

Semi-analytical model of brine and CO2 leakage through an abandoned plugged well. Applications for determining an Area of Review and CO2 leakage rate.

Arnaud Réveillère, Jeremy Rohmer, Frédéric Wertz

▶ To cite this version:

Arnaud Réveillère, Jeremy Rohmer, Frédéric Wertz. Semi-analytical model of brine and CO2 leakage through an abandoned plugged well. Applications for determining an Area of Review and CO2 leakage rate.. 11th Annual Conference on Carbon Capture Utilization and Sequestration 2012: CCUS 2012, Apr 2012, Pittsburgh, United States. hal-00709355

HAL Id: hal-00709355 https://brgm.hal.science/hal-00709355

Submitted on 18 Jun2012

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Arnaud Réveillère, Jérémy Rohmer, Frédéric Wertz / contact: a.reveillere@brgm.fr

Semi-analytical model of brine and CO₂ leakage through an abandoned plugged well. Applications for determining an Area of Review and CO₂ leakage rate

Application (ii): CO_2 leakage to the surface

The model describes the leakage of brine through the leak, and of $CO_{2,q}$ as a first approach. Compared to the state of the art, it adds the possibility of accounting for density change within the leak, due to either the incoming of **dense brine** or **light CO**₂

It shares the advantages (immediate) computation) and drawbacks (homogeneous layers) of **semi**analytical models

Compared to a static approach, this dynamic model enables less conservative estimation of the "Area of Review", by including effects of cement plugs, of brine density differences and of leakage-induced pressure effects

> During the CO_2 leakage

 \rightarrow First approach based on: $P_{L-}(t) = (1-\alpha)P_1 + \alpha P_2$

• P_1, P_2 are the pressure for the column entirely filled with brine resp. CO₂

 $\alpha \in [0,1]$ is a coefficient proportional to the leakage rate Q_{L,CO_2} and inversely proportional to the CO₂ uprising speed in the wellbore (assumed to be 0.16 m.s⁻¹ in average). Cf. Wertz, F., Audigane, P., Bouc, O., 2009, CO₂ -Thermodynamic Model in a Leaking Well, En. Procedia 1 (2009) 1791-1798

Conclusions

www.brgm.fr