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Abstract Due to the limited observational datasets available fordéévation of ground-
motion prediction equations (GMPESs) there is always epigteincertainty in the estimated
median ground motion. Since the quality and quantity ofrgjrmotion datasets is con-
stantly increasing it would be expected that the episteméertainty in ground-motion pre-
diction (related to lack of knowledge and data) is decreaasiihis article is a continuation
of the study of Douglas (2010) for ground-motion parametengr than peak ground ac-
celeration (PGA) and elastic response spectral accedaré®iA). The epistemic uncertainty
in the prediction of peak ground velocity and displacemaAngs intensity and relative sig-
nificant duration is investigated by plotting predictiomsrfi dozens of GMPEs for these
parameters against date of publication for three scendricggreement with the previous
study, all ground-motion parameters considered show fpidtemic uncertainty (often even
higher than previously reported for PGA and SA), suggestiag research efforts for the
development of GMPEs for these parameters should contindelet it is vital that this
uncertainty is accounted for in seismic hazard assessnidrgepistemic uncertainty in the
prediction of relative significant duration, however, ageeto be much lower than any other
strong-motion parameter, which suggests that currentiylatde GMPEs for this intensity

measure are sufficiently mature.
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1 Introduction

The consistency in predicted peak ground acceleration {R®A elastic response spectral
acceleration (SA) for 5% damping and a natural period of 1s diacussed in Douglas
(2010). In that article, predicted PGAs and SAs from hunsli@thublished ground-motion
prediction equations (GMPEs) for various earthquake saené\,,6 at 20km, roughly the
best-represented scenario in global strong-motion datagsedM,,7.5 at 10km andVl,,5

at 10km, at the edges of most databases used to derive GMREsplotted against their
publication dates. The purpose of these plots was to irgagstihe epistemic uncertainty as-
sociated with GMPEs and to test whether this uncertaintgcsehsing, which would be ex-
pected given the accumulation of new data and knowledgeraptbivements in regression
techniques, for example. The scatter in predictions shawsuch plots is a rough measure
of epistemic uncertainty because, in the absence of sudrtamty, predictions of the me-
dian ground motion for a certain scenario should tend toglsivalue. The plots of Douglas
(2010) showed that even though epistemic uncertainty séeims reducing slightly (pre-
dictions from different models are slowly converging),réhés still considerable uncertainty
in estimated PGAs and SAs even for scenarios that are wetsepted in strong-motion
databanks, and much higher uncertainties for poorly-saghptenarios (specifically large
earthquakes at short distances).

The purpose of this short article is to extend the analysiBafglas (2010) to strong-
motion parameters other than PGA and SA, which are usefsbiore aspects of engineering
seismology and earthquake engineering. The four non-PSAi®ng-motion parameters
with most associated GMPEs are considered here, namell:gyeand velocity (PGV),
peak ground displacement (PGD), Arias intensity (Al) (Ari2970) and relative significant
duration (RSD) (Trifunac and Brady, 1975b). In contrast®?*and SA, there are far fewer
GMPEs published for these parameters but there are sfiitigut to enable some conclu-
sions on their predictability to be drawn. Unlike for PGA aB4, my search for GMPEs
for the prediction of these other parameters only starteeintdy and hence it is more likely

that the collection of non-PGA/SA models considered heeeless complete than given



in Douglas (2011) for PGA and SA. However, a thorough literatsearch was conducted
and various reviews were studied (e.g. Bommer and MarReeira, 1999; Bommer and
Alarcon, 2006; Travasarou et al, 2003; Tromans, 2004)réfbee, it is unlikely that many

models are missing. Table 1 lists the considered GMPEs aed,givhen possible (some of
the original references could not be consulted and somewesutio not provide the necessary

information), their main characteristics.

In the next section, graphs are presented for the four ceretidstrong-motion parame-
ters and the same three earthquake scenarios as in Dou@l#y.(Zo facilitate comparisons
with the results of Douglas (2010) the same scenarios adened here except that sepa-
rate plots are not made for broad geographical or tectogioms [western North America;
Europe, the Mediterranean and the Middle East; stablerwamiial regions; and Japan (sub-
duction zones)]. The dependence of PGV, PGD, Al and RSD dari&cregime is less well
studied than for PGA and SA because the vast majority of GMBiEbSese parameters are
derived for shallow crustal earthquakes in active regice® (Table 1). It is likely that this
lack of consideration of tectonic regime will slightly ik@se the scatter in the following
plots. The same graph format is used to facilitate compasisdath the previous graphs for
PGA and SA. For example, the ratio of the upper and lower $iwiithe abscissa, displaying
the strong-motion parameter, is 25 and a logarithmic axised. As before those studies
that were published in peer-reviewed international jolsrzand give basic details of the
datasets used for their derivation [criteria 2 and 3 of (@ott al, 2006)] and which are not
being extrapolated far outside their magnitude-distanoge of applicability are indicated.
Because this study makes the same choices and considem@ntieessenarios as Douglas
(2010), only brief details are given here. The interestediee is referred to the previous

article for more information.

The differences between the aleatory variabilities (sigassociated with GMPEs for
the different parameters are not discussed here. Table Tvamhsarou et al (2003) presents
such a comparison for PGA, SABX), Al and RSD predicted by a family of GMPEs derived
using a similar database, functional form and regressidmigue. This table shows that the
aleatory variabilities for each of these parameters ardasinexcept for the GMPE for Al,

which has a much higher sigma suggesting that Al is morensigally variable.



