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Abstract The objective of this work is to present a multi-technique approach to define the 18 

geometry, the kinematics and the failure mechanism of a retrogressive large landslide (upper part 19 

of the La Valette landslide, South French Alps) by the combination of airborne (ALS) and 20 

terrestrial (TLS) laser scanning data and ground-based seismic tomography data. The advantage of 21 

combining different methods is to constrain the geometrical and failure mechanism models by 22 

integrating different source of information.  23 

Because of an important point density at the ground surface (4. 1 pt.m-2), a small laser footprint 24 

(0.09 m) and an accurate 3D positioning (0.07 m), ALS data are adapted source of information to 25 

analyze morphological structures at the surface. Seismic tomography surveys (P-wave and S-wave 26 

velocities) may highlight the presence of low seismic-velocity zones which characterize the 27 

presence of dense fracture networks at the sub-surface. The surface displacements measured from 28 

TLS data over a period of two years (May 2008-May 2010) allow one to quantify the landslide 29 

activity at the direct vicinity of the identified discontinuities. An important subsidence of the 30 

crown area with an average subsidence rate of 3.07 m.year-1 is determined. The displacement 31 

directions indicate that the retrogression is controlled structurally by the pre-existing 32 

discontinuities.  33 

A conceptual structural model is proposed to explain the failure mechanism and the retrogressive 34 

evolution of the main scarp. Uphill, the crown area is affected by planar sliding included in a 35 

deeper wedge failure system constrained by two pre-existing fractures. Downhill, the landslide 36 

body acts as a buttress for the upper part. Consequently, the progression of the landslide body 37 

downhill allows the development of dip-slope failures and coherent blocks start sliding along 38 
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planar discontinuities. The volume of the failed mass in the crown area is estimated at 500,000 m3 39 

with the Sloping Local Base Level method. 40 

 41 

Keywords:  42 

Slope failure, ALS data, TLS data, Seismic tomography, Discontinuity, Geological model 43 

Introduction 44 

A challenge to progress in landslide research is to define the geometry of the failed mass 45 

and the possible failure mechanism precisely in order to better forecast their spatial and 46 

temporal pattern of development. From a geological point of view, unstable slopes 47 
affected by landslides can be broadly divided into strong rock-types and soft rock-types 48 

of failure (according to the ISRM classification of rock and soil strength; ISRM, 1981; 49 

Hoek and Bray, 2004) with a transitional evolution among these two broad categories. In 50 
most strong rock slopes, pre-existing discontinuities control the landscape morphology. 51 

As a consequence, unfavorable small-scale pre-existing fractures are often the main 52 

predisposing factors of large landslides (Cruden, 1976; Agliardi et al., 2001; Sartori et al., 53 
2003; Hoek and Bray, 2004; Eberhardt et al., 2005; Jaboyedoff et al., 2009). In soft rock 54 

slopes (e.g. weakly cemented sedimentary units such as highly weathered and fractured 55 

rocks, conglomerates, sandstones and clays), the heritage of pre-existing structures can 56 

also play an essential role on the failure mechanisms. For example, Irfan (1998) showed 57 
that the slope behaviour in saprolitic soil is controlled not only by the weathered material 58 

itself but also by relict discontinuities, particularly when these are unfavorably oriented 59 

with respect to the slope face. Undercut slopes affected by buttress removal are among 60 
the typical failure mechanisms that occur in soft rocks, leading to the development of 61 

shear zones at depth (Leroueil 2001; Cruden and Martin 2004).  62 

In landslide investigations, a combination of several direct and indirect techniques is very 63 
often used, and several complementary ground-based and airborne-based technologies 64 

have been developed in the last decade to provide spatially-distributed information about 65 

the structure. In combination with field observations and classical geotechnical 66 

investigation, the ground-based techniques are mainly 2D and 3D electrical resistivity and 67 
seismic tomographies (Jongmans and Garambois 2007) and the airborne-based techniques 68 

are mainly radar interferometry techniques (InSAR), Light Detection and Ranging 69 

techniques (LiDAR) and correlation of optical imageries (Travelletti et al., in press; 70 
Jaboyedoff et al., 2009). Terrestrial Laser Scanning (TLS) and Airborne Laser Scanning 71 

(ALS) are very efficient techniques for characterizing the morpho-structure (Feng and 72 

Röshoff, 2004; Slob and Hack, 2004; Jaboyedoff et al., 2009) and the kinematics of 73 

landslides (Rosser et al., 2007; Monserrat and Crosetto 2008; Travelletti et al., 2008; 74 
Prokop and Panholzer 2009) because they provide a rapid collection of field 75 

topographical data with a high density of points within a range of several hundreds of 76 

meters. Possible mechanisms affecting the slope can then be estimated from the 77 
displacement vectors at the ground surface (Crosta and Agliardi, 2003; Jaboyedoff et al., 78 

2004a) such as the geometry of the slip surface (Casson et al., 2005; Travelletti et al., 79 

2008; Oppikofer et al., 2009).  80 
In strong rock-types of failure, the morpho-structures identified at the ground surface 81 

often reflect the internal geometry of the deformation (Agliardi et al., 2001; Eberhardt et 82 

al., 2005). The extensions of persistent structures in depth are more difficult to identify in 83 

soft rocks because these lithologies are very often affected by low persistence, closely 84 
spaced joints that occur in a wide variety of orientations. The landslide kinematics in soft 85 

rock can be both controlled by regional discontinuities and recent internal failure surface 86 

under development in the rock mass (Irfan, 1998). The development of new circular or 87 
planar failures which partly encompass the intact rock is therefore possible as observed, 88 

for example, in weathered basalts or sandstones (Hoek and Bray, 2004). Another example 89 
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of weak rocks is evaporites lithology that is particularly exposed to dissolution processes. 90 

They generally form smooth topographies at small scale which make the identification of 91 

regional discontinuities difficult from morpho-structure analyses at the ground surface or 92 

through DEMs (Travelletti et al., 2010). Additional surveys are thus necessary to 93 
complement this lack of information in depth.  94 

In the last decade, the applications of seismic tomographies for landslide investigations 95 

showed that S and P-wave velocities are of interest techniques to characterize properties 96 
such as the layering, the degree of fracturing and the stiffness of the material (Grandjean 97 

et al., 2006; Jongmans et al., 2009). The internal strain affecting soft-rock landslides 98 

usually induces a velocity contrast between the unstable mass and the stable bedrock 99 
(Caris and van Asch, 1991, Méric et al., 2007; Jongmans and Garambois, 2007). 100 

Grandjean et al. (2006) showed that seismic velocities are much more sensitive to the 101 

degree of fracturing than the electrical resistivity tomography techniques (ERT) which 102 

complement geological and geomorphological assessments.  103 
Still, a major difficulty consists in interpreting and integrating all the available data in a 104 

coherent framework to provide a complete picture of the landslide structure.  105 

