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Abstract Due to the limited observational datasets available for thederivation of ground-

motion prediction equations (GMPEs) there is always epistemic uncertainty in the estimated

median ground motion. Since the quality and quantity of strong-motion datasets is con-

stantly increasing it would be expected that the epistemic uncertainty in ground-motion pre-

diction (related to lack of knowledge and data) is decreasing. This article is a continuation

of the study of Douglas (2010) for ground-motion parametersother than peak ground ac-

celeration (PGA) and elastic response spectral acceleration (SA). The epistemic uncertainty

in the prediction of peak ground velocity and displacement,Arias intensity and relative sig-

nificant duration is investigated by plotting predictions from dozens of GMPEs for these

parameters against date of publication for three scenarios. In agreement with the previous

study, all ground-motion parameters considered show high epistemic uncertainty (often even

higher than previously reported for PGA and SA), suggestingthat research efforts for the

development of GMPEs for these parameters should continue and that it is vital that this

uncertainty is accounted for in seismic hazard assessments. The epistemic uncertainty in the

prediction of relative significant duration, however, appears to be much lower than any other

strong-motion parameter, which suggests that currently available GMPEs for this intensity

measure are sufficiently mature.
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1 Introduction

The consistency in predicted peak ground acceleration (PGA) and elastic response spectral

acceleration (SA) for 5% damping and a natural period of 1s was discussed in Douglas

(2010). In that article, predicted PGAs and SAs from hundreds of published ground-motion

prediction equations (GMPEs) for various earthquake scenarios (Mw6 at 20km, roughly the

best-represented scenario in global strong-motion datasets, andMw7.5 at 10km andMw5

at 10km, at the edges of most databases used to derive GMPEs) were plotted against their

publication dates. The purpose of these plots was to investigate the epistemic uncertainty as-

sociated with GMPEs and to test whether this uncertainty is decreasing, which would be ex-

pected given the accumulation of new data and knowledge and improvements in regression

techniques, for example. The scatter in predictions shown on such plots is a rough measure

of epistemic uncertainty because, in the absence of such uncertainty, predictions of the me-

dian ground motion for a certain scenario should tend to a single value. The plots of Douglas

(2010) showed that even though epistemic uncertainty seemsto be reducing slightly (pre-

dictions from different models are slowly converging), there is still considerable uncertainty

in estimated PGAs and SAs even for scenarios that are well represented in strong-motion

databanks, and much higher uncertainties for poorly-sampled scenarios (specifically large

earthquakes at short distances).

The purpose of this short article is to extend the analysis ofDouglas (2010) to strong-

motion parameters other than PGA and SA, which are useful forsome aspects of engineering

seismology and earthquake engineering. The four non-PGA/SA strong-motion parameters

with most associated GMPEs are considered here, namely: peak ground velocity (PGV),

peak ground displacement (PGD), Arias intensity (AI) (Arias, 1970) and relative significant

duration (RSD) (Trifunac and Brady, 1975b). In contrast to PGA and SA, there are far fewer

GMPEs published for these parameters but there are still sufficient to enable some conclu-

sions on their predictability to be drawn. Unlike for PGA andSA, my search for GMPEs

for the prediction of these other parameters only started recently and hence it is more likely

that the collection of non-PGA/SA models considered here are less complete than given
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in Douglas (2011) for PGA and SA. However, a thorough literature search was conducted

and various reviews were studied (e.g. Bommer and Martı́nez-Pereira, 1999; Bommer and

Alarcón, 2006; Travasarou et al, 2003; Tromans, 2004). Therefore, it is unlikely that many

models are missing. Table 1 lists the considered GMPEs and gives, when possible (some of

the original references could not be consulted and some authors do not provide the necessary

information), their main characteristics.

In the next section, graphs are presented for the four considered strong-motion parame-

ters and the same three earthquake scenarios as in Douglas (2010). To facilitate comparisons

with the results of Douglas (2010) the same scenarios are considered here except that sepa-

rate plots are not made for broad geographical or tectonic regions [western North America;

Europe, the Mediterranean and the Middle East; stable continental regions; and Japan (sub-

duction zones)]. The dependence of PGV, PGD, AI and RSD on tectonic regime is less well

studied than for PGA and SA because the vast majority of GMPEsfor these parameters are

derived for shallow crustal earthquakes in active regions (see Table 1). It is likely that this

lack of consideration of tectonic regime will slightly increase the scatter in the following

plots. The same graph format is used to facilitate comparisons with the previous graphs for

PGA and SA. For example, the ratio of the upper and lower limits of the abscissa, displaying

the strong-motion parameter, is 25 and a logarithmic axis isused. As before those studies

that were published in peer-reviewed international journals and give basic details of the

datasets used for their derivation [criteria 2 and 3 of (Cotton et al, 2006)] and which are not

being extrapolated far outside their magnitude-distance range of applicability are indicated.

Because this study makes the same choices and considers the same scenarios as Douglas

(2010), only brief details are given here. The interested reader is referred to the previous

article for more information.

The differences between the aleatory variabilities (sigma) associated with GMPEs for

the different parameters are not discussed here. Table IV ofTravasarou et al (2003) presents

such a comparison for PGA, SA(0.5s), AI and RSD predicted by a family of GMPEs derived

using a similar database, functional form and regression technique. This table shows that the

aleatory variabilities for each of these parameters are similar, except for the GMPE for AI,

which has a much higher sigma suggesting that AI is more intrinsically variable.
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2 Comparing ground-motion predictions

Models have been adjusted to, where possible: moment magnitude (Mw), distance to the

surface projection of the rupture (Joyner-Boore distance)(r jb), vertical-dipping strike-slip

faulting and the geometric mean of the two horizontal components. These adjustments were

made using the approaches of Bommer et al (2005) using: for PGV and PGD, style-of-

faulting and component definition factors of Campbell and Bozorgnia (2007) and for AI,

style-of-faulting and component definition factors of Stafford et al (2009)1. For the conver-

sion toMw from surface-wave magnitude (Ms) the equation of Ambraseys and Free (1997)

was used. Local magnitude (ML), and other magnitude scales, were assumed equal toMw.