2 Comparing ground-motion predictions

Models have been adjusted to, where possible: moment noagn{¥l,,), distance to the
surface projection of the rupture (Joyner-Boore distaifcg), vertical-dipping strike-slip
faulting and the geometric mean of the two horizontal congpis These adjustments were
made using the approaches of Bommer et al (2005) using: f&f 8@ PGD, style-of-
faulting and component definition factors of Campbell ana@d@gnia (2007) and for Al,
style-of-faulting and component definition factors of &ied et al (2009). For the conver-
sion toM,y from surface-wave magnitud®/) the equation of Ambraseys and Free (1997)
was used. Local magnitud®/(), and other magnitude scales, were assumed equd},io
Harmonization of models is not always possible due to a ldakformation in many of the
original references on, for example, definition of horizdbomponent and magnitude scale.
This means that the predictions could be in error by roughb6 2ut this will not alter the
overall trends, which are the focus of this article (the szahould not seek to over-interpret
details in the graphs). The size of the rupture plane and aithditional parameters needed
to evaluate some of the models have been computed using thedsegiven in Chapter 7
of Campbell and Bozorgnia (2007). To compute the epiceatrdlhypocentral distances the
hypocentre is assumed to be at one end of the fault at a defithkafi and the site half way
along the fault. Some authors seek to model epistemic wingrin ground-motion predic-
tion by proposing more than one set of GMPES, e.g. by progidivefficients for different
functional forms (e.g. Stafford et al, 2009). Predictiorenf each of these variant GMPEs
are included here.

Because it is roughly the best-represented scenario irabtdtmng-motion datasets the
first scenario considered isM,6 strike-slip earthquake aj, = 20km on a site classified
as NEHRP class C (Eurocode 8 class B)36 = 490ny's). If epistemic uncertainty in the
prediction of ground motion is decreasing then it should iséble for this scenario since
it is where available observations are most abundant anceh®MPEs should be the best
constrained. The other two scenarios considered\as&.5 strike-slip earthquake af, =
10km, for which there are still few available data, a1g5 strike-slip earthquake af, =

10km, which is at the lower edge of most datasets used foreheation of GMPEs, for

1 Kempton and Stewart (2006) and Bommer et al (2009) find tlyé-sf-faulting does not have a statis-
tically significant effect on RSD. Factors to convert betweéferent component definitions of RSD are not
available so no adjustment was attempted.



the same site conditions. It is expected that epistemicrtaingy (and hence scatter in the
predictions) will be higher for these two scenarios comgaceV,6 atrj, = 20km due to
the lack of observations and uncertainty over near-soumgnitude-scaling, for example.
The following sections present the results for the four peaters in turn. As a measure of
the dispersion in the median predictions the standard tleniaf the common (base 10)
logarithm of median estimates for each five-year intervalcamputed, although because of

the limited number of GMPEs this statistic is quite unstable

As for the analysis shown in Douglas (2010) the median graenation for the consid-
ered scenario obtained from a large (over 13,000 records freer 2,500 events) strong-
motion database [the data from the Internet Site for Euno@eong-motion Data (ISESD)
(Ambraseys et al, 2004) with the addition of many accelexogr from western North Amer-
ica and elsewhere] is plotted at all dates. The median shadh the predictions, since sim-
ilar databases were used to derive the GMPESs published ataate, and the variability
in the median should also show a reduction, since more datheing used to compute the
averages. The variabilities of the medians are computeslthedividing the standard devi-
ation by/n, wheren is the number of records used to compute the standard devidthe
medians and their variabilities were computed by congigetine available records within
0.5— My units and 10km of the scenario of interest and excluding aidenation of local
site conditions and style of faulting. It could be argued: tihese bins are too broad and
that a consideration of local site effects should have besteemHowever, given the limited
data available, particularly fav,, > 7, narrow bins would lead to statistics based on few
records from only a handful of earthquakes. The median gronations computed from
averaging data within broad bins should not be stronglycégfe by the width of the bins
but the variabilities of these medians may be slightly oseneated. The uniform filtering
applied to the strong-motion databank used here (bandgss#§ with cut-offs of 025
and 25Hz) means that the PGV and, especially, PGD obsemngatiotained from this data-
bank are likely to be incorrect. The averages of these PG\WP&Id observations, however,
are added for completeness. Al and RSD from these record&Meo, are likely to be little

affected by the uniform filtering.



2.1 Peak ground velocity

Because of its various uses in earthquake engineering (Boramd Alarcon, 2006) and
its simplicity, following PGA and SA, PGV is the best servegd BMPEs and 96 models
were identified and programmed, many of which also providsdfiments for the prediction
of PGA and SA. The predicted PGVs and median PGVs from thegtnootion databank
for the three considered scenarios are shown in Figure lggmedicted PGVs are off
the top or bottom of these figures, often because the GMPEbeang extrapolated far
outside their range of applicability). These figures shoat tihe dispersion in predicted
PGVs from different GMPEs is large (the ratio between thellsiand largest predictions
is greater than ten) and that this scatter is not obviousiycieg with time (even when
considering only models passing basic quality-contraleda), particularly near to large
earthquakes. The standard deviation of the common logawfhmedian estimates for each
five-year interval are around®for M6 atr j, = 20km andM,,5 atr j, = 10km and around
0.3 for My7.5 atrj, = 10km. Also roughly constant are the average PGV predicted by
the models over time. The median observed PGVs are simil#nase predicted by the
GMPEs although lower for th#,7.5 scenario. A similar conclusion was also noted by
Douglas (2010) for PGA and SA(1s) for large earthquakeschvhias related to a number
of recent large earthquakes (e.g. Chi-Chi 1999; Kocaelp18@nali 2002) showing lower

than expected ground motions (e.g. Ellsworth et al, 2004).