This work presents a multi-technique approach to characterize the structure of the upper 106 
part of the La Valette landslide (South French Alps) by combining high-resolution 107 

seismic tomographies, airborne and terrestrial LiDAR surveys (ALS, TLS) and 108 

geomorphological analyses. First, the geomorphological and historical setting of the 109 
landslide is presented; then the methodology used to analyse the multi-source data is 110 

detailed and the Sloping Local Base Level (SLBL) method is applied to estimate the 111 

landslide volume. Finally a kinematic model explaining the failure mechanism in the 112 

upper part of the landslide is proposed and discussed. 113 
 114 

Geomorphological and historical features of the 115 

La Valette landslide 116 

The La Valette landslide, originated in 1982, is one of the most important large and 117 

complex slope movements in the South French Alps. The landslide associates two styles 118 

of activity: a mudslide type of behavior with the development of a flow tongue in the 119 

medium and lower part, and a slump type of behavior with the development of several 120 
rotational and planar slides in the upper part at the main scarp. The landslide extends over 121 

a length of 2 km for a variable width of 0.2 km in the lower and medium parts, to 0.5 km 122 

in the upper part (Fig. 1a). The maximum depth, estimated by seismic and electrical 123 
resistivity tomography and geotechnical boreholes, varies from 25 m in the lower and 124 

middle parts (Evin 1992; Travelletti et al., 2009) to 35 m in the upper part (Le Mignon 125 

2004). The mean slope gradient is ca. 30° in the scarp area and ca. 20° in the mudslide 126 

area (Fig. 1b). The volume of the landslide body is estimated at 3.5 x 10
6
 m

3
. 127 

The landslide affects a hillslope located uphill of the municipality of Saint-Pons (Alpes-128 

de-Haute-Provence), and poses a significant threat for the 170 community housings 129 

located downstream (Le Mignon and Cojean 2002). The occurrence of rapid mudflows 130 
triggered from the landslide body and in the scarp area in the 1980s and 1990s conducted 131 

to the development of an early-warning system since 1991 composed of a survey network 132 

of benchmarks, optical and infra-red camera monitoring and the installation debris height 133 
detection sensors in the run-out channel, and the drainage of the lower part of the 134 

landslide. 135 

Geological setting 136 

From a geological viewpoint, the La Valette landslide is located at the overthrust fault 137 

between two major lithologies outcropping in the geologic window of the Barcelonnette 138 

basin (South-east France; Fig. 2a):  139 
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- An autochtonous formation represented by the closely stratified Callovo-Oxfordian 140 

black marls (e.g. “Terres Noires”) and characterized by a typical landscape of 141 

badlands. This formation is located in the middle and the lower parts of the slope. The 142 

bedding plane is characterized with a decametric alternance of carbonate beddings 143 
within the marls. This formation dips constantly towards 083° with an inclination of 144 

23° in the landslide surroundings; 145 

- An allochtonous formation represented by two nappes and in which the upper part of 146 
the landslide has developed. The basal nappe is a tectonic wedge belonging to the 147 

Pelat Nappe and is composed of highly fractured flysch and planctonic carbonates of 148 

the Turonian and Paleocene Superior age (BRGM 1974). This formation has a few 149 
dozen of meters of thickness at the location of the main scarp with an average dip 150 

direction and dip of 135°/30°. The Pelat Nappe is overlaid by the upper Autapie 151 

Nappe composed of highly fractured Helminthoïd flyschs, sandstones, marls and 152 

schists. This formation is dated at the Upper Cretaceous–Upper Eocene (BRGM 153 
1974). The tectonic discordance between the autochtonous and the allochtonous 154 

(052°/16°) materializes the major thrust fault delimiting the Barcelonnette basin, and 155 

constitutes a weak zone where many landslide source areas are located (Le Mignon 156 
2004). Generally, the bedding plane, the fold axes and the schistosity are very difficult 157 

to identify with certainty at the outcrop scale due to the high variability of the 158 

orientation measurements and the bad rock mass quality which does not ensure that 159 
the rock outcrop is in place. Therefore, the small-scale geological observations of 160 

persistent structures carried out in the field indicate only the regional structural and 161 

tectonic patterns and cannot directly be integrated in a local geological model of 162 

discontinuities. 163 

Hydro-geological setting 164 

From a hydro-geological viewpoint, the tectonic discordance has an important role on the 165 

landslide hydrology. Due to the high heterogeneity of the landslide material and of the 166 
highly dislocated texture of the flysch, both materials are considered as aquifers at the 167 

scale of the landslide. At the opposite, the black marls formation is considered as an 168 

aquitard (Dupont and Taluy 2000; Le Mignon 2004). Consequently, the contrast of 169 
permeability between the black marls and the flysch controls the spatial occurrence of 170 

several springs and marshy areas observed in the direct vicinity of the overthrust fault 171 

between the elevation 1870 m and 1950 m (Fig. 2a, 2b). According to Le Mignon (2004), 172 
a spring (the “Rocher Blanc” spring at 1900 m) is currently partially buried by the 173 

landslide. Consequently a deep water circulation affects the hydrological regime of the 174 

upper part of the landslide but the characteristics of the water flows (fluxes, quality) are 175 

unknown. Near the North West boundary of the landslide, springs are remarkably aligned 176 
at the elevation 1880 m. They are likely connected to the Rocher Blanc spring through a 177 

discontinuity buried by the landslide. Remediation works were built by the local 178 

stakeholders in charge of the prevention (Service of “Restauration des Terrains de 179 
Montagne”, RTM) in order to drawdown and buffer the hydraulic heads within the 180 

landslide. Sub-horizontal drains below the major overthrust fault were installed in the 181 

1990s, but their maintenance was too difficult due to the rapid shearing of the tubes. The 182 

most efficient mitigation solution has been the installation of shallow drainage systems in 183 
the middle and lower parts of the landslide to impede streaming water to infiltrate the 184 

landslide. 185 

Landslide historical and recent development 186 

The landslide exhibits a complex style of activity in space and time. It has developed first 187 

as a rotational slide affecting the Autapie Nappe in relation to a major overthrust fault 188 

following important rainfalls favoring fast snow melting (Colas and Locat 1993; Le 189 
Mignon 2004). The failed mass has progressively loaded the underlying black marls 190 

formation, and the landslide has developed by a series of rapid mudflows triggered in the 191 
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marls such as in March 1982, April 1988, March 1989 and March 1992. The most 192 

important acceleration occurred in 1988 when a mudflow of 50.000 m
3
 triggered at the 193 

elevation of 1400 m propagates over a runout distance of ca. 500 m (Colas and Locat 194 

1993). Up to now, these mudflows did not mobilize the complete failed mass. The 195 
displacements are monitored with topometric benchmarks since 1991 (Squarzoni et al., 196 

2005), differential dual-frequency GPS (Déprez et al., submitted) and an extensometer 197 

since 2008, and at regular periods by digital correlation of satellite images (Le Prince 198 
2008) and satellite radar interferometry (Squarzoni et al., 2003).  199 

Two main aspects can be pointed out from these studies and from the observations by the 200 

local stakeholders. The first one is the decrease of velocity (from 0.4 m.day
-1
 to about 201 