Harmonization of models is not always possible due to a lack of information in many of the

original references on, for example, definition of horizontal component and magnitude scale.

This means that the predictions could be in error by roughly 20% but this will not alter the

overall trends, which are the focus of this article (the reader should not seek to over-interpret

details in the graphs). The size of the rupture plane and other additional parameters needed

to evaluate some of the models have been computed using the methods given in Chapter 7

of Campbell and Bozorgnia (2007). To compute the epicentraland hypocentral distances the

hypocentre is assumed to be at one end of the fault at a depth of10km and the site half way

along the fault. Some authors seek to model epistemic uncertainty in ground-motion predic-

tion by proposing more than one set of GMPEs, e.g. by providing coefficients for different

functional forms (e.g. Stafford et al, 2009). Predictions from each of these variant GMPEs

are included here.

Because it is roughly the best-represented scenario in global strong-motion datasets the

first scenario considered is aMw6 strike-slip earthquake atr jb = 20km on a site classified

as NEHRP class C (Eurocode 8 class B) (Vs,30 = 490m/s). If epistemic uncertainty in the

prediction of ground motion is decreasing then it should be visible for this scenario since

it is where available observations are most abundant and hence GMPEs should be the best

constrained. The other two scenarios considered are:Mw7.5 strike-slip earthquake atr jb =

10km, for which there are still few available data, andMw5 strike-slip earthquake atr jb =

10km, which is at the lower edge of most datasets used for the derivation of GMPEs, for

1 Kempton and Stewart (2006) and Bommer et al (2009) find that style-of-faulting does not have a statis-

tically significant effect on RSD. Factors to convert between different component definitions of RSD are not

available so no adjustment was attempted.
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the same site conditions. It is expected that epistemic uncertainty (and hence scatter in the

predictions) will be higher for these two scenarios compared to Mw6 atr jb = 20km due to

the lack of observations and uncertainty over near-source magnitude-scaling, for example.

The following sections present the results for the four parameters in turn. As a measure of

the dispersion in the median predictions the standard deviation of the common (base 10)

logarithm of median estimates for each five-year interval are computed, although because of

the limited number of GMPEs this statistic is quite unstable.

As for the analysis shown in Douglas (2010) the median groundmotion for the consid-

ered scenario obtained from a large (over 13,000 records from over 2,500 events) strong-

motion database [the data from the Internet Site for European Strong-motion Data (ISESD)

(Ambraseys et al, 2004) with the addition of many accelerograms from western North Amer-

ica and elsewhere] is plotted at all dates. The median shouldtrack the predictions, since sim-

ilar databases were used to derive the GMPEs published up to that date, and the variability

in the median should also show a reduction, since more data are being used to compute the

averages. The variabilities of the medians are computed here by dividing the standard devi-

ation by
√

n, wheren is the number of records used to compute the standard deviation. The

medians and their variabilities were computed by considering the available records within

0.5−Mw units and 10km of the scenario of interest and excluding a consideration of local

site conditions and style of faulting. It could be argued that these bins are too broad and

that a consideration of local site effects should have been made. However, given the limited

data available, particularly forMw > 7, narrow bins would lead to statistics based on few

records from only a handful of earthquakes. The median ground motions computed from

averaging data within broad bins should not be strongly affected by the width of the bins

but the variabilities of these medians may be slightly overestimated. The uniform filtering

applied to the strong-motion databank used here (bandpass filtering with cut-offs of 0.25

and 25Hz) means that the PGV and, especially, PGD observations obtained from this data-

bank are likely to be incorrect. The averages of these PGV andPGD observations, however,

are added for completeness. AI and RSD from these records, however, are likely to be little

affected by the uniform filtering.
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2.1 Peak ground velocity

Because of its various uses in earthquake engineering (Bommer and Alarcón, 2006) and

its simplicity, following PGA and SA, PGV is the best served by GMPEs and 96 models

were identified and programmed, many of which also provide coefficients for the prediction

of PGA and SA. The predicted PGVs and median PGVs from the strong-motion databank

for the three considered scenarios are shown in Figure 1 (some predicted PGVs are off

the top or bottom of these figures, often because the GMPEs arebeing extrapolated far

outside their range of applicability). These figures show that the dispersion in predicted

PGVs from different GMPEs is large (the ratio between the smallest and largest predictions

is greater than ten) and that this scatter is not obviously reducing with time (even when

considering only models passing basic quality-control criteria), particularly near to large

earthquakes. The standard deviation of the common logarithm of median estimates for each

five-year interval are around 0.2 for Mw6 atr jb = 20km andMw5 atr jb = 10km and around

0.3 for Mw7.5 at r jb = 10km. Also roughly constant are the average PGV predicted by

the models over time. The median observed PGVs are similar tothose predicted by the

GMPEs although lower for theMw7.5 scenario. A similar conclusion was also noted by

Douglas (2010) for PGA and SA(1s) for large earthquakes, which was related to a number

of recent large earthquakes (e.g. Chi-Chi 1999; Kocaeli 1999; Denali 2002) showing lower

than expected ground motions (e.g. Ellsworth et al, 2004).

[Fig. 1 about here.]

2.2 Peak ground displacement

Because of the difficulty in obtaining reliable PGDs from analogue (and even digital) ac-

celerograms and the limited use of PGD in earthquake engineering, there are only 19 pub-

lished GMPEs for PGD, which are typically associated with GMPEs for PGV. Although of

limited use in most fields of earthquake engineering, the robust prediction of PGD would

help constrain the long-period (> 2s) response spectral displacements because these must

converge to PGD at very long periods (Faccioli et al, 2004). The predictions from the GM-

PEs for the three considered scenarios are shown in Figure 2.These graphs show the large

dispersion in predictions of PGD, especially near to large earthquakes. This dispersion is

probably due in large part to the difficulty in recovering reliable displacement traces from
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strong-motion records because of their high sensitivity toprocessing (e.g. low-cut filtering)

(e.g. Paolucci et al, 2008). The observed PGDs match the predictions reasonably well for

the smaller magnitudes but they are considerably lower for theMw7.5 earthquake, which is

probably since the application of a low-cut filter with a corner frequency of 0.25Hz is likely

to lead to significant loss of the true long-period energy from such large events.