[Fig. 1 about here.]

2.2 Peak ground displacement

Because of the difficulty in obtaining reliable PGDs from lagae (and even digital) ac-
celerograms and the limited use of PGD in earthquake engimggéhere are only 19 pub-
lished GMPEs for PGD, which are typically associated with 4 for PGV. Although of
limited use in most fields of earthquake engineering, thesbprediction of PGD would

help constrain the long-period-(2s) response spectral displacements because these must
converge to PGD at very long periods (Faccioli et al, 2004g predictions from the GM-

PEs for the three considered scenarios are shown in Figlreede graphs show the large
dispersion in predictions of PGD, especially near to largehguakes. This dispersion is

probably due in large part to the difficulty in recoveringiable displacement traces from



strong-motion records because of their high sensitivitgrtessing (e.g. low-cut filtering)
(e.g. Paolucci et al, 2008). The observed PGDs match thectimt reasonably well for
the smaller magnitudes but they are considerably lowertfM,, 7.5 earthquake, which is
probably since the application of a low-cut filter with a carfrequency of @5Hz is likely

to lead to significant loss of the true long-period energynfisuch large events.

[Fig. 2 about here.]

2.3 Arias intensity

As noted by, for example, Travasarou et al (2003), Al has abaurof uses in earthquake
engineering, particularly for slope stability analysisldiquefaction assessment. These uses
have motived the development of, at least, 33 GMPEs, inctudariants, for Al. Some of
these GMPEs only give the value of the integral and not thepbet® expression for Al; for
these the constamt/2g was included when plotted. The predictions from these 88ats
and the median observed Al for the three scenarios are g@lott€igure 3. The standard
deviations of the median predicted Als are arourdlfor My,5 atrj, = 10km, around (B
for My6 atrj, = 20km and around.@ for My, 7.5 atrj, = 10km. This implies that the
epistemic uncertainty in the prediction of median Al forgar earthquakes is lower than
that for smaller events, which is counterintuitive sinceréhare far fewer available records
for this scenario. Two possible reasons for this obsemadi@ that regional differences in
Al, modelled within local GMPEs, are stronger for smalleeets, and that current GMPE
developers for Al have concentrated their efforts on thelipt®n of Al from large earth-
quakes. Al was not considered by the NGA developers (Powal, 008) and, therefore,
there is perhaps a requirement to develop a new generatimodéls for the prediction of
this parameter; there have been some recent attempts idirthision (e.g. Foulser-Piggott
and Stafford, 2012).

[Fig. 3 about here.]

2.4 Relative significant duration

As noted by Bommer and Martinez-Pereira (1999), many dopémlefinitions of strong-

motion duration have been proposed, which give widely raggialues. The definition of



duration that is most commonly used in earthquake engimgéaind consequently for which
there are most GMPEs available) is the relative significamatiobn originally defined by
Trifunac and Brady (1975b) as the interval between 5 and 9bthectotal Arias intensity.
Despite its various uses (e.g. Kempton and Stewart, 2008)jreliquefaction evaluation,
only 15 GMPEs have been identified in the literature for thedjmtion of this parameter.
Figure 4 present the history of the predictions from thesenbdlels and the median ob-
served RSDs for the three scenarios. The epistemic unegriaithe prediction of median
RSD is much lower than for the other ground-motion pararsetensidered here (the stan-
dard deviation of the median predicted RSDs in the past fiee igeless than .Q even for
large earthquakes). This suggests that, either: a) epistamertainty in the prediction of
this parameter is being under represented by the differenteta (because they often use
similar databases and functional forms) or b) this paranietsasier to predict than the other
intensity measures. The widths of the confidence limits lfier rnedian observed RSD are
narrower than the confidence limits for PGV, PGD and Al [armsthfor PGA and SA(1s)
shown in Douglas (2010)], which hints that the epistemiceutainty in the prediction of
RSD is truly lower than for these other parameters. Thisccbel because the physics un-
derlying the relative duration characteristics of eartiiqushaking (e.g. rupture time and
wave dispersion and scattering) are perhaps easier toreapta simple functional form
compared with the physics explaining strong-motion amgts, measured by the other pa-

rameters.

[Fig. 4 about here.]

3 Conclusions

There have been recent studies (e.g. Baker, 2007) applgictgivwalued probabilistic seis-
mic hazard assessment (VPSHA) (Bazzurro and Cornell, 2@@2je joint prediction of
pairs of parameters other than PGA and SA. Recently, Gehl(20&1) present a method
for the derivation of structural fragility functions of methan one intensity measure, which
could be coupled with VPSHA for vector-valued risk evalaatiFor this type of study the
relative uncertainties in the prediction of each paramateimportant. This article suggests
that the epistemic uncertainties in the prediction of PG¥PPand Al are higher even than
those evidenced by Douglas (2010) for PGA and SA. For PGV dnithis larger uncertainty

is probably principally due to lesser research effort hguieen made in the development



of GMPEs for such parameters compared to PGA and SA. Alth@agih parameters have
recently been the subject of various articles, e.g. the N&&hkbpers also developed models
for the prediction of PGV. The instability in PGD predict®is due to both lack of research
interest in the development of GMPEs for this parameterabse of limited engineering
applications, but also because PGD is inherently diffionltecover from strong-motion
records due to its sensitivity to low-cut filtering (e.g. Be@nd Atkinson, 2008). The epis-
temic uncertainty in the prediction of RSD, on the other ha®ms to be lower than that
associated with the prediction of any of the other pararagetehich could encourage more
consideration of this parameter within earthquake hazaddrisk assessments for which it

has various engineering applications.
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A GMPEs considered here