0.01 m.day
-1

) in the middle and lower part of the landslide caused by the local 202 

groundwater drawdown since the installation of a drainage system in the 1990s. The 203 

second is the important activity since the year 2000 of the upper part at the Soleil Boeuf 204 

crest, which is characterized by a rapid retrogression of the main scarp towards the North-205 
East and an enlargement of the landslide towards the North-West (Fig. 3). In response to 206 

this worrying situation, the RTM Service has installed several additional benchmarks 207 

along profiles both in the unstable and stable parts of the Soleil-Boeuf crest to monitor the 208 
displacements in the crown area (Fig. 1b, Fig. 4). Actually, an accumulation of material 209 

and a steepening of the slope are observed in the upper part of the landslide because of 210 

the retrogression of the scarp. Consequently, the possible hazard scenario consists in the 211 
undrained loading of underlying black marls formation and the triggering of new rapid 212 

and mobile mudflows. 213 

 214 

Methodology 215 

The recent increase of activity in the crown and in the main scarp areas has motivated 216 

further investigations to define the possible volume of material still able to fail, and to 217 

better understand the failure mechanisms in that part of the slope. Geological 218 
observations, small-scale morpho-structural analysis with ALS data, large-scale 219 

kinematical analysis with TLS data and a morpho-structural analysis in depth with 220 

seismic tomographies have been carried out since 2008 (Fig. 1b, Fig. 4). 221 

Geological observations of the discontinuities in the main scarp and in the 222 

crown areas 223 

Field investigations in the scarp area are focused on the identification and the orientation 224 

of the major morpho-structures and discontinuities measured with a geological compass 225 
and mapped with a differential GPS. The landslide scarp is characterized by slopes 226 

ranging from 25° to 55° over a maximum height of 80 m and a crown width of  170 m. 227 

The crown area is characterized by a complex morphology formed by a dense network of 228 
tension tracks and shear fissures in the weathered flysch formation of the Autapie Nappe 229 

forming a graben-like morphology. Counter-slopes with accumulated water are also 230 

observed. The tension cracks present a sub-vertical dip distributed along the circular 231 

shape of the crown. This spatial distribution is typical for failures in soft rocks (Cornforth 232 
2005). The complex morphology is cut by three main persistent discontinuities D1, D2 233 

and D3 visible over a distance of several hundred meters (Fig. 5).  234 

The D1 fracture coincides with the direction of the Soleil Boeuf crest which represents 235 
the upper boundary of the landslide. D1 is characterized with a dip direction and a dip of 236 

247°/42° ±6°/4°. Because striations identified over the entire height of the crest present 237 

an orientation nearly parallel to the dip and dip direction of D1 (calcite recristallization, 238 
pitch of S86°), the landslide is sliding above D1 without shearing component. The 239 

observed striations are a direct mechanical consequence of the sliding along D1.  240 
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The fractures D2 and D3 are characterized with dip directions and dips of 287°/55° 241 

±4°/5° and 166°/44° ±10°/4° respectively. D2 is located in the North-East of D1 and D3 242 

is the conjugate fracture of D2. The landslide is sliding along D2 and D3 with a shearing 243 

component.The most active part of the landslide is actually constrained between these 244 
two discontinuities. 245 

Laser scanning surveys 246 

Acquisition of Airborne laser scanning (ALS) data 247 

In order to determine the spatial extent of the main morpho-structural features, small-248 

scale analysis of ALS  has been carried out. The ALS survey was performed in July 2009 249 
with the handheld airborne mapping system of the Helimap company) at a constant 250 

elevation of 300 m above the ground topography inducing a laser footprint at the ground 251 

surface of about 0.09 m (Vallet and Skaloud, 2004). The measurement device is 252 

composed of a GPS receiver (Topcon Legacy GGD with a record frequency of 5Hz), an 253 
inertia measurement unit (IMU, record frequency of 500 Hz) which provides the 254 

orientation of the laser beam in space and a scanner unit (Laser Riegl Q240i) configurated 255 

to record last pulses of the ground surface with an acquisition frequency of 10‟000 pts.s
-1

. 256 
Table 1 summarizes the specification of the ALS survey. The orientation of the system is 257 

obtained in real-time with an accuracy estimated at 0.07 m. The maximum scanner range 258 

is about 850 m with an aperture angle of 60°. After vegetation filtering, an average point 259 
density of 4.1 pt.m

-2
 is obtained. A 0.5 m-mesh DEM from the ground surface elevation 260 

points has been generated with a Delaunay triangulation. The DEM was then used to 261 

calculate a shaded relief map and a difference map with a 10 m-mesh DEM interpolated 262 

from topographic contour lines before the landslide event (maximal elevation error of 263 
10 m). 264 

Acquisition of Terrestrial Laser Scanning (TLS) data 265 

Displacement monitoring of the upper part of the landslide has been carried out by 266 
repeated TLS data acquisitions. The displacement monitoring device consists of a long-267 

range terrestrial laser scan Optech ILRIS-3D based on the time-of-flight distance 268 

measurements using an infrared laser (Slob and Hack 2004). Mirrors inside the scanner 269 
allow the acquisition of a 40

°
 wide and 40

°
 high field of view in a single acquisition with 270 

about 2500 pts.s
-1

 with an effective range up to 800 m in field conditions (Table 1).  271 

Seven TLS datasets were acquired over the period 18 May 2008 to 27 May 2010 from the 272 
same base position (Fig. 5); the scanned area was orientated in the direction of the 273 

discontinuity D2 at a distance of 130 m from the base. At that distance the beam width 274 

diameter is estimated at 0.03 m. The discontinuity D1 (Soleil Boeuf crest) along the main 275 

scarp was systematically included in the scanning. The TLS datasets comprise 9 to 12 276 
million points and the resulting mean point density on the ground surface is about 277 

150 pts.m
-2

 at a distance of 130 m. Only the last return pulse is registered to maximize the 278 

number of points at the ground surface.  279 

Vegetation filtering, co-registration and georeferencing of the sequential TLS 280 

datasets 281 

The TLS datasets were processed and analyzed using the Polyworks v.11 software 282 

(InnovMetric 2009).The vegetation filter consists of an automatic selection of the points 283 
localized beyond a minimum height relative to a low-resolution square-grid DEM surface 284 

computed on the sequential point clouds. In this study, the mesh size of the low resolution 285 

DEM was fixed at 0.5 m and the minimum height at 0.1 m. The filtering result is 286 

systematically controlled and manually refined. A co-registration procedure is then used 287 
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for aligning the sequential TLS point clouds in the same coordinate system. The co-288 

registration applied in this study follows the methodology proposed by Teza et al. (2007) 289 

and Oppikofer et al. (2009). The sequential point clouds alignment is limited to a stable 290 

part in the image corresponding to the Soleil Boeuf crest. First a manual alignment 291 
procedure is used; then an automated Iterative Closest Point (ICP) algorithm is applied to 292 

minimize (least square method) the distance between the points belonging to the different 293 

sequential datasets. The co-registration procedure mainly depends on the accuracy of the 294 
ICP algorithm which is very sensitive to the roughness of the terrain and the accuracy of 295 

the measurements (Lee et al., 1999). Rough terrains yield higher reliability in the co-296 

registration. Therefore a high point density was systematically acquired in this area to 297 
increase the topographic resolution (~0.3 pt.cm

-2
). A good confidence is given to the co-298 

registration quality because of the large size of the stable area of the image used for the 299 

co-registration (1000 m
2
) in reference to the size of the moving area not introduced in the 300 

co-registration procedure (4300 m
2
). The direct proximity of both areas in the datasets is 301 

also an advantage for an accurate co-registration. 302 

For the absolute georeferencing, the ALS point clouds were used as a reference. The 303 

sequential TLS datasets were aligned as single point clouds on the ALS point cloud. The 304 

co-registration accuracy of the sequential point clouds is thus not affected by the 305 
georeferencing accuracy of the ALS point cloud, and is estimated at 0.07 m for the planar 306 

and vertical accuracy (Vallet and Skaloud, 2004). 307 

Accuracy of the TLS point clouds 308 

In order to assess the accuracy associated with the TLS measurements, repetitivity 309 

measurements were realized on a planar stratum of the main scarp, and corresponding to 310 

the black marls formation (9 m
2
). This test zone is located approximately perpendicular to 311 

the laser beam direction at a distance of 120 m from the TLS base. The average point 312 

spacing was fixed at 0.15 m. The point cloud acquisition was compared to a reference 313 

