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Introduction 

In the perspective of nuclear waste storage, 
63

Ni is one of the radio-elements of primary concern. 

Modeling of its retention in clay formations is usually performed using modeling approaches which 

consider that only phyllosilicates participate to retention. However, isotopic exchange with stable 

nickel contained in phases (i.e. minerals and organic matter) from the clay formation may play a role. 

Thus, a sound understanding and prediction of Ni retention also requires detailed knowledge of Ni 

distribution amongst the different phases. Importance of such knowledge is reinforced by the fact that 

the distribution of stable Ni between solution and some reactive phases could be considered as 

representative of 
63

Ni distribution after long-term interaction. The present study aimed at elucidating 

the relative contributions of fast reversible (e.g. sorption on phyllosilicates) and slowly 

reversible/irreversible (e.g. isotopic exchange) processes to Ni retention capacities of the Callovian-

Oxfordian clay formation from Bure. To achieve this goal, we combined (i) short and long-term (up to 

180 days) 
63

Ni batch sorption experiments to determine the contribution of irreversible to total 

sorption and  (ii) chemical and physical methods to determine Ni-bearing phases that may contribute 

to irreversible sorption through isotopic exchange.  

Results and discussion  

Short-term (24 hours) batch experiments led to 
63Ni

Kd of ~100 L kg
-1

, that can be successfully 

predicted using a blind modeling approach by taking into account competition with stable Ni and Zn 

naturally present in the solution. However, 
63Ni

Kd increased with time up to ~600 L kg
-1

 after 6 months 

reaction time, with a fraction of irreversible sorption also increasing with time (Fig. 1). This result 

cannot be explained by reversible sorption on phyllosilicates only: an additional slowly reversible or 

irreversible retention mechanism must be invoked. This mechanism could be linked to Ni 

incorporation in a preexisting phase or to a (co-)precipitation process. Ni is naturally present in the 

rock (~30 ppm) and its solubility in the experiment synthetic pore-water is far greater than the added 
63

Ni concentration (~0.6 µmol/L vs. 1.5 nmol/L). This range of concentration is also in agreement with 

the value determined in pore-water extracted on site (~0.5 µmol/L). It is thus necessary to understand 

natural Ni chemical behavior to interpret 
63Ni

Kd experiment on the complex COx phase assemblage. 

 



Figure 1 : Evolution of 
63Ni

 

Determination of Ni-bearing phases was performed using a top

statistical treatment of data from bulk rock chemical composition of EST205 borehole (~410 to ~510 

m depth – Gaucher et al., 2004) revealed that Ni was anti

main Ni-bearing phases. Then, sequential extraction (Tessier et al., 1978) on a clayey sample (K119) 

was performed and demonstrated that the main Ni reservoir was the detrital fraction and that 

carbonates and organic matter contain respectively ~10 ppm and ~250 ppm Ni. This latter

was confirmed using microprobe and synchrotron µ

sample in different granulometric fractions, using elutriation, and identifying minerals present in the 

different granulometric fractions 

in the smallest size fraction (< 3.2 µm), that consisted mainly of calcite, feldspars, phyllosilicates and 

pyrite, thus excluding quartz and dolomite from main Ni bearing phases. Finally, microprob

experiments revealed that the main Ni

feldspars being minor contributors. Interestingly, analysis of the aqueous solution from batch 

experiments revealed that Ca and stable Ni (i.e. naturally 

are linked to the [Ca]/[Ni] ratio in calcites through the partition coefficient defined by Lakshtanov and 

Stipp (2007). Thus, although calcite is only a minor stable Ni reservoir, it may control natural Ni 

aqueous concentration, and may thus be the major phase that controls 

This exemplifies the need to focus on most reactive rather than most enriched phases when trying to 

determine solid/liquid equilibriums. The effect of irreversi

through predictive reactive transport modeling study according to different Ni retention scenarios. 
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