[Fig. 2 about here.]

2.3 Arias intensity

As noted by, for example, Travasarou et al (2003), AI has a number of uses in earthquake

engineering, particularly for slope stability analysis and liquefaction assessment. These uses

have motived the development of, at least, 33 GMPEs, including variants, for AI. Some of

these GMPEs only give the value of the integral and not the complete expression for AI; for

these the constantπ/2g was included when plotted. The predictions from these 33 models

and the median observed AI for the three scenarios are plotted in Figure 3. The standard

deviations of the median predicted AIs are around 0.4 for Mw5 at r jb = 10km, around 0.3

for Mw6 at r jb = 20km and around 0.2 for Mw7.5 at r jb = 10km. This implies that the

epistemic uncertainty in the prediction of median AI for larger earthquakes is lower than

that for smaller events, which is counterintuitive since there are far fewer available records

for this scenario. Two possible reasons for this observation are that regional differences in

AI, modelled within local GMPEs, are stronger for smaller events, and that current GMPE

developers for AI have concentrated their efforts on the prediction of AI from large earth-

quakes. AI was not considered by the NGA developers (Power etal, 2008) and, therefore,

there is perhaps a requirement to develop a new generation ofmodels for the prediction of

this parameter; there have been some recent attempts in thisdirection (e.g. Foulser-Piggott

and Stafford, 2012).

[Fig. 3 about here.]

2.4 Relative significant duration

As noted by Bommer and Martı́nez-Pereira (1999), many dozens of definitions of strong-

motion duration have been proposed, which give widely ranging values. The definition of
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duration that is most commonly used in earthquake engineering (and consequently for which

there are most GMPEs available) is the relative significant duration originally defined by

Trifunac and Brady (1975b) as the interval between 5 and 95% of the total Arias intensity.

Despite its various uses (e.g. Kempton and Stewart, 2006), e.g. in liquefaction evaluation,

only 15 GMPEs have been identified in the literature for the prediction of this parameter.

Figure 4 present the history of the predictions from these 15models and the median ob-

served RSDs for the three scenarios. The epistemic uncertainty in the prediction of median

RSD is much lower than for the other ground-motion parameters considered here (the stan-

dard deviation of the median predicted RSDs in the past five year is less than 0.1 even for

large earthquakes). This suggests that, either: a) epistemic uncertainty in the prediction of

this parameter is being under represented by the different models (because they often use

similar databases and functional forms) or b) this parameter is easier to predict than the other

intensity measures. The widths of the confidence limits for the median observed RSD are

narrower than the confidence limits for PGV, PGD and AI [and those for PGA and SA(1s)

shown in Douglas (2010)], which hints that the epistemic uncertainty in the prediction of

RSD is truly lower than for these other parameters. This could be because the physics un-

derlying the relative duration characteristics of earthquake shaking (e.g. rupture time and

wave dispersion and scattering) are perhaps easier to capture in a simple functional form

compared with the physics explaining strong-motion amplitudes, measured by the other pa-

rameters.

[Fig. 4 about here.]

3 Conclusions

There have been recent studies (e.g. Baker, 2007) applying vector-valued probabilistic seis-

mic hazard assessment (VPSHA) (Bazzurro and Cornell, 2002)for the joint prediction of

pairs of parameters other than PGA and SA. Recently, Gehl et al (2011) present a method

for the derivation of structural fragility functions of more than one intensity measure, which

could be coupled with VPSHA for vector-valued risk evaluation. For this type of study the

relative uncertainties in the prediction of each parameterare important. This article suggests

that the epistemic uncertainties in the prediction of PGV, PGD and AI are higher even than

those evidenced by Douglas (2010) for PGA and SA. For PGV and AI, this larger uncertainty

is probably principally due to lesser research effort having been made in the development
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of GMPEs for such parameters compared to PGA and SA. Althoughboth parameters have

recently been the subject of various articles, e.g. the NGA developers also developed models

for the prediction of PGV. The instability in PGD predictions is due to both lack of research

interest in the development of GMPEs for this parameter, because of limited engineering

applications, but also because PGD is inherently difficult to recover from strong-motion

records due to its sensitivity to low-cut filtering (e.g. Boore and Atkinson, 2008). The epis-

temic uncertainty in the prediction of RSD, on the other hand, seems to be lower than that

associated with the prediction of any of the other parameters, which could encourage more

consideration of this parameter within earthquake hazard and risk assessments for which it

has various engineering applications.
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A GMPEs considered here

H Number of horizontal records (if both horizontal components are used then multiply by two to get total

number)

V Number of vertical components

E Number of earthquakes

Mmin Magnitude of smallest earthquake

Mmax Magnitude of largest earthquake

M scale Magnitude scale (scales in brackets refer to those scales which the mainM values were sometimes

converted from, or used without conversion, when no data existed), where:

mb Body-wave magnitude

MCL Coda length magnitude

MD Duration magnitude

MJMA Japanese Meteorological Agency magnitude

ML Local magnitude

MbLg Magnitude calculated using Lg amplitudes on short-period vertical seismographs

Ms Surface-wave magnitude

Mw Moment magnitude

rmin Shortest source-to-site distance

rmax Longest source-to-site distance

r scale Distance metric, where (when available thede facto standard abbreviations of Abrahamson and Shedlock

(1997) are used):

repi Epicentral distance

r jb Distance to projection of rupture plane on surface (Joyner and Boore, 1981)

rhypo Hypocentral (or focal) distance

rq Equivalent hypocentral distance (EHD) (Ohno et al, 1993)

rrup Distance to rupture plane

rseis Distance to seismogenic rupture plane (assumes near-surface rupture in sediments is non-seismogenic)

(Campbell, 1997)

rslip Distance to point of highest slip

S Number of different site conditions modelled, where:

C Continuous classification

I Individual classification for each site

C Use of the two horizontal components of each accelerogram [see Beyer and Bommer (2006)], where:

A Arithmetic mean

B Both components

C Randomly chosen component

G Geometric mean

I50 GMrotI50 (Boore et al, 2006).