(first acquisition, May 2008) using the ICP algorithm to calculate the misfit between each 314 
pair of points in both acquisitions theoretically located at the same position. The 315 

repetitivity analysis indicates that the measurement error of the TLS used in this study 316 

follows a normal distribution characterized with an average error u of 1.0 10
-3
 m and a 317 

standard deviation σ of 1.2 10
-2

 m. This calculated error is in agreement with the range of 318 
error given by the manufacturer.  319 

The accuracy of co-registration procedure is given by the residual 3D misfit computed on 320 

the stable part of the TLS of the 18 May 2008 taken as the reference (Table 2). The same 321 
procedure is applied to assess the error of the absolute positioning relative to the ALS 322 

survey. The higher error in the absolute positioning is mainly related to the lower point 323 

density and accuracy of the ALS datasets providing less geomorphological details than 324 

the TLS survey (Table 2).  325 

Displacement characterization and quantification 326 

The displacements are calculated by comparing the TLS datasets with the reference. Two 327 
methods are used to quantify the displacements from the original point clouds. The first 328 

method is based on shortest distance comparison of point clouds. The second uses 329 

displacements of Specific Points (SPs) 330 

The shortest distance (SD) comparison consists of computing for each point the distance 331 
to its nearest neighbor in the reference point cloud. This method is particularly useful to 332 

detect spatially distributed changes if the direction of movement is unknown and to define 333 

zones with different displacement directions (Oppikofer et al., 2009). In order to 334 
determine the vertical displacement affecting the upper part of the landslide, the SD is 335 

constrained to compute displacement only along the vertical direction (SDv) assuming a 336 

tolerance angle for the vertical direction of ±10°. The results are therefore comparable to 337 

elevation changes computed with differential DEMs (Bitelli et al., 2004). The accuracy of 338 
the vertical displacement depends on two independent factors: (i) the co-registration 339 
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accuracy, and (ii) the computed distance D according to the tolerance angle which gives a 340 

maximal error Emax (Emax = D *sin(10°)). 341 

The observed movement of Specific Points (SPs) allows one to define the direction of 342 

displacements. In this study, natural SPs were chosen (Fig. 6). They consist of tree 343 
stumps recognizable in the unfiltered sequential point clouds. In order to assess the 344 

displacements of the SPs in the crown area, a method based on the roto-translation 345 

technique is used (Montserrat and Crosetto, 2008; Oppikofer et al.,,2009). It takes into 346 
account both translation and rotation of individual objects and uses the very high density 347 

available in the point clouds. Eleven SPs were triangulated in the plane normal to the 348 

laser viewing direction in order to minimize the effect of shadow zones in the 349 
interpolation (Fig. 6). To calculate the true displacement field, the center points of the SPs 350 

in the first acquisition is determined by averaging the X, Y Z positions of the points 351 

forming the SPs. Then the triangulated SPs of the reference are aligned on their 352 

corresponding triangulated SPs in the sequential point clouds using the ICP algorithm 353 
implemented in Polyworks (Fig. 6). Finally, the displacement vectors of the SPs are given 354 

by the initial and the final position of the center points of the first acquisition. Because the 355 

SPs are very well defined, the error mainly depends on the co-registration accuracy of the 356 
sequential point clouds.  357 

Seismic Tomography investigation  358 

As the laser scanning data provide only information on the structure and the kinematics 359 
visible at the ground surface, additional geophysical data to obtain information in depth 360 

were acquired in order to better constrain the interpretation. Seismic tomography has 361 

proven to be an efficient technique to detect the contact between a landslide body (highly 362 
fractured) and a stable bedrock in the same type of geological setting as for La Valette 363 

(Jongmans et al., 2009, Grandjean et al., 2006; Grandjean et al., 2007). Three seismic 364 

tomography surveys of P and S-waves velocities (L1, L2, L3) have been carried out in the 365 

upper part of the landslide to characterize the seismic velocities (Vp, Vs) of the failed 366 
material and determine the extension in depth of the discontinuities D1 and D2 (Fig. 5). 367 

Two cross-sections were installed along the direction of the main slope and one cross-368 

section was installed perpendicular to the previous line in order to cross the discontinuity 369 
D2.  370 

The two longest devices are composed of 24 geophones (resonance frequency of 10 Hz) 371 

spaced each five meters in order to obtain a sufficient investigation depth for a large scale 372 
characterization of the landslide structure. The shortest devices, composed of 24 373 

geophones spaced each two meters, bring information on the fracturing between the failed 374 

material and the bedrock. For the seismic source, one hundred grammes (100 gr) of 375 

pentrite were used for each shot. The processing of the first arrival travel time P wave 376 
was carried out with the Rayfract seismic tomography software based on the wavepath 377 

Eikonal traveltime inversion algorithm (Schuster and Quintus-Bosz 1993). Figure 7a 378 

shows an example of the arrivals of the P waves and Surface waves. Dispersion of surface 379 
waves is closely related to the structure and properties of the landslide material and, in 380 

particular, to shear wave velocity. The vertical distribution of the shear wave velocity can 381 

be estimated on the basis of the dispersion analysis of different kinds of surface waves 382 

contained in the P-wave seismic records (Fig. 7b). The dispersion analysis results in the 383 
generation of a dispersion curve (frequency vs. phase velocity) for each geophone 384 

location. The shear waves velocity sections were therefore obtained using a spectral 385 

analysis of the surface waves (SASW method) with the surf96-CPS program (Hermann 386 
1987) which allows one to analyse the dispersive character of surface waves (McMechan 387 

and Yedlin 1981) and to obtain a S-wave vertical velocity profile by 1D inversion of the 388 

dispersion curves (Tarantola 2005) (Fig. 7b). To derive a 2D section, the 1D shear-wave 389 
velocities inverted from each local dispersion curve are then interpolated along each 390 

seismic line. 391 

In order to georeference the 2D tomographies, the location of each geophones was 392 

measured with a dGPS (horizontal and vertical accuracy of 0.04 m and 0.07 m). In each 393 
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profile, the geophone locations are then projected on a straight line in the local coordinate 394 

system calculated with a linear regression. The equations of the regression line allow one 395 

to allocate a 3D position in the local coordinate system for all nodes of the tomography.  396 

Estimation of the volume of the failed mass 397 

To estimate the volume of the failed mass, the SLBL (Sloping Local Base Level) method 398 

has been used. It is a generalization of the base level concept proposed by Mills (2003) 399 
and is defined as a surface above which the rocks are assumed to be erodible by 400 

landslides due to the absence of buttress (Golts and Rosenthal 1993; Jaboyedoff et al., 401 

2004b). This method was successfully applied both on hard and soft rock slopes 402 

(Jaboyedoff et al., 2009; Travelletti et al., 2010). The SLBL method is used in this study 403 
by integrating the information from the seismic survey and the TLS interpretation.  404 