H Number of horizontal records (if both horizontal compaisesre used then multiply by two to get total
number)
V Number of vertical components
E Number of earthquakes
Mmin Magnitude of smallest earthquake
Mmax Magnitude of largest earthquake
M scale Magnitude scale (scales in brackets refer to thodessudnich the mairM values were sometimes
converted from, or used without conversion, when no datstent), where:
m, Body-wave magnitude
McL Coda length magnitude
Mp Duration magnitude
Mjma Japanese Meteorological Agency magnitude
M, Local magnitude
MpLg Magnitude calculated using Lg amplitudes on short-periedical seismographs
Ms Surface-wave magnitude
My Moment magnitude
rmin Shortest source-to-site distance
rmax Longest source-to-site distance
r scale Distance metric, where (when availabledhtacto standard abbreviations of Abrahamson and Shedlock
(1997) are used):
repi Epicentral distance
rip Distance to projection of rupture plane on surface (Joyndrioore, 1981)
'ypo Hypocentral (or focal) distance
rq Equivalent hypocentral distance (EHD) (Ohno et al, 1993)
rup Distance to rupture plane
r«is Distance to seismogenic rupture plane (assumes neacsutfature in sediments is non-seismogenic)
(Campbell, 1997)
rsip Distance to point of highest slip
S Number of different site conditions modelled, where:
C Continuous classification
I Individual classification for each site
C Use of the two horizontal components of each accelerogsam Beyer and Bommer (2006)], where:
A Arithmetic mean
B Both components
C Randomly chosen component
G Geometric mean
150 GMrotl50 (Boore et al, 2006).
L Larger component
L3 Larger component amongst three components (includintra
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M Mean (not stated what type)
N Fault normal
O Randomly oriented component
R Resolved component
T Transverse (SH) component
U Unknown
R Regression method used, where:
1 Ordinary one-stage
1M Maximum likelihood one-stage or random-effects (Abrakan and Youngs, 1992; Joyner and
Boore, 1993)
1WM Weighted maximume-likelihood one-stage
2 Two-stage (Joyner and Boore, 1981)
2M Maximum likelihood two-stage (Joyner and Boore, 1993)
2W Two-stage with second staged weighted as described iredeyd Boore (1988)
O Other (see section referring to study)
U Unknown (often probably ordinary one-stage regression)
M Source mechanisms (and tectonic type) of earthquakeerfieh brackets refer to those mechanism that
are separately modelled), where:
A All (this is assumed if no information is given in the refeoe)
AS Aftershock
B Interslab
C Shallow crustal
F Interface
HW Hanging wall

Intraplate
Mining-induced

Normal

oz £

Oblique or odd (Frohlich and Apperson, 1992)
R Reverse
Rake Rake angle explicitly given
S Strike-slip
T Thrust
U Unspecified

‘+’ refers to extra records from outside region used to seimnt data. (. ..) refer either to magnitudes
of supplementing records or to those used for part of arml§isheans information is approximate because
either read from graph or found in another way.



Table 1: Characteristics of GMPEs considered here

No. Reference Area H \% E Mmin Mmax M "min rmax r scale IM
scale
1 Esteva and Rosenblueth (1964) W. USA 46* - U U U U 15* 450* "hypo PGV
2 Campbell and Duke (1974a,b) W. USA Hybrid approach Ms 4.5 u 10 47 "hypo Al
3 Trifunac and Brady ~ W.USA 181 181 57 38 7.7 Mostly ~ 62* 4003+ Tepi PGV,
(1975a),Trifunac  (1976) & Tri- ML PGD
funac and Brady (1976)
4 Trifunac and Brady (1975b) W. USA 188 188 48 3.8 7.7 Mostly 6* 400* Tepi Al,
ML RSD
5 McGuire (1977) W. USA 34 - 22 53 7.6 ML 14 125 "hypo PGV,
PGD
6 Dobry et al (1978) W. USA 84 - 14 4.7 76 ML 0.1 130 frup RSD
7 McGuire (1978) W. USA 70 - 17+ 4.5% 7.7 L] 11 210* Thypo PGV,
PGD
8 McGuire and Barnhard (1979) W. USA 50 - u u u u u u frup RSD
(repi
for
some)
9 Cornell et al (1979) W. USA 70 - U u u M U U "hypo PGV,
PGD
10 Hasegawa et al (1981) E. & W. Canada Hybrid approach 4* 76 U 5% 400* "hypo PGVx2
11 Joyner and Boore (1981) W. N. America 182 - 23 5.0 7.7 Mw 0.5 370 Tib PGV
M)
12 Faccioli (1983) Worldwide Hybrid approach 4.7 7.7 Mw 4* 95* "hypo Al
13 Joyner and Fumal (1984) and W.N.America 182 - 23 5.0 7.7 Mw 0.5 370 "ib PGV
Joyner and Fumal (1985) ML)
14 Kamiyama (1984) Japan 192 - U 4.1 7.9 Mjma 10 310 ’eﬁ RSD
15 Kawashima et al (1984) & Japan 197 - 90 5.0 7.9 Mjma 5% 550* Tepi PGV,
Kawashima et al (1986) PGD
16 Wilson and Keefer (1985) W. USA 30 - 20 5.0 7.4 Mw 6 130 Tib Al