L Larger component

L3 Larger component amongst three components (including vertical)
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M Mean (not stated what type)

N Fault normal

O Randomly oriented component

R Resolved component

T Transverse (SH) component

U Unknown

R Regression method used, where:

1 Ordinary one-stage

1M Maximum likelihood one-stage or random-effects (Abrahamson and Youngs, 1992; Joyner and

Boore, 1993)

1WM Weighted maximum-likelihood one-stage

2 Two-stage (Joyner and Boore, 1981)

2M Maximum likelihood two-stage (Joyner and Boore, 1993)

2W Two-stage with second staged weighted as described in Joyner and Boore (1988)

O Other (see section referring to study)

U Unknown (often probably ordinary one-stage regression)

M Source mechanisms (and tectonic type) of earthquakes (letters in brackets refer to those mechanism that

are separately modelled), where:

A All (this is assumed if no information is given in the reference)

AS Aftershock

B Interslab

C Shallow crustal

F Interface

HW Hanging wall

I Intraplate

M Mining-induced

N Normal

O Oblique or odd (Frohlich and Apperson, 1992)

R Reverse

Rake Rake angle explicitly given

S Strike-slip

T Thrust

U Unspecified

‘+’ refers to extra records from outside region used to supplement data. (. . . ) refer either to magnitudes

of supplementing records or to those used for part of analysis. * means information is approximate because

either read from graph or found in another way.



26Table 1: Characteristics of GMPEs considered here

No. Reference Area H V E Mmin Mmax M

scale

rmin rmax r scale S C R M IM

1 Esteva and Rosenblueth (1964) W. USA 46* - U U U U 15* 450* rhypo 1 U U A PGV

2 Campbell and Duke (1974a,b) W. USA Hybrid approach Ms 4.5 U 10 47 rhypo 5 A O A AI

3 Trifunac and Brady

(1975a),Trifunac (1976) & Tri-

funac and Brady (1976)

W. USA 181 181 57 3.8 7.7 Mostly

ML

62* 4003* repi 3 B O A PGV,

PGD

4 Trifunac and Brady (1975b) W. USA 188 188 48 3.8 7.7 Mostly

ML

6* 400* repi 3 B O A AI,

RSD

5 McGuire (1977) W. USA 34 - 22 5.3 7.6 ML 14 125 rhypo 1 B U A PGV,

PGD

6 Dobry et al (1978) W. USA 84 - 14 4.7 7.6 ML 0.1 130 rrup 2 B 1 A RSD

7 McGuire (1978) W. USA 70 - 17+* 4.5* 7.7 U4 11* 210* rhypo 2 B U A PGV,

PGD

8 McGuire and Barnhard (1979) W. USA 50 - U U U U U U rrup

(repi

for

some)

2 B 1 A RSD

9 Cornell et al (1979) W. USA 70 - U U U ML U U rhypo 1 C U A PGV,

PGD

10 Hasegawa et al (1981) E. & W. Canada Hybrid approach 4* 7.6* U 5* 400* rhypo 1 U O A PGV×2

11 Joyner and Boore (1981) W. N. America 182 - 23 5.0 7.7 Mw

(ML)

0.5 370 r jb 2 L 2 A PGV

12 Faccioli (1983) Worldwide Hybrid approach 4.7 7.7 Mw 4* 95* rhypo C R O A AI

13 Joyner and Fumal (1984) and

Joyner and Fumal (1985)

W. N. America 182 - 23 5.0 7.7 Mw

(ML)

0.5 370 r jb C L 2 A PGV

14 Kamiyama (1984) Japan 192 - U 4.1 7.9 MJMA 10 310 repi I B 1 A RSD

15 Kawashima et al (1984) &

Kawashima et al (1986)

Japan 197 - 90 5.0 7.9 MJMA 5* 550* repi 3 R 1 A PGV,

PGD

16 Wilson and Keefer (1985) W. USA 30 - 20 5.0 7.4 Mw 6 130 r jb 1 A 1 A AI

continued on next page

2 Note only valid forR ≥ 20km
3 Note only valid forR ≤ 200km
4 Idriss (1978) finds magnitudes to be mixture ofML, mb andMs.
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Table 1:continued

No. Reference Area H V E Mmin Mmax M

scale

rmin rmax r scale S C R M IM

17 Jibson (1987) W. USA 31 - 21 5.0 7.4 Mw 6 130 r jb 1 A 1 A AI

18 Nuttli and Herrmann (1987) E. N. America Simulation approach U U mbLg U U rhypo 1 G 1 A PGV

19 K.W. Campbell (1988)5 Worldwide U - U ≥ 5 U ML

for

M <

6.0

and

Ms

other-

wise

U <50 rseis 2 M U A (S,

R)

PGV

20 Gaull (1988) S.W. W. Australia 25+ - 12+ 2.6 6.9 ML 2.5 175 rhypo 1 U O A PGV

21 Huo (1989) S. China U - U U U U U U U 1 G 1 A PGV

22 Campbell (1990) Unknown U - U U U ML for

M < 6,

Ms for

M ≥ 6

U U rseis 1 U U A PGV

23 Gaull et al (1990) SE Australia Hybrid approach U U U U U rhypo 1 U O A PGV

24 Niazi and Bozorgnia (1991) SMART-1 array, Taiwan 236 234 12 3.6 7.8 ML

(MD)

for

ML <

6.6,

else

Ms

3.16 119.76 rhypo 1 M 2W A PGV,

PGD

25 Kamiyama et al (1992) &

Kamiyama (1995)