The SLBL algorithm is based on an iterative routine that replaces the elevations of any 405 

mobile point of a digital elevation model (DEM) by the mean value of the altitude of its 406 
neighbours, allowing a certain tolerance. Points with an altitude (zi) larger than the mean 407 

of their neighbours are replaced by the mean value of the two neighbours (zi-1 + zi +1)/2 or 408 

by this value plus a tolerance C. Explicitly, in 2D, the procedure can be formalized as 409 

follows (Jaboyedoff et al., 2004b): 410 
 411 

If zi > (zi-1 + zi+1)/2 then zi = (zi-1 + zi+1)/2     (1) 412 

 413 
The result is a straight line between zi-1 and zi+1. The introduction of the tolerance value C 414 

leads to a second-degree curve: 415 

 416 
If zi > (zi-1 + zi+1)/2 − C then zi = (zi-1 + zi+1)/2 ± C    (2) 417 

 418 

The tolerance can produce holes between points, e.g with an altitude smaller than the 419 

altitude of the surroundings points. To avoid this, two additional conditions can be added 420 
to ensure that the new point has a higher altitude than the lowest of its neighbours: 421 

 422 

If zi > (zi-1 + zi+1)/2 − C and (zi-1 + zi+1)/2 ± C > zi-1 or (zi-1 + zi+1)/2) ± C > zi+1 then zi = (zi-1 423 
+ zi+1)/2 ± C       (3) 424 

 425 

If it is not the case, the altitude zi of the point i is replaced by the lower altitude of its 426 
neighbours. The procedure is iterative, and is stopped once the change between two 427 

iterations is near a zero value and a failure surface nearly circular is obtained if the 428 

tolerance used is very different from zero. In order to take into account planar sliding 429 

along discontinuities, a small tolerance has to be used to fit the calculated failure surface 430 
on the observed discontinuities. In 3D, the procedure is similar, but the test is then 431 

performed using the highest and lowest values among the four closest neighbours. Some 432 

points must be fixed during the computation, to avoid the calculation of a flat topography. 433 
The discontinuities determined in this study from the field observations, the seismic 434 

tomographies and the TLS surveys are used to constrain the SLBL computations. 435 

 436 

Results 437 

Morpho-structural analysis 438 

The combined analysis of the geological field observations, the shaded relief map and the 439 
differential DEM map allows one to propose a kinematic model of the landslide 440 

retrogression. 441 
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Although the highly dislocated flysch formation can be considered as a relatively soft 442 

rock, the shaded relief analysis with the differential DEM clearly demonstrates that, at 443 

small scale, the key factor controlling the failure geometry and the overall stability of the 444 

mass is not the flysch formation itself, but the spacing and the orientation of the 445 
discontinuities composed by D1, D2 and D3. Consequently, the upper part of the La 446 

Valette landslide can be divided in four terrain units (Fig. 8a).  447 

Since the triggering date in March 1982, the terrain unit 1 has been confined between the 448 
steep discontinuities D2 and D3 that constrained the landslide retrogression to the North-449 

East. The failed mass is composed of coherent blocks (up to 50 m wide) which are sliding 450 

towards the main slope direction. These blocks form minor counter-slopes affected by 451 
multiple open tension cracks (up to 1 m in opening and in spacing) favoring water 452 

infiltration. The blocks are progressively dislocated and incorporated in the mudslide 453 

body downhill. The negative elevation difference developing along D1 indicates that the 454 

landslide retrogression to the North-East is limited by D1 which forces the retrogression 455 
to develop laterally to the North (Fig. 8b). As a consequence of the loss of buttress given 456 

by the terrain unit 1, the terrain units 2 and 3 are progressively destabilized. The terrain 457 

unit 4 (North-West side of D3) is characterized with a hummocky morphology indicating 458 
a lower destabilization of the slope due to the loss of buttress provided by the terrain 459 

unit 3 located downhill.  460 

At a smaller scale, the La Valette landslide appears to be included in a Deep-Seated 461 
Gravitational Slope Deformation (DSGSD) (Agliardi et al., 2001) which main scarp 462 

coincides with the extension of D1 to the North. In addition, the Soleil Boeuf crest 463 

presents the same morphology as before the triggering in 1982 when the scarp was 464 

located 200 m more to the South-West (Le Mignon, 2004). Therefore, the 1982 large 465 
failure is strongly suspected to be a reactivation of an older DSGSD along D1. 466 

Furthermore, the dip and dip direction of the Western side of the DSGSD main scarp 467 

(166°/38° ± 10°/4°) is very similar to D3, suggesting that the old scarp face belongs to the 468 
same discontinuity set. Consequently, D3 can thus be a pre-existing fracture which is also 469 

reactivated. The difference in the fracturing degree on both sides of D2 clearly highlights 470 

the preferential extension of the landslide towards the North-West. On the South-East 471 

side of D2, no significant geomorphic evidence of current activity is observed except the 472 
extension of D1 which progressively disappears in the flysch formation to the South-East. 473 

Furthermore, no negative elevation difference is noticed in this area in reference to the 474 

vertical accuracy of the differential DEM (~10 m). 475 

The downhill limit of the negative elevation remarkably coincides with the tectonic 476 
discordance of the Autapie Nappe and the uphill limit corresponds to the spring area. The 477 

location of the triggering area of 1982 is clearly identified where the elevation difference 478 

(50 m) is the maximum. 479 

Seismic tomography analysis 480 

The tomographies of P and S-waves reveal a low velocity zone (Vp < 900 m.s
-1

, 481 

Vs < 400 m.s
-1

) in the terrain unit 1 affected by dense fracturing. The increase of P and S-482 
waves velocity when one gets closer to the stable rock (fracture D1) gives a good 483 

confidence in the determination of the contact among the failed mass and the stable 484 

bedrock in depth (Fig. 9a, 9b). The velocities in the stable part composed of the flysch 485 
formation vary in the range 1200-2000 m.s

-1
 for the P-waves and 450-600 m.s

-1
 for the S-486 

waves. These velocity values are slightly lower than those expected for similar rocks 487 

composed of conglomerate and sandstone with a low clay content (Gosar et al., 2001). 488 

They are explained by the highly dislocated texture of the flysch (BRGM 1974). Despite 489 
an important velocity contrast in Vs on both sides of D2, the extension of D2 in depth 490 

cannot be precisely determined on the tomographies because of insufficient velocity 491 

contrast in depth. Starting from the stable part, the iso-values of 1200 m.s
-1

 (Vp) and 492 
450 m.s

-1
 (Vs) dip rapidly below the ground surface. This interface can be followed in all 493 

seismic tomographies between 12 and 15 m below the ground surface. It is difficult to 494 

determine the roughness of this interface knowing that the seismic tomographies very 495 
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often tend to produce artificial undulating surfaces because of the diffractions caused by 496 

small irregularities at the shallow surface of very heterogeneous media.  497 

Therefore, the interface can be modeled as a plane which is an acceptable assumption for 498 

a small-scale interpretation. The plane is adjusted in a least square sense on the 499 
tomography nodes at the transition between the velocities characterizing respectively the 500 

failed mass and the stable bedrock. A stronger weight is attributed to the Vp 501 

tomographies because the velocity contrasts are more important than in the Vs 502 
tomographies. The accuracy is estimated by adjusting different planes based on five 503 

different interpretations. The average orientation is thus characterized with a dip direction 504 

of 233° ±8° and a dip of 26° ±4° which is close to the average slope of the ground surface 505 
but lower than D1. Therefore this interface is not interpreted as the extension of D1 in 506 

depth, but as the limit of D4 between a highly fractured media and the less fractured 507 

bedrock in flysch. D4 could possibly correspond to an internal shear zone upon which a 508 

highly fractured rock is sliding in a dip-slope configuration. 509 

Kinematics analysis 510 

Displacements calculated from the TLS datasets between the period May 2008–May 2010 511 

illustrate the landslide activity at the vicinity of D1, D2 and D3. The SDv computations 512 
on the point clouds indicate a maximum absolute elevation difference of 6.14 m between 513 