2 Note only valid forR > 20km
3 Note only valid forR < 200km

continued on next page

4 Idriss (1978) finds magnitudes to be mixtureMf, m, andMs.
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Table 1:continued
No. Reference Area H \% E Mmin Mmax M "min rmax r scale S C R M IM
scale
17 Jibson (1987) W. USA 31 - 21 5.0 7.4 Mw 6 130 "ib 1 A 1 A Al
18 Nuttli and Herrmann (1987) E. N. America Simulation aFmio MpLg u U "hypo 1 G 1 A PGV
19 K.W. Campbell (1988) Worldwide u - u >5 u ML u <50 Iseis 2 M u A (S, PGV
for R)
M <
6.0
and
Ms
other-
wise
20 Gaull (1988) S.W. W. Australia 25+ - 12+ 2.6 6.9 M 25 175 "hypo 1 U o A PGV
21 Huo (1989) S. China U - U u u u u U U 1 G 1 A PGV
22 Campbell (1990) Unknown U - U U M_for U U Tseis 1 U U A PGV
M <6,
Mg for
M=>6
23 Gaull et al (1990) SE Australia Hybrid approach U U U U U "hypo 1 U [e] A PGV
24 Niazi and Bozorgnia (1991) SMART-1 array, Taiwan 236 234 21 3.6 7.8 ML 3.18 119.8 "hypo 1 M 2w A PGV,
(Mp) PGD
for
ML <
6.6,
else
Ms
25 Kamiyama et al (1992) & Japan 357 - 82 4.1 79 Mjma 34 4133 "hypo I B o A PGV,
Kamiyama (1995) PGD
continued on next page
5 Reported in Joyner and Boore (1988).
6 Distance to centre of array N



Table 1:continued

No. Reference Area H \% E Mmin Mmax M "min rmax r scale S C R IM
scale
26 Theodulidis and Papazachos (1992) Greece+16 foreign +1805 - 36+4 4.5 7.0 Ms, 1(48) 128 Tepi 2 B o PGV,
(7.2) (7.5) Mw, (236) PGD
Mima
27 Midorikawa (1993) Japan U - U 6.5 7.8 Mw U U frup 1 U 1 PGV
28 Wilson (1993) W. USA Hybrid approach 53 75 Mw 3* 100* "ib 1 [e] Al
29 Lee et al (1995) W. N. America 1926 1926 297 1.7 7.7 Usually2 200+ "hypo 9, 3 x u 1 PGV,
ML c PGD
for
M <
6.5
and
Mg for
M >
6.5
30 Molas and Yamazaki (1995) Japan 2166 - 387 4.1* 7.8 Mjva 8* 1000* frup | L [¢] PGV
for 2
earth-
quakes,
"hypo
other-
wise
31 Abrahamson and Silva (1996) California with some others u u u 4.7 7.4 Mw 0.1 220* frup 2 G im RSD
32 Sabetta and Pugliese (1996) Italy 95 95 17 4.6 6.8 Ms if 1.5, 179, Both 3 L 1 PGV,
M. & 15 1808 b & Al
Ms > Tepi
55
else
ML
33 Singh et al (1996) Himalayas 86 - 5 5.7 7.2 my 33.15 340.97 "hypo 1 U 1 PGV
34 Atkinson and Boore (1997a) E. N. America Simulation appho 4.0 7.0 Mw 10 500 "hypo 2 [¢] PGV

7 Total number of components does not need to be multiplieavby t
8 State equations should not be used for distanc&80km

continued on next page
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Table 1:continued

No. Reference Area H \% E Mmin Mmax M "min rmax r scale S C R M IM

scale

35 Atkinson and Boore (1997b) Cascadia Simulation approach 3.7 6.7 Mw 10 400 hypo 2 G [¢] A PGV

36 Campbell (1997), Campbell (2000), Worldwide 645 225 H:47, 4.7 H:8.0, Mw 3 60 Tseis 3 G 1 A(S,RN) PGV

Campbell (2001) & Campbell and V:26 V8.1
Bozorgnia (1994)

37 Gregor and Bolt (1997) California 110 110 12 5.4 7.2 Mw 6* 200* "dip 2 T,V 1 R, S PGD

38 Kayen and Mitchell (1997) W. USA 66 - u u u Mw 1* 100* frup 3 1 A Al

39 Rinaldis et al (1998) Italy & Greece 137+ - 24* 4.5 Ms or 7 138 Tepi 2 U [e] A PGV

Mw (N,ST)

40 Sadigh and Egan (1998) California with 4 foreign 960+4 - 942 3.8 7.4 Mw 0.1 309 frup 2 G U ARR,SN) PGV,
for PGD
some,

"hypo
for
small
ones
41 Sarma and Srbulov (1998) Worldwide S - 113 3.9 7.7 Ms 0 197 Tibs 2 B 1 A Al
L) Tepi

42 Somerville (1998) 15 mainly W. USA+12 sim- 27 - 13 6.2 75 Mw 0.1 10 frup 1 N 1 A PGV

ulated

43 Theodulidis et al (1998) Kozani-Grevena (Greece) Bsr - u 3.1 6.6 Mw 1 140* Tepi 1 B 1 A PGV

44 Chapman (1999) W. N. America 304 - 23 5.0 77 Mw 0.1 189.4 "ib 3 G M A PGV

45 Olafsson and Sigbjornsson (1999) Iceland 138 - 17 4.0 5.9 Mw 2 112 Tepi 1 B 1 A RSD

46 Alavi and Krawinkler (2000) 15 mainly W. USA+12 sim- 27 - 13 6.2 75 Mw 0.1 10 frup 1 N 1 A PGV

ulated

47 Bommer et al (2000) Europe & Middle East 183 - 43 55 7.9 Ms 3 260 Tib 3 L 1 A PGV,

PGD

9 Equations stated to be for distances up to 100km

10 Total number of components do not need to be multiplied by two
11 Total number of components do not need to be multiplied by two
12 Total number of components do not need to be multiplied by two

continued on next page
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Table 1:continued