Japan 357 - 82 4.1 7.9 MJMA 3.4 413.3 rhypo I B O A PGV,

PGD

continued on next page

5 Reported in Joyner and Boore (1988).
6 Distance to centre of array



28Table 1:continued

No. Reference Area H V E Mmin Mmax M

scale

rmin rmax r scale S C R M IM

26 Theodulidis and Papazachos (1992) Greece+16 foreign 105+167 - 36+4 4.5

(7.2)

7.0

(7.5)

Ms ,

Mw,

MJMA

1 (48) 128

(236)

repi 2 B O A PGV,

PGD

27 Midorikawa (1993) Japan U - U 6.5 7.8 Mw U U rrup 1 U 1 A PGV

28 Wilson (1993) W. USA Hybrid approach 5.3 7.5 Mw 3* 100* r jb 1 G O A AI

29 Lee et al (1995) W. N. America 1926 1926 297 1.7 7.7 Usually

ML

for

M ≤

6.5

and

Ms for

M >

6.5

2 200+ rhypo 9, 3 ×

C

U 1 A PGV,

PGD

30 Molas and Yamazaki (1995) Japan 2166 - 387 4.1* 7.8* MJMA 8* 1000* rrup

for 2

earth-

quakes,

rhypo

other-

wise

I L O A PGV

31 Abrahamson and Silva (1996) California with some others U U U 4.7 7.4 Mw 0.1 220* rrup 2 G 1M A RSD

32 Sabetta and Pugliese (1996) Italy 95 95 17 4.6 6.8 Ms if

ML &

Ms ≥

5.5

else

ML

1.5,

1.5

179,

1808

Both

r jb &

repi

3 L 1 A PGV,

AI

33 Singh et al (1996) Himalayas 86 - 5 5.7 7.2 mb 33.15 340.97 rhypo 1 U 1 A PGV

34 Atkinson and Boore (1997a) E. N. America Simulation approach 4.0 7.0 Mw 10 500 rhypo 2 G O A PGV

continued on next page

7 Total number of components does not need to be multiplied by two
8 State equations should not be used for distances> 100km
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Table 1:continued

No. Reference Area H V E Mmin Mmax M

scale

rmin rmax r scale S C R M IM

35 Atkinson and Boore (1997b) Cascadia Simulation approach 3.7 6.7 Mw 10 400 hypo 2 G O A PGV

36 Campbell (1997), Campbell (2000),

Campbell (2001) & Campbell and

Bozorgnia (1994)

Worldwide 645 225 H:47,

V:26

4.7 H:8.0,

V:8.1

Mw 3 60 rseis 3 G 1 A(S,R,N) PGV

37 Gregor and Bolt (1997) California 110 110 12 5.4 7.2 Mw 6* 200* rslip 2 T, V 1 R, S PGD

38 Kayen and Mitchell (1997) W. USA 66 - U U U Mw 1* 100* rrup 3 G 1 A AI

39 Rinaldis et al (1998) Italy & Greece 137* - 24* 4.5 7 Ms or

Mw

7 138 repi 2 U O A

(N,ST)

PGV

40 Sadigh and Egan (1998) California with 4 foreign 960+4 - 119+2 3.8 7.4 Mw 0.1 3059 rrup

for

some,

rhypo

for

small

ones

2 G U A(R,SN) PGV,

PGD

41 Sarma and Srbulov (1998) Worldwide 69010 - 113 3.9 7.7 Ms

(U)

0 197 r jb ,

repi

2 B 1 A AI

42 Somerville (1998) 15 mainly W. USA+12 sim-

ulated

27 - 13 6.2 7.5 Mw 0.1 10 rrup 1 N 1 A PGV

43 Theodulidis et al (1998) Kozani-Grevena (Greece) 23211 - U 3.1 6.6 Mw 1 140* repi 1 B 1 A PGV

44 Chapman (1999) W. N. America 304 - 23 5.0 7.7 Mw 0.1 189.4 r jb 3 G 2M A PGV

45 Ólafsson and Sigbjörnsson (1999) Iceland 8812 - 17 4.0 5.9 Mw 2 112 repi 1 B 1 A RSD

46 Alavi and Krawinkler (2000) 15 mainly W. USA+12 sim-

ulated

27 - 13 6.2 7.5 Mw 0.1 10 rrup 1 N 1 A PGV

47 Bommer et al (2000) Europe & Middle East 183 - 43 5.5 7.9 Ms 3 260 r jb 3 L 1 A PGV,

PGD

continued on next page

9 Equations stated to be for distances up to 100km
10 Total number of components do not need to be multiplied by two.
11 Total number of components do not need to be multiplied by two.
12 Total number of components do not need to be multiplied by two.
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No. Reference Area H V E Mmin Mmax M

scale

rmin rmax r scale S C R M IM

48 Hernandez and Cotton (2000) Italy & California 27213 - 40* 3.2 7.4 ML

for

M < 6,

Ms

other-

wise

1 109 rrup 2 B 1 A RSD

49 Paciello et al (2000) Greece & Italy 115 - 18 4.5 U Mw or

Ms

U U repi 2 B 1 A (N) PGV,

PGD,

AI

50 Si and Midorikawa (1999, 2000) Japan 856 - 21 5.8 8.3 Mw 0* 280* Both

rq &

rrup

2 L O A PGV

51 Toro and Silva (2001) Central USA Simulation approach 5.5 7.5 Mw 1 400 r jb 1 G 1 A PGV

×2

52 Wu et al (2001) Taiwan 1941 - 60 4.8 7.6 Mw

(ML)

0.05* 400* rrup

(repi

for

some)

1 & I U U A PGV

53 Gregor et al (2002) Shallow crustal worldwide

(mainly California)

993 993 68 4.4 7.4 Mw 0.1 267.3 rrup 2 U 1M A (S,

R/O,

T)

PGV,

PGD

54 Margaris et al (2002a) & Margaris

et al (2002b)

