239	Tap water pharm- POCIS 228	Sea water pharm- POCIS 192	Lake water pest-POCIS 245	Sea water pharm- POCIS 214	Water quality not specified pest-POCIS
DEA	132.9	121.5	173	146	162	-	-
DET	253.7	205	213	-	-	-	-
Simazine	217.7	210.3	199	239	178	223	-
DIA	67.9	63.6	176	-	-	-	-
Acetochlor	223.1	225.2	241	-	-	-	-
Diuron	256.7	247.3	199	256	-	86	45
Isoproturon	236.5	217.6	167	-	-	-	86
Alachlor	255.5	-	205	247	230	-	-
Metolachlor	268.2	-	182	232	230	-	-
Azoxystrobin	153.8	-	179	-	-	-	-
Propyzamide	194.8	-	-	-	-	-	-
Terbuthylazine	163.3	250.7	238	-	-	-	-
Linuron	140.5	235.9	204	-	-	-	-

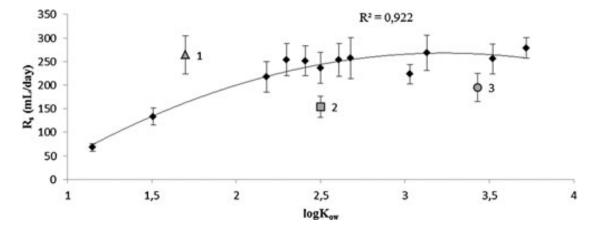
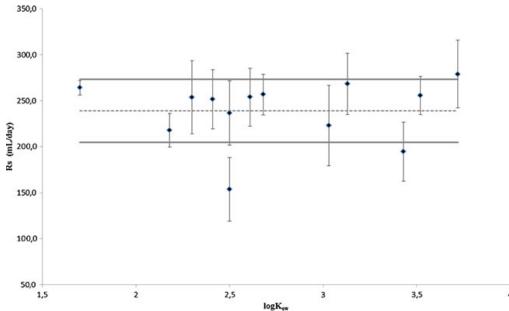




Fig 1 Some examples of pesticides uptake by POCIS over a period of 21 days exposure

 $Fig~2~Relationship~between~sampling~rates~(R_s)~and~log K_{ow}.~Metalaxyl~(1),~azoxystrobine~(2),~and~propyzamide~(3)\\$

IogK_{ex}
Fig 3 Average sampling rate of POCIS for pesticides whose polarity varies from 1.7 to 3.7.
Discontinuous line of the figure represents the mean Rs value.Continuous lines represent the 20 % of RSD calculated from the 13 Rs values