No. Reference Area H \% E Mmin Mmax M "min rmax r scale S R M IM
scale
48 Hernandez and Cotton (2000) Italy & California 3% - 40* 3.2 7.4 M 1 109 frup 2 1 A RSD
for
M <6,
Ms
other-
wise
49 Paciello et al (2000) Greece & ltaly 115 - 18 45 U Mw or u u Tepi 2 1 A(N) PGV,
Ms PGD,
Al
50 Si and Midorikawa (1999, 2000) Japan 856 - 21 5.8 8.3 Mw 0* 280* Both 2 o A PGV
rq &
frup
51 Toro and Silva (2001) Central USA Simulation approach 55 75 Mw 1 400 Tib 1 1 A PGV
x2
52 Wu et al (2001) Taiwan 1941 - 60 4.8 7.6 Mw 0.05* 400* frup 1&l u A PGV
M) (Tepi
for
some)
53 Gregor et al (2002) Shallow crustal worldwide 993 993 68 4.4 74 Mw 0.1 267.3 frup 2 M A (S, PGV,
(mainly California) R/O, PGD
m
54 Margaris et al (2002a) & Margaris ~ Greece 744 - 142 45 7.0 Mw 1 150 Tepi 3 o A PGV,
etal (2002b) PGD
55 Silva et al (2002) Cen. and E. N. America Simulation apgnoa 4.5 8.5 Mw 1 400 Tib 1 1 A PGV
x5
56 Tromans and Bommer (2002) Europe 249 - 51 55 7.9 Ms 1 359 Tib 3 2 A PGV,
PGD
57 Zonno and Montaldo (2002) Umbria-Marche 161 - 15 4.5 59 ML 2% 100* Tepi 2 2 N, O PGV,
Al
58 Megawati et al (2003) Sumatran interface Simulation aagn 4.0 8.0 Mw 174 1379 frup 1 1 F PGV

continued on next page

13 Total number of components do not need to be multiplied by two
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Table 1:continued

No. Reference Area H \% E Mmin Mmax M "min rmax r scale S C R M IM
scale
59 Boatwright et al (2003) N. California 4028 - 104 33 7.1 Ngi 1* 370* "hypo 4 U [¢] A PGV
Mw,
ML
for
some
60 Travasarou et al (2003) Mainly W. USA 1208 - 75 4.7 76 Mw 0.1* 200* frup 3 A M A (N, Al
R)
61 Bray and Rodriguez-Marek (2004) Worldwide 54 - 13 6.1 7.6 Mw 0.1 17.6 Mrup 2 N iMm A PGV
62 Hwang et al (2004) Chi-Chi (Taiwan) pral - 4 6.2 7.7 Mw U u "ib 1 A 2M A Al
63 Lin and Lee (2004) Taiwan U - 41 U U U U u frup 1 u 1 A Al
64 Midorikawa and Ohtake (2004) Japan 3335 - 33 55 8.3 Mw 0* 300* frup 2 L 1 A (C, PGV
B,F)
65 Pankow and Pechmann (2004) and Worldwide extensional 142 - 39 5.1 72 Mw 0 99.4 "ib 2 G, 0 M NS PGV
Pankow and Pechmann (2006) regimes
66 Bragato and Slejko (2005) E Alps (45468°N & 12— 1402 3168 240 25 6.3 M 0 130 Tib & 1 R [¢] A PGV,
14°E) epi Al
67 Frisenda et al (2005) NW Italy 68%8 - >1152 0.0* 516 ML 0 30047 "hypo 2 B 1 A PGV
68 Garcia et al (2005) Central Mexico 277 277 16 5.2 7.4 Mw 4* 400* frup 1 Gl8 1M B PGV
for
Mw >
6.5,
"hypo
other-
wise

continued on next page

14 Three other equations for site classes B, D and E.

15 Authors state in text that ‘more than 14 000’ values were Usgdheir Table 1 gives 2 6899.
16 State equations valid ta3
17 state equations valid up to 200km.