Greece 744 - 142 4.5 7.0 Mw 1 150 repi 3 B O A PGV,

PGD

55 Silva et al (2002) Cen. and E. N. America Simulation approach 4.5 8.5 Mw 1 400 r jb 1 G 1 A PGV

×5

56 Tromans and Bommer (2002) Europe 249 - 51 5.5 7.9 Ms 1 359 r jb 3 L 2 A PGV,

PGD

57 Zonno and Montaldo (2002) Umbria-Marche 161 - 15 4.5 5.9 ML 2* 100* repi 2 L 2 N, O PGV,

AI

58 Megawati et al (2003) Sumatran interface Simulation approach 4.0 8.0 Mw 174 1379 rrup 1 G 1 F PGV

continued on next page

13 Total number of components do not need to be multiplied by two.
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No. Reference Area H V E Mmin Mmax M

scale

rmin rmax r scale S C R M IM

59 Boatwright et al (2003) N. California 4028 - 104 3.3 7.1 Mainly

Mw,

ML

for

some

1* 370* rhypo 4 U O A PGV

60 Travasarou et al (2003) Mainly W. USA 1208 - 75 4.7 7.6 Mw 0.1* 200* rrup 3 A 1M A (N,

R)

AI

61 Bray and Rodriguez-Marek (2004) Worldwide 54 - 13 6.1 7.6 Mw 0.1 17.6 Mrup 2 N 1M A PGV

62 Hwang et al (2004) Chi-Chi (Taiwan) 22114 - 4 6.2 7.7 Mw U U r jb 1 A 2M A AI

63 Lin and Lee (2004) Taiwan U - 41 U U U U U rrup 1 U 1 A AI

64 Midorikawa and Ohtake (2004) Japan 3335 - 33 5.5 8.3 Mw 0* 300* rrup 2 L 1 A (C,

B, F)

PGV

65 Pankow and Pechmann (2004) and

Pankow and Pechmann (2006)

Worldwide extensional

regimes

142 - 39 5.1 7.2 Mw 0 99.4 r jb 2 G, O 1M NS PGV

66 Bragato and Slejko (2005) E Alps (45.6–46.8◦N & 12–

14◦E)

1402 3168 240 2.5 6.3 ML 0 130 r jb &

repi

1 R O A PGV,

AI

67 Frisenda et al (2005) NW Italy 689915 - >1152 0.0* 5.116 ML 0 30017 rhypo 2 B 1 A PGV

68 Garcı́a et al (2005) Central Mexico 277 277 16 5.2 7.4 Mw 4* 400* rrup

for

Mw >

6.5,

rhypo

other-

wise

1 G18 1M B PGV

continued on next page

14 Three other equations for site classes B, D and E.
15 Authors state in text that ‘more than 14 000’ values were usedbut their Table 1 gives 2×6899.
16 State equations valid to 4.5.
17 State equations valid up to 200km.
18 Call it ‘quadratic mean’, which is assumed to be geometric mean.
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No. Reference Area H V E Mmin Mmax M

scale

rmin rmax r scale S C R M IM

69 Liu and Tsai (2005) Taiwan 7907 7907 51 4.05 7.10 Mw

(ML)

5* 300* rhypo 1 M 2M A PGV

70 McGarr and Fletcher (2005) Central Utah coal-mining ar-

eas

72 - 12 0.98 4.2 Mw

(MCL)

0.5* 10* rhypo 2 L 2M M PGV

71 Megawati et al (2005) Sumatran interface Simulation approach 4.5 8.0 Mw 150 1500 rrup 1 G 1 F PGV

72 Wald et al (2005) California U - U U 5.3* Mw U U r jb 1 L U A PGV

73 Atkinson and Boore (2006) E. N. America Simulation approach 3.5 8.0 Mw 1 1000 rrup 1 G 1 A PGV

74 Bindi et al (2006) Umbria-Marche 239 - 45 4.0 5.9 ML 1* 100* repi &

rhypo

4 L 1M NS PGV

75 Kanno et al (2006) Japan+some foreign 3392+377

(shal-

low) &

8150

(deep)

- 73+10

& 111

5.0*

(6.1)

& 5.5*

8.2*

(7.4)

& 8.0*

Mw

(MJMA)

1*

(1.5*)

& 30*

450*

(350*)

&

450*

rrup

(rhypo

for

some)

C R 2M A PGV

76 Kempton and Stewart (2006) Worldwide shallow crustal 1559 - 73 5.0* 7.6* Mw 0* 200* rrup C G 1M A RSD

77 Pousse et al (2006) Japan 939019 - U 4.1 7.3 (Mw) 5* 250* rhypo

(rrup

for

some)

5 B 2M A AI,

RSD

78 Akkar and Bommer (2007) Europe & Middle East 532 - 131 5.0 7.6 Mw 0 99 r jb 3 G 1WM A (N,

S, R)

PGV

79 Ghodrati Amiri et al (2007a) &

Ghodrati Amiri et al (2007b)

Alborz and central Iran20 200* 200* 50* 4.5* 7.3* Ms

(mb)

5* 400* rhypo 2 L 1 A PGV

80 Bindi et al (2007) NW Turkey 4047 4047 528 0.5 5.9 ML
21 5* 200* rhypo

22 2 L 1M A PGV

81 Convertito et al (2007) Campania, Italy Mainly simulatedwith some natural 5 7 Mw 5 150 repi 1 G 1 A PGV

continued on next page

19 Does not need to be multiplied by two.
20 Also develop models for the Zagros region of Iran using about100 records.
21 Also derive model usingMw.
22 Also derive model usingrepi.
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No. Reference Area H V E Mmin Mmax M

scale

rmin rmax r scale S C R M IM

82 Danciu and Tselentis (2007a) &

Danciu and Tselentis (2007b)

Greece 335 - 151 4.5 6.9 Mw 0* 136 repi 3 A 1M A (ST,

N)

PGV,

PGD,

AI

83 Fukushima et al (2007) Japan 8615 - 158 5.0 6.8 MJMA 18.1 448.4 rrup 1 R 1 A PGV

84 Megawati (2007) Hong Kong Simulation approach 5.3 6.8 Mw 20* 60* rrup 1 G 1 A PGV

85 Atkinson (2008) E. N. America Referenced-empirical approach 4.3 7.6 Mw 10* 1000* r jb C I50 O A (N,

R, S,

U)