July 2008 and May 2010 (average error of 3.10
-3
 m with a standard deviation of 0.03 m) 514 

leading to an maximum vertical displacement rate of 3.07 m.year
-1
 along D1 and D2 of 515 

the top of the terrain unit 1 (Fig. 10). All the displacements in the terrain unit 1 are 516 

concentrated between D1 and D2 where tensions cracks are developing, thus explaining 517 

the low seismic velocities observed in this area (Fig. 9). 518 
The elevation differences allow one to distinguish three coherent blocks 1a, 1b and 1c 519 

belonging in the terrain unit 1 (Fig. 8a); these blocks are progressively separated by the 520 

opening of tension cracks and the sliding along D1 and D2. Uphill, the terrain unit 2 is 521 

also destabilized due to the loss of buttress provided by terrain unit 1. No displacement is 522 
detected on the South-East side of D2 with reference to the accuracy of the TLS datasets 523 

(less than 0.05 m). These observations are in agreement with the morpho-structural 524 

analysis described previously. The displacement amplitudes of the SPs are far larger than 525 
the accuracy of the TLS datasets, thus giving a good confidence in the measurements. 526 

The SPs displacements allow one to determine the true 3D displacement vectors 527 

characterized by an average velocity of about 4.12 m.year
-1

 (Fig. 11).  528 
The increase of the standard deviation of SPs displacements with the elapsed days 529 

between TLS acquisitions (Table 3) highlight the spatial heterogeneity of displacement in 530 

the top of the terrain unit 1 due to the progressive opening of tension cracks separating 531 

the blocks 1a, 1b and 1c (Fig. 10). On the opposite, the directions of the displacement 532 
vectors are constant in time and in space with an average dip direction and dip of 533 

228°/34° (±4°/±2°) (Fig. 12). Consequently, the short term kinematics of the terrain unit 1 534 

seems to be mainly controlled by planar failures along D1 and D4. 535 

Concept for the failure mechanism 536 

Because the upper part of the La Valette landslide is structurally controlled at small scale 537 

by planar sliding and wedge fracture configurations, a synthesis of the structural and 538 
kinematics analysis is done by the use of horizontal hemispherical projections (equal 539 

angle) (Richards et al., 1978; Hoek and Bray, 2004) (Fig. 12). The fracture sets identified 540 

in the terrain units 1, 2 and 4 are summarized in Table 4. Figure 13a presents the 541 
conceptual model of the failure mechanism interpreted from the integration of the ALS, 542 

TLS and seismic survey.  543 

From a kinematical point of view, D3 and D2 define a wedge geometry with an axis 544 

direction and dip of 215°/30° ± 11°/5° and a maximum depth varying between 60 to 80 m 545 
with a back-crack represented by D1. Because the wedge axis does not „daylight‟ in the 546 
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slope face, this geometry is precluded from a strict straight-forward wedge kinematic 547 

evaluation as a single homogeneous block (Hoek and Bray, 2004). In other words, the 548 

wedge cannot move without a buttress breakout. Therefore the wedge geometry can only 549 

constrain the landslide retrogression direction between D2 and D3 to the North. However 550 
a breakout interface cannot be totally excluded at the bottom of the scarp to explain the 551 

location of the source line and the subsidence along D1 in the terrain unit 1 (Fig. 13a).  552 

Downhill, the mudslide body is acting as a buttress for the upper part. Consequently, the 553 
progression of the mudslide allows the development of dip-slope failures and coherent 554 

blocks start sliding along D4 laterally delimited by D2 and D3. Because the dip direction 555 

and dip of the 2-years displacements vectors in the terrain unit 1 are located between the 556 
great circles of D1 and D4 (Fig. 12), the displacement vector components are likely 557 

related to a sliding along D1 and D4, thus leading to a bi-planar superimposed failure 558 

mechanism. In addition, the dip direction and dip of the displacements vectors are 559 

remarkably close to the intersection of the great circles of D2 and D3 which corresponds 560 
to the wedge axis orientation (Fig. 12). This observation consolidates the hypothesis of 561 

the predominant role of the wedge geometry on the long-term development of the 562 

landslide since its triggering date while the planar sliding explain the short-term landslide 563 
kinematics. D4 is probably not a pre-existing discontinuity and is likely related to a 564 

plastic deformation of the highly fractured flysch formation during the development of 565 

the dip-slope failure mechanism. The tension cracks observed at the ground surface are 566 
certainly connected to the shear zone D4 in depth, thus leading to a listric geometry 567 

which is usually observed in soft rocks and clay slopes.  568 

Volume estimation with the SLBL method 569 

To estimate the volume of the failed mass along D4 in the terrain unit 1, an interpolation 570 

is carried out using the SLBL method. The discontinuities D1 (North-East limit), D2 571 

(South-East limit), D3 (North-West limit) and D4 (basal limit in depth) are used to 572 

constrain the calculation domain of the SLBL by assuming that D4 is continuous with a 573 
slightly curved geometry. The mechanical weak zone highlighted by the spring line at the 574 

lower limit of terrain unit 1 (Fig. 8; Fig. 13a) is used as the Southern limit for the SLBL 575 

calculation. The unstable volume is calculated using a 2 m grid DEM interpolated from 576 
the ALS data. This cell size is essentially used for computation stability and time 577 

computing purposes. A tolerance of -0.3 defining the degree of curvature of the SLBL is 578 

selected in such way that the SLBL surface fits at best the discontinuity D4.  579 
The result gives a slightly curved surface that flattens and daylight in the spring line A 580 

volume of 500‟000 m
3
 is estimated (Fig. 13b). This volume represents the highly 581 

fractured mass mobilized by D4 which is currently loading the underlying mudslide body. 582 

Discussion and Conclusion 583 

In the La Valette landslide, the morpho-structural analysis and the displacement analysis 584 

indicated a structurally-controlled evolution of the landslide at small scale. The 585 
retrogression failure observed in the upper part of the La Valette landslide is an 586 

intermediate case study between landslide developed in soft and in strong rocks. In strong 587 

rocks, the relationship between pre-existing fractures and the failure mechanism has been 588 

widely observed and illustrated (Sauchyn et al., 1998; Agliardi et al., 2001; Jaboyedoff et 589 
al., 2009). In soft rocks, the failure mechanism is propagated through intact materials of 590 

uniform shear strength (Irfan, 1998). Therefore conventional stability analyses are not 591 

fully appropriate because of the influence of both the mechanics of the discontinuities and 592 
the mechanics of the deforming soil. Although this aspect is out of the scope of this study, 593 

it will need specific attention for a further slope failure modeling. In addition, in such 594 

slow-moving complex landslides in soft rocks, it is often difficult to determine the exact 595 
location of the failure surface. The deformation may occur at more than one level or in 596 
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different parts of the slope at different times (Cornforth, 2005). Therefore several 597 

additional failure surfaces not depicted in the conceptual model may be present in reality 598 

or may occur in the future. However, the proposed model is coherent with the ALS, TLS 599 

and seismic data and the field observations.  600 
The upper part of the La Valette landslide is very probably a case of reactivation of an 601 

older landslide and is characterized with a succession of individual slides as it is often 602 

observed in large Deep-Seated Gravitational Slope Deformation (DSGSD) (Agliardi et 603 
al., 2001). A first slide occurs and, as a consequence of the movement of this mass, other 604 

adjacent masses starts to move thus allowing the retrogression of the landslide to the 605 