18 call it ‘quadratic mean’, which is assumed to be geometriame

e



Table 1:continued

No. Reference Area H \% E Mmin Mmax M "min rmax r scale S C R M IM
scale
69 Liu and Tsai (2005) Taiwan 7907 7907 51 4.05 710 Mw 5% 300* "hypo 1 M 2M A PGV
M)
70 McGarr and Fletcher (2005) Central Utah coal-miningar- 72 - 12 0.98 4.2 Mw 0.5% 10* "hypo 2 L 2M M PGV
eas Mcp)
71 Megawati et al (2005) Sumatran interface Simulation aagn 4.5 8.0 Mw 150 1500 frup 1 G PGV
72 Wald et al (2005) California u - u V] 5.3% Mw U u "ib 1 L U A PGV
73 Atkinson and Boore (2006) E. N. America Simulation apphoa 35 8.0 Mw 1 1000 frup 1 G 1 PGV
74 Bindi et al (2006) Umbria-Marche 239 - 45 4.0 5.9 M 1* 100* Tepi & 4 L 1M NS PGV
"hypo
75 Kanno et al (2006) Japan+some foreign 3392+377 73+10 5.0% 8.2% Mw 1* 450% frup C R M A PGV
(shal- &111 (6.1) (7.4) (Myma) (159 (350%) ("hypo
low) & & 5.5% & 8.0% & 30* & for
8150 450% some)
(deep)
76 Kempton and Stewart (2006) Worldwide shallow crustal a55 - 73 5.0% 7.6 Mw 0* 200* frup C G im RSD
77 Pousse et al (2006) Japan o380 - U 41 7.3 Vw) 5+ 250* "hypo 5 B 2M Al,
(rrup RSD
for
some)
78 Akkar and Bommer (2007) Europe & Middle East 532 - 131 5.0 6 7. Mw 0 99 Tib 3 G 1WM A (N, PGV
S,R)
79 Ghodrati Amiri et al (2007a) &  Alborz and central raf0 200* 200* 50* 4.5% 7.3* Ms 5% 400* "hypo 2 L 1 A PGV
Ghodrati Amiri et al (2007b) (mp)
80 Bindi et al (2007) NW Turkey 4047 4047 528 05 5.9 m 2L 5+ 200* rhypozz 2 L M PGV
81 Convertito et al (2007) Campania, Italy Mainly simulateith some natural 5 7 Mw 5 150 ’eﬁ 1 G 1 PGV

continued on next page

19 Does not need to be multiplied by two.

20 Also develop models for the Zagros region of Iran using ali@Gt records.
21 Also derive model usingyly.
22 Also derive model usingepi.

4%



Table 1:continued

No. Reference Area H E Mmin Mmax M "min rmax r scale C R M IM
scale
82 Danciu and Tselentis (2007a) & Greece 335 151 4.5 6.9 Mw 0* 136 Tepi A 1M A (ST, PGV,
Danciu and Tselentis (2007b) N) PGD,
Al
83 Fukushima et al (2007) Japan 8615 158 5.0 6.8 Mima 18.1 448.4 frup R 1 A PGV
84 Megawati (2007) Hong Kong Simulation approach 53 6.8 Mw 20* 60* frup G 1 PGV
85 Atkinson (2008) E. N. America Referenced-empirical apph 4.3 7.6 Mw 10* 1000% "ib 150 o A (N, PGV
R, S,
v)
86 Al-Qaryouti (2008) Dead Sea area 26 19 4.0 6.2 ML 5.8 330.6 Tepi u 2 A PGV
87 Abrahamson and Silva (2008) & Worldwide shallow crustal 2754 135 423 7.84 Mw 0.06* 200* frup 150 M A (N, PGV
Abrahamson and Silva (2009) R, S,
HW)
88 Boore and Atkinson (2007) &  Worldwide shallow crustal 1574 58 435 79076 Mw 0 28027 b 150 2M A (N, PGV
Boore and Atkinson (2008) R, S,
v)
89 Campbell and Bozorgnia (2007), Worldwide shallow crustal 1561 64 439 797% Mw 0.07 199.27  rrup 150 M A (N, PGV,
Campbell and Bozorgnia (2008b) & R, S, PGD
Campbell and Bozorgnia (2008a) HW)
continued on next page
23

24
25
26
27
28
29

Recommend that model is not extrapolated below 5 due to ladkta.

Believe that model can be reliably extrapolated . 8

Recommend that model is not extrapolated below 5 due to ladkta.

Believe that model can be used t®8
Recommend that model is not used for distane€z00km.

Believe that model can be extrapolated down.tx 4

Believe that model can be extrapolated up o f@r strike-slip faulting and ® for reverse faulting.
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Table 1:continued

No. Reference Area H \% E Mmin Mmax M "min rmax r scale C R M IM
scale
90 Chiou and Youngs (2008) Worldwide shallow crustal 1950 - 251 42680 79031 My 02432 70:33 frup 150 M A (N, PGV
R, S,
HW,
AS)
91 Jin et al (2008) Fujian (China) 1974 1974 94 2.8 49 M 13 462 Tepi U o A PGV
92 Liang et al (2008) SW W. Australia Simulation approach 4.0 7.0 M 10 200 ’eﬁ PGV
93 Massa et al (2008) Northern Italy 306 306 82 35 & 63 & Mw 1* 100* Tepi L 1M PGV
4.0 6.5 (M)
&ML
94 Mezcua et al (2008) Spain 250 - 149 31 53 Mw 5* 100* "hypo U 1 A PGV
(mp(Lg))
95 Snaebjornsson and  Sigbjornsson Europe & Middle East 71 - 13 5.0* 7.6% Mw 0* 100* Tib U 1 SS RSD
(2008)
96 Bindi et al (2009a) Italy 241 241 27 4.8 6.9 Mw 0 190 Tib L, G M A (N, PGV
(epi S,R)
for
small)
97 Bindi et al (2009b) Italy 235 - 27 4.6 6.9 Mw 0 183 Tib L M A PGV
M) Tepi
98 Bommer et al (2009) Worldwide shallow crustal 2406 - 114 8 4. 7.9 Mw 1.5% 100* frup B o] RSD
99 Lee (2009) w. UsA4 324 324 49 5.0 76 Mw 0.1 199.1 frup A M Al x2,
RSDx2
100 Stafford et al (2009) New Zealand + foreign 144+241- 23+41 5.08 7.51 Mw 0.07 300 "ib & L, O, M A Al x4
& rrup G, A (SIN,
144+200 R)
continued on next page
30

Believe that model can be extrapolated down.tx 4

Believe that model can be extrapolated up ®f@r strike-slip faulting and ® for reverse faulting.
Believe that model valid to Okm.