PGV

86 Al-Qaryouti (2008) Dead Sea area 26 - 19 4.0 6.2 ML 5.8 330.6 repi 1 U 2 A PGV

87 Abrahamson and Silva (2008) &

Abrahamson and Silva (2009)

Worldwide shallow crustal 2754 - 135 4.2723 7.924 Mw 0.06* 200* rrup C I50 1M A (N,

R, S,

HW)

PGV

88 Boore and Atkinson (2007) &

Boore and Atkinson (2008)

Worldwide shallow crustal 1574 - 58 4.2725 7.9026 Mw 0 28027 r jb C I50 2M A (N,

R, S,

U)

PGV

89 Campbell and Bozorgnia (2007),

Campbell and Bozorgnia (2008b) &

Campbell and Bozorgnia (2008a)

Worldwide shallow crustal 1561 - 64 4.2728 7.9029 Mw 0.07 199.27 rrup C I50 1M A (N,

R, S,

HW)

PGV,

PGD

continued on next page

23 Recommend that model is not extrapolated below 5 due to lack of data.
24 Believe that model can be reliably extrapolated to 8.5.
25 Recommend that model is not extrapolated below 5 due to lack of data.
26 Believe that model can be used to 8.0.
27 Recommend that model is not used for distances≥ 200km.
28 Believe that model can be extrapolated down to 4.0.
29 Believe that model can be extrapolated up to 8.5 for strike-slip faulting and 8.0 for reverse faulting.
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No. Reference Area H V E Mmin Mmax M

scale

rmin rmax r scale S C R M IM

90 Chiou and Youngs (2008) Worldwide shallow crustal 1950 - 125 4.26530 7.9031 Mw 0.2*32 70*33 rrup C I50 1M A (N,

R, S,

HW,

AS)

PGV

91 Jin et al (2008) Fujian (China) 1974 1974 94 2.8 4.9 ML 13 462 repi 1 U O A PGV

92 Liang et al (2008) SW W. Australia Simulation approach 4.0 7.0 ML 10 200 repi 1 G 1 A PGV

93 Massa et al (2008) Northern Italy 306 306 82 3.5 &

4.0

6.3 &

6.5

Mw

(ML)

& ML

1* 100* repi 3 L 1M A PGV

94 Mezcua et al (2008) Spain 250 - 149 3.1 5.3 Mw

(mb(Lg ))

5* 100* rhypo 1 U 1 A PGV

95 Snæbjörnsson and Sigbjörnsson

(2008)

Europe & Middle East 71 - 13 5.0* 7.6* Mw 0* 100* r jb 1 U 1 SS RSD

96 Bindi et al (2009a) Italy 241 241 27 4.8 6.9 Mw 0 190 r jb

(repi

for

small)

3 L, G 1M A (N,

S, R)

PGV

97 Bindi et al (2009b) Italy 235 - 27 4.6 6.9 Mw

(ML)

0 183 r jb ,

repi

3 L 1M A PGV

98 Bommer et al (2009) Worldwide shallow crustal 2406 - 114 4.8 7.9 Mw 1.5* 100* rrup C B O A RSD

99 Lee (2009) W. USA34 324 324 49 5.0 7.6 Mw 0.1 199.1 rrup 2 A 1M A AI×2,

RSD×2

100 Stafford et al (2009) New Zealand + foreign 144+241

&

144+200

- 23+41 5.08 7.51 Mw 0.07 300 r jb &

rrup

3 L, O,

G, A

1M A

(S/N,

R)

AI×4

continued on next page

30 Believe that model can be extrapolated down to 4.0.
31 Believe that model can be extrapolated up to 8.5 for strike-slip faulting and 8.0 for reverse faulting.
32 Believe that model valid to 0km.
33 Believe that model valid to 200km.
34 Also model for Central USA using 14 records and 296 scaled records
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No. Reference Area H V E Mmin Mmax M

scale

rmin rmax r scale S C R M IM

101 Akkar and Bommer (2010) Europe & Middle East 532 - 131 5.0 7.6 Mw 0 99 r jb 3 G 1M A (N,

S, R)

PGV

102 Akkar and Çağnan (2010) Turkey 433 - 137 5.0 7.6 Mw 0* 200* r jb C G 1M A (N,

S, R)

PGV

103 Ghodrati Amiri et al (2010) Alborz and central Iran35 416 - 189 3.236 7.7 Ms

(mb)

5* 400* rhypo 2 L 1M A AI

104 Bindi et al (2010) Italy 561 561 107 4.0 6.9 Mw 1* 100* r jb ,

repi

3 L 1M A PGV

105 Chiou et al (2010)37 S & N California 15684 - U 3* 6* Mw 5* 200* rrup C I50 1M A (N,

R, S,

HW,

AS)

PGV

×2

106 Iervolino et al (2010) Italy 95 - 17 4.6 6.8 Ms if

ML &

Ms ≥

5.5

else

ML

1.5,

1.5

179,

180

r jb &

repi

3 L 1 A PGV,

AI

107 Megawati and Pan (2010) Sumatran interface Simulation approach 5 9 Mw 300* 1200* rE 1 G 1 F PGV

108 Rajabi et al (2010) Zagros, Iran 37 - 35 4.1 7.0 Mw 5 150 repi 1, 3 &

4

L 1 A AI×5

109 Atkinson (2008) modified by

Atkinson and Boore (2011)

E. N. America Referenced-empirical approach 4.3 7.6 Mw 10* 1000* r jb C I50 O A (N,

R, S,

U)

PGV

110 Atkinson and Boore (2006) modi-

fied by Atkinson and Boore (2011)

E. N. America Simulation approach 3.5 8.0 Mw 1 1000 rrup 1 G 1 A PGV

continued on next page

35 Also develop models for the Zagros region of Iran using 309 records from 190 earthquakes.
36 State that only use data withMs ≥ 4 but one earthquake in their Appendix A hasMs3.2.
37 Adjustment of GMPE of Chiou and Youngs (2008) forMw < 6
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No. Reference Area H V E Mmin Mmax M

scale

rmin rmax r scale S C R M IM

111 Boore and Atkinson (2007) &

Boore and Atkinson (2008) modi-

fied by Atkinson and Boore (2011)