North. The opening of tension cracks in the crown area is evidence of the initiation of a 606 
progressive failure. However, the flysch formation may already have undergone some 607 

deformation before the discontinuities start to open. The failure may have started in the 608 

weak zone D4 and along the pre-existing fractures D1, D2 and D3. Furthermore, the pre-609 

failure behavior of successive slides is probably a consequence of non-uniform stress and 610 
strain conditions which prevent the upper part to a catastrophic failure. In the same way, 611 

the dip of D4 extended by the SLBL calculation (internal sliding surface mobilizing 612 

500‟000 m
3
 of the landslide mass) is very close to the residual friction angle of the 613 

reworked flysch (30°) (Colat and Locat, 1993; Le Mignon, 2004; Fig. 13b). Therefore the 614 

stability limit is not reached simultaneously in the whole mass and it would be very 615 

unlikely that the unstable mass will fail in a single event. Because the wedge axis 616 
delimited by D2 and D3 does not „daylight‟ in the slope face, the probability of a 617 

catastrophic failure is considerably reduced to a progressive release of material through 618 

shallow translational failure mechanisms controlled by D1 and D4. However the 619 

existence of breakout interfaces at the bottom of the main scarp cannot be totally 620 
excluded (Fig. 13a). Stresses would then be transferred by loading to the mudslide body 621 

acting as a reinforced buttress since the set-up of the drainage system in the middle part 622 

of the slope and the decrease of the mudslide velocity. The stress release occurs over an 623 
extended period due to the continuous sliding of the mudslide body (~1 m.year

-1
). 624 

However, this buttress can become over-stressed if the activity of the upper part 625 

increases, thus potentially leading to a sudden acceleration of the mudslide or the 626 

development of an upper internal failure in the mudslide body. If the stress increment 627 
becomes excessive, the amount of deformation becomes deviated in the shallow part of 628 

the slope, thus leading to an increase of the slope inclination favoring shallow failures. 629 

Sudden releases of small volumes and fluidization of the mass at the vicinity of the spring 630 

line have been observed in the past and more recently in Spring 2009 when about 631 
3000 m

3
 of reworked flysch suddenly mobilized in a mudflow over a distance of 632 

250 meters. A development of the mudslide in areas where the buttress is less strong 633 

typically in the borders of the mudslide through lateral spreading is also possible. As a 634 
consequence of the important activity of the upper part, the lower mudslide part has to 635 

evolve differently than in the past according to the drainage works installed further 636 

downhill. The transition between the main scarp and the mudslide body constitutes a key 637 
zone controlling the overall landslide behavior because that part is susceptible to be over-638 

stressed. Groundwater conditions of the upper part still need to be assessed in detail for a 639 

better understanding of the failure mechanisms. Hydro-mechanical modelling in progress 640 

will also help to better understand the failure mechanism. 641 
To conclude, the efficiency of combining ground-based (LiDAR TLS, seismic 642 

tomography) and airborne-based (LiDAR ALS) geophysical information to characterize 643 

the landslide structure is demonstrated by the agreement observed between geological 644 
field observations, morpho-structural modeling and kinematics analysis. The advantage of 645 

combining different methods is to propose an interpretation adapted to the scale of the 646 

landslide which is not possible when only local (e.g. punctual) measurements are used. 647 

TLS data provide high resolution point clouds of the topography for large scale analysis 648 
which complements ALS data which are more suitable for smaller scale analysis. The 649 

seismic tomography survey provides spatially-distributed information on the geometry of 650 

the fractures in depth. The integration and the interpretation of this multi-source data 651 
allow one to propose possible landslide evolution scenarios. Furthermore, this study 652 
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demonstrated that in soft rocks (e.g flysh formations), the morpho-structure information 653 

derived from field observations and DEMs analysis does not fully reflect the internal 654 

structure of the slope without complementary information on the kinematics and on the 655 

internal structure provided with ground-based surveys. The proposed multi-technique 656 
approach can be applied to different types of landslides. A simple plot of the 657 

displacement vector in a stereonet with the observed discontinuity orientations can 658 

highlight structurally controlled landslides. This approach has been illustrated in the 659 
monitoring of strong rock-slope. Because multi-source data have heterogeneous qualities 660 

and different spatial resolutions, a major difficulty consists in the extraction of relevant 661 

information and in their integration in a coherent framework. Data georeferencing and re-662 
interpretation are among the most important steps needed to detect inconsistencies among 663 

multi-source data (Caumon et al., 2009; Travelletti and Malet, 2011). A future challenge 664 

to improve the proposed methodology relies on coupling of 3D Geographic Information 665 

Systems (data storage and management) with 3D geometrical modeling packages 666 
allowing quick re-interpretation of the conceptual model of the slope.  667 
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Tables 
 

Table 1 Characteristics of the LiDAR datasets   

Characteristics of the laser scanning systems ALS TLS 

Scanner type Riegl VQ480 Optech ILRIS-3D 

Distance measurement technique Time-of-flight Time-of-flight 

Wavelength (nm) 1500 1500 

Field of view (in width and height) (°) 60 40 

Laser spot diameter at 100 m (cm) ~3 ~3 

Frequency of measurements (Hz) 10'000 2'500 

Characteristics of the field acquisitions     

Scan distance (m) ~ 300 ~130 

Pulse mode  Last echos Last echos 

GPS frequency (Hz) 5 Scan from a base position 

Point density after vegetation filtering (pt.m
-2

)     

Average 4.1 154.8 

Standard deviation 4.3 140.6 

 
Table  2  Average error µ and standard deviation σ  of the relative and absolute co-registration of the TLS 

datasets 

 Relative positioning error Absolute positioning error 

  µ (m) σ (m) µ (m) σ (m) 

18 May 08 - - 0.04 0.07 

25 July 08 0.00 0.03 0.06 0.08 

10 May 09 0.00 0.03 0.02 0.07 

12 July 09 0.00 0.02 0.04 0.09 

08 Oct. 09 0.00 0.03 0.00 0.07 

26 Apr.10 0.00 0.02 0.01 0.07 

27 May 10 0.00 0.03 0.01 0.07 

 

 

Table 3 Average µ and standard deviation σ of  the SPs displacements 

  Elapsed days µ (m) σ (m) 

18 May 08 - 25 July 08 68 1.69 0.07 

25 July 08 -10 May 09 289 3.3 0.34 

10 May 09 - 12 July 09 63 0.52 0.05 

12 July 09 - 08 Oct. 09 88 0.39 0.09 

08 Oct. 09 - 26 Apr.10 200 1.93 0.17 

26 Apr. 10 - 27 May 10 31 0.34 0.05 

 

Table 4 Characteristics of the fracture sets identified in the terrain units 1, 2 and 

4 of  the La Valette landslide 

  Number of observations Dip direction (°) Dip (°) 

D1 52 247 42 

D2 11 287 55 

D3 77 166 44 

D4 5 233 26 
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Figure captions 

 
 
Fig. 1. Geomorphological setting of the La Valette landslide on the South-facing slope of the 

Barcelonnette basin. a) General view of the landslide to the North East. b) View of the main scarp 

and the crown areas; the dashed line delineates the area investigated by TLS and seismic 
tomographies. The displacement profiles measured by the “Restauration des Terrains de 

Montagne, RTM” office to monitor the retrogression of the crown are also indicated. 