Believe that model valid to 200km.
Also model for Central USA using 14 records and 296 scaledrdsc

Ve



Table 1:continued

No. Reference Area H \% E Mmin Mmax M "min rmax r scale S C R M IM
scale
101 Akkar and Bommer (2010) Europe & Middle East 532 - 131 5.0 67 Mw 0 99 Tib 3 G M A (N, PGV
S,R)
102 Akkar and Cagnan (2010) Turkey 433 - 137 5.0 7.6 Mw 0* 200* Tib C G M A (N, PGV
S,R)
103 Ghodrati Amiri et al (2010) Alborz and central I3 416 - 189 3.86 7.7 Ms 5% 400* "hypo 2 L M A Al
(mp)
104 Bindi et al (2010) Italy 561 561 107 4.0 6.9 Mw 1* 100* Tibs 3 L 1M A PGV
Tepi
105 Chiouetal (201(%7 S & N California 15684 - u 3* 6* Mw 5* 200* frup C 150 im A (N, PGV
R, S, x2
HW,
AS)
106 lervolino et al (2010) Italy 95 - 17 4.6 6.8 Ms if 15, 179, Tib & 3 L 1 A PGV,
M & 15 180 Tepi Al
Ms =
5.5
else
ML
107 Megawati and Pan (2010) Sumatran interface Simulafiproach 5 9 Mw 300* 1200* e 1 G 1 PGV
108 Rajabi et al (2010) Zagros, Iran 37 - 35 4.1 7.0 Mw 5 150 Tepi 1,3& L 1 A Al x5
4
109 Atkinson (2008) modified by E.N.America Referenced-empirical approach 4.3 7.6 Mw 10* 1000* "ib C 150 o A (N, PGV
Atkinson and Boore (2011) R, S,
v)
110 Atkinson and Boore (2006) modi- E. N. America Simulation approach 35 8.0 Mw 1 1000 frup 1 G 1 A PGV

fied by Atkinson and Boore (2011)

35 Also develop models for the Zagros region of Iran using 3@@mds from 190 earthquakes.

continued on next page

36 State that only use data wis > 4 but one earthquake in their Appendix A Hds3.2.
37 Adjustment of GMPE of Chiou and Youngs (2008) fdy, < 6
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Table 1:continued

No. Reference Area H \% E Mmin Mmax M "min rmax r scale S C R M IM
scale
111 Boore and Atkinson (2007) &  Worldwide shallow crustal 1574 - 58 4.27 7 M 0 28039 b c 150 2M A (N, PGV
Boore and Atkinson (2008) modi- R, S,
fied by Atkinson and Boore (2011) v)
112 Alavi et al (2011) Worldwide shallow crustal 2252 - U 5.1* 7.9% Mw 0.2* 350* frup C U [e] A PGV,
(Rake) PGD
113 Emolo et al (2011) Campania-Lucania, Iltaly 875 - 123 15 23 M 3 100* "hypo 2 L 1 A PGV
114 Ghanat (2011) Worldwide shallow crustal 2690 - 129 4.8 9 7. Mw 0.2 200* frup C G im A RSD
115 Rupakhety et al (2011) Worldwide shallow crustal 93 - 29 565 7.6 Mw 0 74.16 "ib 1 N 1M A PGV
116 Foulser-Piggott and Stafford (2012) Worldwide shaltoustal 2406 - 114 4.79 7.9 Mw 0.07 100 frup C A M A Al
(SIN,
R)
117 Lee et al (2012) Taiwan 6570 - 62 3.93 7.62 Mw 0.3 205 frup C A im A (S, Al
N, R)
118 Nguyen et al (2012) Vietnam 330 - 53 1.6 4.6 ML 5* 500* Tepi 1 L3 1 A PGV
119 Yaghmaei-Sabegh et al (2012) Iran 286 - 141 3.7 7.7 Mw 0.6 294 frup 4 G 1 A RSD

38 Believe that model can be used t®8
39 Recommend that model is not used for distaneez00km.
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List of Figures

1 Predicted PGV at a NEHRP C site against publication dat®@omodels
published in the literature. Filled red circles indicatedals published in
peer-reviewed journals, for which basic information on tised dataset is
available and which are not being extrapolated far outdiéé range of
applicability. Numbers correspond to those given in Tablé&lso shown
is the median PGV within five-year intervals (black line) ahd median
+1 standard deviation (dashed black lines) based on averagatlictions.
Finally indicated is the median PGV (solid blue line) andli&h and 84th
confidence limits (dashed blue line) based on averagingdsag until that
date (see text for details). Note that the selection catarid the fact that

the database used to compute these averages has not begly igueated

mean that the blue lines end before 2012. . . . . ... ... ... ... 38
2 Like Figure 1 but for PGD (19 models). . . . . ... ... ... ... .. 39
Like Figure 1 but for Al (33 models). . . . ... ... .. ... ... ... 40

4 Like Figure 1 but for RSD (14 models). . . . ... ... ... ... ... 41
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Fig. 1 Predicted PGV at a NEHRP C site against publication dateGan8dels published in the literature.
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is the median PGV (solid blue line) and its 16th and 84th cemite: limits (dashed blue line) based on
averaging records up until that date (see text for detailsje that the selection criteria and the fact that the
database used to compute these averages has not beeryrapdated mean that the blue lines end before

2012.
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Fig. 2 Like Figure 1 but for PGD (19 models).
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