Worldwide shallow crustal 1574 - 58 4.27 7.9038 Mw 0 28039 r jb C I50 2M A (N,

R, S,

U)

PGV

112 Alavi et al (2011) Worldwide shallow crustal 2252 - U 5.1* 7.9* Mw 0.2* 350* rrup C U O A

(Rake)

PGV,

PGD

113 Emolo et al (2011) Campania-Lucania, Italy 875 - 123 1.5 3.2 ML 3 100* rhypo 2 L 1 A PGV

114 Ghanat (2011) Worldwide shallow crustal 2690 - 129 4.8 7.9 Mw 0.2* 200* rrup C G 1M A RSD

115 Rupakhety et al (2011) Worldwide shallow crustal 93 - 29 5.56 7.6 Mw 0 74.16 r jb 1 N 1M A PGV

116 Foulser-Piggott and Stafford (2012) Worldwide shallowcrustal 2406 - 114 4.79 7.9 Mw 0.07 100 rrup C A 1M A

(S/N,

R)

AI

117 Lee et al (2012) Taiwan 6570 - 62 3.93 7.62 Mw 0.3 205 rrup C A 1M A (S,

N, R)

AI

118 Nguyen et al (2012) Vietnam 330 - 53 1.6 4.6 ML 5* 500* repi 1 L3 1 A PGV

119 Yaghmaei-Sabegh et al (2012) Iran 286 - 141 3.7 7.7 Mw 0.6 294 rrup 4 G 1 A RSD

38 Believe that model can be used to 8.0.
39 Recommend that model is not used for distances≥ 200km.
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List of Figures

1 Predicted PGV at a NEHRP C site against publication date for96 models

published in the literature. Filled red circles indicate models published in

peer-reviewed journals, for which basic information on theused dataset is

available and which are not being extrapolated far outside their range of

applicability. Numbers correspond to those given in Table 1. Also shown

is the median PGV within five-year intervals (black line) andthe median

±1 standard deviation (dashed black lines) based on averaging predictions.

Finally indicated is the median PGV (solid blue line) and its16th and 84th

confidence limits (dashed blue line) based on averaging records up until that

date (see text for details). Note that the selection criteria and the fact that

the database used to compute these averages has not been recently updated

mean that the blue lines end before 2012. . . . . . . . . . . . . . . . . .. 38

2 Like Figure 1 but for PGD (19 models). . . . . . . . . . . . . . . . . . . .39

3 Like Figure 1 but for AI (33 models). . . . . . . . . . . . . . . . . . . . .40

4 Like Figure 1 but for RSD (14 models). . . . . . . . . . . . . . . . . . . .41
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from 56 earthquakes were used to compute the average observed PGV.

1960 1970 1980 1990 2000 2010
10

20

50

100

200

85

73

78
101

109

110
111

34

102
79

112

46
86

87

35
88

47

59
74

97

104

96

61

6619 22 36
44

89

81
105105

9

90

82

1

83
20

53

68

2321

106
11

91

13

75

25

92

29

69

84

5

27

54

58

71

94

7064

107

30

24

118

65

115

39

40 55
55
55

55

55

33
50

42

32
56

43

26

51

51

52 72

57

3
7

85

73

78
101

109

110
111

34

102
79

112

87
88

59
74

97

104

96

61

6636
44

89 105105

9

90

82

68

11

75

92

695

94

70

107

30

24

65

115
33
32

26
52

57

3
7

Publication date

P
G

V
 (

cm
/s

)

(b) For aMw7.5 strike-slip earthquake atr jb = 10km. Up until the end of 2003, 129
records from 15 earthquakes were used to compute the averageobserved PGV. The ver-
tical blue line in 1985 is caused by many number of records from the same date (the
Chile earthquake of 3rd March 1985) that significantly change the average computed up
to that time.
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(c) For aMw5 strike-slip earthquake atr jb = 10km. Up until the end of 1998, 51 records
from 30 earthquakes were used to compute the average observed PGV.

Fig. 1 Predicted PGV at a NEHRP C site against publication date for 96 models published in the literature.
Filled red circles indicate models published in peer-reviewed journals, for which basic information on the
used dataset is available and which are not being extrapolated far outside their range of applicability. Numbers
correspond to those given in Table 1. Also shown is the medianPGV within five-year intervals (black line)
and the median±1 standard deviation (dashed black lines) based on averaging predictions. Finally indicated
is the median PGV (solid blue line) and its 16th and 84th confidence limits (dashed blue line) based on
averaging records up until that date (see text for details).Note that the selection criteria and the fact that the
database used to compute these averages has not been recently updated mean that the blue lines end before
2012.
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(a) For aMw6 strike-slip earthquake atr jb = 20km.
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(b) For aMw7.5 strike-slip earthquake atr jb = 10km.
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(c) For aMw5 strike-slip earthquake atr jb = 10km.

Fig. 2 Like Figure 1 but for PGD (19 models).
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(a) For aMw6 strike-slip earthquake atr jb = 20km.
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(b) For aMw7.5 strike-slip earthquake atr jb = 10km.

1950 1960 1970 1980 1990 2000 2010
1

2

5

10

20

10366

2

82

12
116

106

17

38
9999

63

117

93

49

108
108108

108

10832

41

100

100100100

4

60

28

16

57

10366

2

82

12
116

106

38 63

117

93

49

108
108108

108

10832

41

4

60

57

Publication date

A
I (

cm
/s

)

(c) For aMw5 strike-slip earthquake atr jb = 10km.

Fig. 3 Like Figure 1 but for AI (33 models).
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(a) For aMw6 strike-slip earthquake atr jb = 20km.
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(b) For aMw7.5 strike-slip earthquake atr jb = 10km.
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(c) For aMw5 strike-slip earthquake atr jb = 10km.

Fig. 4 Like Figure 1 but for RSD (14 models).