 
Fig. 2. Geological setting of the La Valette landslide. a) Extract of the regional geological map at 

1:50.000 with the topography before the landslide event (adapted from BRGM, 1974) and 

schematic cross-section detailing the hydro-geological setting of the slope before the failure of 

1982 (adapted from Colat and Locat, 2003). The interval between elevation contour lines is 20 m 
b) Photographs of the spring line at an elevation of ca. 1880 m along a possible weak zone above 

the tectonic discordance near the North West boundary and the Rocher Blanc location. 

 
Fig. 3. Development of the La Valette scarp since 1974 (before the failure) to 2009 from the 

analysis of aerial orthophotograph. From 1982 to 2009 a scarp regression of  200 m towards the 

North East is observed.  

 
Fig. 4. Displacement monitoring of some profiles along the crown (monitoring carried out by the 
“Restauration des Terrains de Montagne, RTM” office). The monitoring indicates an acceleration 

of the displacement since 2000. The displacement profiles measured by RTM are also indicated 

on the orthophotograph of 2009.. 

 
Fig. 5. Photographs of the crown area presenting three major discontinuities D1, D2 and D3 and 

the associated stereonet (equal angle, lower hemisphere). Striations are observed on D1. The 

location of the terrestrial laser scanning (yellow square) and the seismic profiles (L1, L2 and L3) 
are also indicated. 

 

Fig. 6. Location of the eleven SPs in the crown area used to calculate the displacements. The SPs 

of the first acquisition are aligned on their corresponding displaced SPs for each acquisition date. 
The displacement of the center point of each SP of the first acquisition is used to determine the 

displacement vector. The average misfit between the SP of the first acquisition and the 

corresponding SP is estimated at ca. 0.01 m. 

 
Fig. 7. Example of seismic tomography data from the profile L2 (see location in Figure 5). 

a) Example of recordings of the P-waves and Surface-waves arrival time. The first arrivals of the 
P-waves are used for the inversion of the P-wave velocity tomography. A spectral analysis of the 

surface waves (SASW) is realized to measure the surface wave dispersion curve and invert the 

corresponding shear wave velocity b) Example of the analysis of the dispersive character of 
surface waves for the 1D inversion of a vertical profile of shear wave velocity. The phase velocity 

represents the velocity of individual wave propagation in the media according to its wavelength 

and frequency (Park et al. 1998).  The relative good determination of the dispersion curve (dashed 
line) gives confidence on the inverted shear-wave velocity profile. 

 
Fig. 8. Morpho-structural maps derived from the interpretation of an Airbone Laser Scanning 
(ALS) survey. a) Major discontinuities and sub-units identified in the scarp and in the crown 

areas. b) Differential DEM highlighting the retrogression direction of the landslide for the period 

1960-2009 constrained by the discontinuity D2 and D3. 
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Fig. 9. 3D view of the seismic tomographies with their location in the crown area a) P-wave 
velocity tomography. b) S-wave velocity tomography. A velocity contrast at about 12 m deep 

highlights the presence of the discontinuity D4 interpreted as an internal sliding surface.  

 
Fig. 10. TLS point cloud comparisons according to the reference date of 18 May 2008. The 

displacements are calculated with the shortest distance comparison in the vertical direction. A 

negative value means that the point elevation is lower than the point of the reference. Several 

blocks are clearly individualized through time. The blocks 1a, 1b and 1c belong to the sub-unit 1. 
The block 2 belongs to the sub-unit 2. The displacement vectors of the SPs are also indicated.  

 

Fig. 11. Cumulated displacements of the SPs calculated with the roto-translation technique. 

 
Fig. 12. Stereonet (equal angle, lower hemisphere) of the major discontinuities observed in the 

scarp and in the crown areas. The direction of displacement located between the great circles of 
D4 and D1 near the intersection of D2 and D3 strongly suggest that the upper part of the La 

Valette landslide is structurally-controlled by planar failure confined within a wedge geometry.  

 
Fig. 13. Conceptual geological model of development of the upper part of the La Valette 

landslide. a) Proposed concept of the failure mechanism affecting the scarp and the crown areas. 

The morpho-structural and the kinematics analyses highlight a planar failure mechanism along 
D1 and D4 confined in a wedge geometry delimited by D2 and D3. The location of the cross-

section is shown in Fig. 13b. b) 3D view of the discontinuity D4 extended with the SLBL 

computation. The ground topography above D4 has been removed.  



Figure 1
Click here to download high resolution image

http://www.editorialmanager.com/lasl/download.aspx?id=16172&guid=52f257f3-f213-44d3-ab04-ce028f9d12cf&scheme=1


Figure 2
Click here to download high resolution image

http://www.editorialmanager.com/lasl/download.aspx?id=16156&guid=466ce0af-347f-4a1a-a7f3-6012fb5415ea&scheme=1


Figure 3
Click here to download high resolution image

http://www.editorialmanager.com/lasl/download.aspx?id=16173&guid=9926f32f-66ae-48fa-8683-65d7124e8f6e&scheme=1


Figure 4
Click here to download high resolution image

http://www.editorialmanager.com/lasl/download.aspx?id=16158&guid=fd84ad0b-b3fb-40b9-85dc-f35248cb0880&scheme=1


Figure 5
Click here to download high resolution image

http://www.editorialmanager.com/lasl/download.aspx?id=16174&guid=9958f0d6-afb7-4686-af9e-b19a1d820202&scheme=1


Figure 6
Click here to download high resolution image

http://www.editorialmanager.com/lasl/download.aspx?id=16160&guid=befba675-fbc6-47b5-a837-f9bf6350371b&scheme=1


Figure 7
Click here to download high resolution image

http://www.editorialmanager.com/lasl/download.aspx?id=16161&guid=369d7c3d-31b2-4a20-9f9f-643776222fdc&scheme=1


Figure 8
Click here to download high resolution image

http://www.editorialmanager.com/lasl/download.aspx?id=16162&guid=65338d9c-d16e-4306-9529-1b186ddbe9a2&scheme=1


Figure 9
Click here to download high resolution image

http://www.editorialmanager.com/lasl/download.aspx?id=16163&guid=8e1acc0a-4c5f-4588-b37b-dc41d667c344&scheme=1


Figure 10
Click here to download high resolution image

http://www.editorialmanager.com/lasl/download.aspx?id=16164&guid=6d7fa707-c081-4e5d-9a5d-0c7463c14808&scheme=1


Figure 11
Click here to download high resolution image

http://www.editorialmanager.com/lasl/download.aspx?id=16165&guid=a2b188d5-8879-4dbf-a5cf-c5ec30c1501e&scheme=1


Figure 12
Click here to download high resolution image

http://www.editorialmanager.com/lasl/download.aspx?id=16166&guid=23a478bb-202f-494d-bdd6-561190cc5a4d&scheme=1


Figure 13
Click here to download high resolution image

http://www.editorialmanager.com/lasl/download.aspx?id=16171&guid=3fb92310-4bec-4e2d-b0f3-37c179ec4ebc&scheme=1



